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	Particles	and	nuclei	are	measured		

by	their	charge	(Z),		
	energy	(E),	

	momentum	(P)	or	
Rigidity	R	=	P/Z	

 Z and P  
are measured independently by the   

Tracker, RICH, TOF  and ECAL 

AMS:	a	unique	TeV	precision,	accelerator-type	spectrometer	in	space	

 Magnet: ±Z 
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Electromagnetic Calorimeter 

50 000 fibers, φ = 1 mm 
distributed uniformly  
inside 600 Kg of lead 

9 

provides a 17 X0, TeV, 3-dimensional measurement of e+, e-, and gamma ray:  
 
1.  the directions to ± 1 degree 

2.   the energy resolution of 2% 
 
3. Distinguishes electrons and positrons from 

protons, helium, …by a factor of 10,000 
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AMS is a unique magnetic spectrometer in space 

In 8 years, the detectors have performed flawlessly. 

AMS is able to pick out 1 positron from 1,000,000 protons; 

unambiguously separate positrons from electrons up to a trillion eV; 

 and accurately measure all cosmic rays to trillions of eV. 

 



AMS was installed on the ISS in May 2011 
it will continue through the lifetime of ISS

à   28.1 × 106 electrons
à     1.9 × 106 positrons
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Electron and Positron spectra before AMS  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Electron and Positron spectra after AMS  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FIG. 3. (a) The spectral index of the AMS positron flux in non-overlapping energy intervals
(red data points). The spectral index has complex energy dependence with a significant decrease
towards higher energies. (b, c) A double power law fit of Eq. (3) to the flux in the energy ranges
[7.10� 55.58]GeV and [55.58� 1000]GeV, respectively. The red data points are the measured
positron flux values scaled by Ẽ3. The fitted functions are represented by the blue lines. The
vertical dashed lines and the bands correspond to the value and the error of the energies E0 where
the changes of the spectral index occurs. The dashed blue lines are the extrapolations of the power
law below E0 into the higher energy regions. �� is the magnitude of the spectral index change, see
Eq. (3). The green band in (a) represents the 68% CL interval of the minimal model fit of Eq. (4)
to the positron flux (see text).
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The Spectral Index of the Positron Flux as a 
function of energy

E0	

263

migration. The energy scale error is treated as an uncertainty of the bin boundaries.264

Several independent analyses were performed on the same data sample by di↵erent study265

groups. The results of those analyses are consistent with the results presented in this Letter.266

Results.— The measured positron flux including statistical and systematic errors is pre-267

sented in Table SM I of the Supplemental Material [22] as a function of the energy at the top268

of AMS. The table also includes Ẽ values, i.e spectrally weighted mean energy in the bin,269

calculated for a flux / E�3 [24] and the corresponding energy scale errors. The precision A.17270271

of our data allows an accurate study of the properties of cosmic positrons without using272

the traditional positron fraction, defined as the ratio �e+/(�e+ + �e�), which includes the273

energy dependence of the electrons.274

The presented results are consistent with our earlier data [1, 2], which were based on275

1/3 of the current statistics. The current results greatly improve the accuracy and energy276

reach of our measurement. For instance, the error on the flux in the previous highest energy277

bin [370� 500]GeV [2] is reduced from 30% to 12% and the energy reach is increased by a278

factor of 2 from 500GeV to 1TeV.279

Figure 1 shows the measured positron spectrum (i.e. the flux scaled by Ẽ3, Ẽ3 �e+). In A.18280281

this and the subsequent figures the error bars correspond to the quadratic sum of statistical282

and systematic errors. As seen, at low energies from 0.5 to 7.10GeV there is a significant283

time variation of the spectrum due to solar modulation e↵ects (indicated by a red band [3]).284

Starting from 7.10GeV this variation gradually vanishes and the average positron spectrum285

is flattening from 7.10 to 27.25GeV (green vertical band). At higher energies, where solar286

modulation e↵ects are small [3], it exhibits a complex structure: a rise from 27.25 to 290GeV287

(orange vertical band); a maximum at ⇠290GeV followed by a sharp fall.288

Figure 2 shows the AMS result together with earlier experiments [25–30]. The AMS data289

significantly extend the measurements into the uncharted high energy region.290

To examine the energy dependence of the positron flux in a model independent way, the291

flux spectral index � is calculated from the equation292

� = d[log(�e+)]/d[log(E)], (2)

over non-overlapping energy intervals which are chosen to have su�cient sensitivity to the293

spectral index. The energy interval boundaries are 3.36, 5.00, 7.10, 10.32, 17.98, 27.25, 55.58,294

90.19, 148.81, 290 and 1000GeV that combine several energy bins defined in Table I of the295

