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AMS in Space

300,000 electronics channels 5Sm x4m x 3m
650 processors 7.5 tons



Silicon Tracker

Charge Measurement: AZ=0.12 (Z=6)
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Time of Flight (TOF)

ISS Data on Velocity
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The TOF system serves as a high-efficiency trigger



Calibration of the AMS Detector

Test beam at CERN SPS: 12,000 CPU cores at CERN
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: AMS was mstalled on the ISS in May 2011
, . \\ \></*"“ s .

S '?"bl |oﬁ charged particles have
ben measured by AMS :




Precision Measurements of Cosmic Rays
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Traditionally, there are two prominent classes

of cosmic rays:
Primary Cosmic Rays (p, He, C, O, ...)
are produced and accelerated at the source (such as SNR) and
travel through space, and are directly detected by AMS. They
carry information on their sources and the history of travel.




Flux Measurement

Isotropic flux in the it rigidity Number of selected events
bin (R;,R; +A R;) (subtracted for backgrounds and
corrected for bin-to-bin migration)
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(>97% over entire R range)

Extensive studies of the systematic errors: .,f 3
* Background estimations ?oo;— 3
* Rigidity resolution function ; :Z R>1.2 - Maximum:f
* Acceptance and Trigger efficiency % :Z geomagnetic CUtOﬁf
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Accuracy on N;: Nuclei Charge Identification

The tracker L2-L8 charge has a very fine resolution of
AZ=0.07-0.12 (2<Z<8).
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The charge misidentification from noninteracting nuclei is
negligible. 0
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Accuracy on N;: Background from interactions between L1 and L2

N,O,F,Ne + AMS — C +X

1D 10° C | selected by L2-L8 (Z=6)
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This background is <0.5% for Carbon and

evaluated by fitting the charge RS _
negligible for Helium and Oxygen.

distribution of tracker L1

Systematic error on the fluxes is < 0.5% in the entire rigidity range 11



Accuracy on N; : Tracker Rigidity Resolution

The systematics associated with the tracker rigidity resolution is well understood.
The tracker spatial resolution is 6.5 pm for Helium, 5.1 pm for Carbon, and 6.3 pm
for Oxygen.
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The resulting systematic errors on the fluxes are < 1% below 300 GVand 4% @ 3TV ,,



Accuracy on A;: Measurements of Nuclei Cross Section by AMS

74 The detector components are mostly made of Carbon and Aluminum.

AMS measured the nuclei survival probability using
data acquired when AMS pointing in horizontal
direction (~10° sec exposure), in which cosmic rays
can enter AMS both left to right and right to left.
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Most importantly, by flying horizontally, AMS was able to make
Interaction cross sections measurements which were not available
from accelerators.
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Accuracy on A;:

AMS He + C Inelastic Cross Section Measurement
AMS Materials C(73%) Al(20%)
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Accuracy on A;:

AMS Nuclei + C Inelastic Cross Section measurements
average in 5-100 GV
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Accuracy on A4;: Survival Probability MC/Data Comparison

The nuclei survival probability after traversing the material between L8
and L9 is used to verify the inelastic cross section
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The systematic errors on the fluxes due to uncertainties of inelastic
cross sections are ~ 2% up to 100 GV and ~ 3% at 3 TV.
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Absolute Rigidity Scale Verification

The ratio of the fluxes measured using data from each 21-month
period to the flux measured over 7 years
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Differences at low rigidities are due to solar modulation.
At high rigidities (>50 GV), the fluxes are constant within measurement errors
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Flux Measurement Verification Example

The ratio of the fluxes with different
acceptances using events
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Before AMS: Results on Primary Cosmic Rays

(Helium,

, Oxygen)

from balloon and satellite experiments
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The AMS Results on Primary Cosmic Rays He, C, and O.
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AMS Result: Surprisingly, above 60 GV,

these fluxes have identical rigidity dependence.
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They all deviate from a single power law above 200 GV
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Primary Cosmic Ray Spectral Indices
y = d[log(®)/d[log(R)] (® is the flux; y is the spectral index)
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All spectral indices are identical above 60 GV
and harden above 200 GV.

22



Traditionally, there are two prominent classes

of cosmic rays:
Primary and Secondary (Li, Be, B, ...).

Secondary Cosmic Rays are produced in the collisions of
primary cosmic rays. They carry information on the history
of the travel and on the properties of the interstellar
matter.
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Accuracy on N;: Nuclei Charge Identification

The tracker L2-L8 charge has a very fine resolution of
AZ=0.08-0.12 (3<Z<5).
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The charge misidentification from noninteracting nuclei is
negligible. "



Background from interactions between L1 and L2

Carbon
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This background is <0.5% for Lithium and

evaluated by fitting the charge :
Beryllium, <3% for Boron.

distribution of tracker L1

Systematic error on the fluxes is < 0.5% in the entire rigidity range 2



Background from interactions above L1

estimated from MC simulations which have been validated using data,

thin L1 support structures for examples:
made by carbon fiber and 10°
aluminum honeycomb
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For secondaries, this background can reach up to 10% at 3 TV.
The systematic error on the fluxes is <1.5 % in the entire rigidity range 26



Flux x E2” [ m?s 'sr (GeV/n)""]

Flux Measurements of Li, Be, B before AMS
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AMS Secondary Cosmic Rays: Lithium and Boron
Above 7 GV Li and B have identical rigidity dependence
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AMS Secondary Cosmic Rays: Lithium and Beryllium

Above 30 GV Li and Be have identical rigidity dependence.
The fluxes are different by a factor of 2.
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Rigidity dependence of Primary and Secondary

Cosmic Rays

Both deviate from a single power law above 200 GV.
But their rigidity dependences are distinctly different.
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Primary and Secondary Cosmic Ray Spectral Indices
y = d[log(®)/d[log(R)] (P is the flux; y is the spectral index)

The secondary cosmic ray spectral indices are nearly identical, but distinctly
different from the rigidity dependence of the primary cosmic rays.
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Above 200 GV, Li, Be, B all harden more than He, C, and O. 31



The flux ratio between primaries (C) and secondaries (B)
provides information on propagation
and on the Interstellar Medium (ISM)

Cosmic ray propagation is commonly modeled as a fast moving gas
diffusing through a magnetized plasma.

At high rigidities, models of the magnetized plasma predict
different behavior for B/C = kR5.

With the Kolmogorov turbulence model 6 =-1/3
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The AMS Boron-to-Carbon (B/C) flux ratio
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Earlier AMS publication M. Aguilar et. al., Phys. Rev. Lett. 117 (2016) 231102. ,



Secondary to Primary Flux Ratio Spectral Indices
A = d[log(®s/®p)|/d[log(R)]
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Combining the six ratios, the secondary over primary flux
ratio (B/C, ...) deviates from single power law above 200 GV
by 0.13+0.03
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Nitrogen Spectral Indices

y = d[log(®)/d[log(R)] (® is the flux; y is the spectral index)
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The AMS nitrogen flux compared with earlier measurements
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a Primary flux (D and a Secondary flux OF
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Nitrogen nuclei in cosmic rays: both primary and secondary

Astrophysical sources, Collisions of heavier nuclei
mostly via the CNO cycle with the interstellar medium
B 0,8k FeriSM N+ o

‘/f('ﬂ’

In the Solar System: AMS measurement in the Galaxy
(primary component)

N/O = 0.14’;3_-32 N/O = 0.090+0.002

C/O ~ 0.46*2-99 C/O =0.91+0.02

Synthesis of Elements in Stars , Lodders, K., Springer-Verlag Berlin

Heidelberg p. 379-417 (2010)
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Conclusions and Outlook

AMS precision measurements of cosmic ray nuclei up to multi-TeV
energies are challenging our understanding of cosmic ray physics.

Identical rigidity dependences are observed for both primary
cosmic rays (He, C, O) and secondary cosmic rays (Li, Be, B). But they
are distinctly different from each other.

The AMS results on cosmic-ray fluxes Z<=8 do not follow the
traditional single power law. They all have a break at ~200 GV.

AMS will continue taking data for the lifetime of the International
Space Station (beyond 2024). Measurements of heavier species,
Z>8, will enable us to explore a new region in cosmic rays.
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Back up



The detailed 3D field map (120k locations)
was measured in May 2010
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Flux Errors Breakdown (Boron)
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The systematic errors include the uncertainties in the background
estimations, the trigger efficiency, the geomagnetic cutoff factor, the

acceptance calculation, the rigidity resolution function, and the absolute
rigidity scale. a4
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