Supplemental Material [22]. The results are presented in Fig. 3a. They are stable against the296

variation of energy interval boundaries as verified by shifting the boundaries to higher and297

lower values by one or two energy bins (see Fig. SM2 of the Supplemental Material [22]).298

As seen in Fig. 3a, the positron spectral index exhibits complex behavior. It decreases299

(softens) rapidly with energy below ⇠7GeV. In the energy range [7.10� 27.25]GeV it is A.19300301

nearly energy independent, with an average � = �2.99 ± 0.01. It then rises (hardens) to A.19302303

an average � = �2.72 ± 0.04 in the energy range [55.58� 148.81]GeV. Above 148.81GeV304

the spectral index experiences significant decrease reaching � = �3.35± 0.32 in the highest305

energy interval [290� 1000]GeV.306

To determine the transition energy E0 where the spectral index starts rising, we use a307

double power law approximation308

�e+(E) =

(
C(E/55.58GeV)�, E  E0;

C(E/55.58GeV)�(E/E0)��, E > E0.
(3)

7

E0	

The spectral index has complex energy dependence with a significant decrease 
towards higher energies.  

Φ=CEγ
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The positron flux is the sum of  
low-energy e+ from collisions plus a new source of high-energy e+
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The low energy positron data can be explained by the 
collision of cosmic rays.

Origins of Cosmic Positrons 
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Models of the 
collisions of 
cosmic rays



Institute for Experimental Particle Physics 
5th June, WIN 2019, Bari Maura Graziani

20

Origins of Cosmic Positrons 
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Origins of Cosmic Positrons 
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Consistency check:
Positron flux with proton rejection increased by x3
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AMS-02 electron flux at high energies
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error amounts to 4% of the flux at 0.5GeV, it decreases to 1.1% at 3GeV, and slowly140

rises to 2.5% at [1000− 1400]GeV. This includes a correlated systematic error on the flux141

normalization, which is estimated to be 1% of the flux independent of energy. This 1% error142

is subtracted in quadrature from the total systematic error for all the fits in this Letter.143

The fourth source is the uncertainty in the magnitude of the event bin-to-bin migration144

due to the finite energy resolution. The bin widths ∆Ei are chosen to be at least 2 times the145

energy resolution to minimize migration effects [1, 3]. Unfolding the measured fluxes shows146

that the bin-to-bin migration is small: the corresponding error is 2% of the flux at 0.5 GeV147

and it decreases to < 0.2% above 10 GeV.148

The fifth source is the uncertainty in the energy scale, which causes simultaneous shifts in149

the energy measurement of both electrons and positrons. As discussed in detail in Ref. [20],150

typical energy scale errors are 4% at 0.5GeV, 2% from 2 to 300GeV, and 2.6% at 1.4TeV.151

The total systematic error of the electron flux is taken as the quadratic sum of the four152

sources: definition of templates, charge confusion, the efficiency corrections, and bin-to-bin153

migration. The energy scale error is treated as an uncertainty of the bin boundaries.154

Several independent analyses were performed on the same data sample by different study155

groups [11]. The results of those analyses are consistent with the results presented in this156

Letter.157

Results.— The measured electron flux including statistical and systematic errors is pre-158

sented in Table SI of the Supplemental Material [21] as a function of the energy at the top of159

AMS. The table includes spectrally weighted mean energy Ẽ calculated following Ref. [28]160

for a flux ∝ E−3 and the energy scale uncertainty on Ẽ. Results presented in Table SI are161

consistent with and supersede our earlier results [1], which were based on 1/3 of the current162

statistics and cover only 1/2 of the current energy range.163

The positron fraction, Φe+/(Φe+ + Φe−), and the combined (electron + positron) flux,164

(Φe+ + Φe−), both based on the electron flux of this Letter and our most recent positron165

flux [4] are also provided in Table SII of the Supplemental Material [21] with the system-166

atic errors calculated from the systematic uncertainties of positron and electron fluxes that167

account for correlations due to the calculation of the acceptance.168

Figure 1 shows the AMS results on the electron spectrum (i.e. the flux scaled with Ẽ3,169

Ẽ3Φe−) in comparison with the most recent AMS positron spectrum [4] scaled by a factor170

of 10. As seen, the electron and positron spectra have distinctly different magnitudes and171

energy dependences. Several checks were performed on the same negative rigidity data172

sample by tightening the selection criteria yielding consistent results. One of these checks173

with tighter ECAL cut is shown in Fig. S7 of the Supplemental Material [21].174

The AMS results on the electron spectrum together with earlier measurements [24, 29–34]175

are shown in Fig. 2(a). The AMS results significantly improve the precision and extend the176

measurements to the uncharted high energy region. The positron fraction results together177

with earlier measurements [24, 29–34] are presented in Fig. 2(b). The sum of the electron178

and positron [4] spectra is compared to the recent measurements of the combined electron179

and positron spectrum [35–39] in Fig. 2(c).180

To examine the energy dependence of the electron flux in a model independent way, the181

flux spectral index γ is calculated from182

γ = d[log(Φ)]/d[log(E)], (2)

over non-overlapping energy intervals which are chosen to have sufficient sensitivity to the183

spectral index. The energy interval boundaries are 3.36, 5.00, 7.10, 10.32, 17.98, 27.25,184

7

Comparison of the behavior of the cosmic ray 
electrons and positrons
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FIG. 3. (a) The spectral indices of the AMS electron (blue data points) and positron [4] (red data
points) fluxes in non-overlapping energy intervals. They show distinctly different behavior. The

blue band represents the 68% C.L. interval of the fit of Eq. (5) to the electron flux (see text). The
green band represents the 68% C.L. interval of a fit to the positron flux (Eq. (4) in Ref. [4]). (b) A
double power law fit of Eq. (3) to the electron flux in the energy range [20.04 − 1400] GeV. The blue

data points are the measured electron flux values scaled by Ẽ3. The fitted function is represented
by the solid red line. The vertical dashed line and the red band correspond to the value and the
error of the energy E0 where the change of the spectral index occurs and ∆γ = 0.094 ± 0.014 is

the magnitude of the spectral index change, see Eq. (3). The dashed red line is the extrapolation
of the power law below E0 into the higher energy region (or ∆γ = 0 in Eq. (3)).
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independent
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The electron flux is the sum of two power law
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Origins of Cosmic Electrons

At	low	energies	positrons	come	from	cosmic	ray	collisions,	electrons	do	not.		

!"# $ = $&
$'& ( + $' $*⁄ ∆-* .( /0 $' $0⁄ -0 + /1 $' $1⁄ -1

⦁  Electron data – (power law b) 

Solar	&	low-energy	

Positrons	from	collisions	



Institute for Experimental Particle Physics 
5th June, WIN 2019, Bari Maura Graziani

29

Origins of Cosmic Electrons
The	positron	source	term	has	a	cutoff,		

whereas	electrons	have	neither	source	term	nor	the	cutoff.		
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Origins of Cosmic Electrons

The	cosmic	ray	electrons	originate	from	different	sources	than	high	energy	positrons.		
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Conclusions
•  the measurement of the e- flux from 0.5 GeV to 1.4 TeV based on 28.1 × 106 
     events and of the e+ flux from 0.4 to 1 TeV based on 1.9 × 106 event have been presented.

•  The positron flux:
¥   significant excess starting from ~25.2  GeV and a sharp dropoff above 284 GeV
¥  is well described by the sum of a diffuse term associated with the secondary positrons 

production and a new source term of positrons, which dominates at high energies
¥  shows a finite energy cutoff of the source term of E~ 810  GeV (significance > 4σ)

•  The electron flux:
¥  significant excess starting from ~42 GeV but the nature of this excess is different from 

the positron flux excess above ~25.2 GeV. 
¥  is well described by the sum of two power law components. 
¥  The electron flux does not have an energy cutoff below 1.9 TeV.

•  In the entire energy range the electron and positron spectra have distinctly different 
magnitudes and energy dependences.
à most high energy electrons originate from different sources than high energy positrons.
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AMS Positron Fraction	
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AMS 2024

The Positron Flux through 2024  
Extend the measurements to 2 TeV and double the current statistics 

to determine the sharpness of the drop off. 

1.2	TeV		
Dark	Matter		

By 2024, AMS will have a definitive result on the dark matter 
origin of positrons 
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χ + χ  e+		+	…	
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Dark Matter model is based on J. Kopp, Phys. Rev. D 88, 076013 (2013).  

Positron excess also can be expressed in terms of 
the positron fraction, which explores the same physics 
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New	Propagation	Models	explaining	the	AMS	e+	
data	

Latest	Example	of	Theore1cal	Models	of	Positron	Frac1on	
Propaga1on	of	secondaries	

R. Cowsik, B. Burch, and T. Madziwa-Nussinov, Ap. J. 786 (2014) 124 
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Collision of ordinary CR 
(Moskalenko, Strong) 

Explaining	the	AMS	positron	fraction	(gray	circles)	
is	due	to	propagation	effects.		

R.	Cowsik		et	al.,	Ap.	J.	786	(2014)	124,	(pink	band)	

This	requires	a	specific	energy	
dependence	of	the	B/C	ratio	

AMS:	11	million	nuclei	

The	observed	features	of		the	AMS	e+	data		
cannot	be	explained	by	standard	propagation	models	
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AMS Combined positron + electron flux	
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HAWC	rules	out	that	the	AMS	positron	excess	is	from	nearby	pulsars 
Science	358,	911-914	(2017) 


