Dark matter at neutrino telescopes

Stefano Morisi University Federici II Napoli

In collaboration with Marco Chianese, Damiano Fiorillo, Gennaro Miele, Ofelia Pisanti

Istituto Nazionale di Fisica Nucleare

High Energy Starting Events (HESE)

WIN - June 2019 - Bari

WIN - June 2019 - Bari

excess cosmic flux < 100 TeV?

- only few sigma (about 2.5 sigma) but...
- depends on the assumed astrophysical source
- 1-component fit with softer spectral index works

Credits: Hanzen IWNT 19 Venice

excess cosmic flux < 100 TeV?

is it related to the Dark Matter problem?

Annihilating dark matter

$$\begin{split} &\Gamma_{\rm Events} \sim V \, L_{\rm MW} \, n_{\rm N} \, \sigma_{\rm N} \, \left(\frac{\rho_{\rm DM}}{m_{\rm DM}}\right)^2 \langle \sigma_{\rm Ann} v \rangle \lesssim 1 \text{ per few hundred years.} \\ & \mathsf{V} = \overset{\rm detector}{}_{\substack{\rm volume}} & \sigma_{\rm N} \sim \overset{\rm Typical neutrino-nucleon}{}_{\textstyle {\rm Cross \ section \ at \ 1 \ Pev}} \\ & n_{\rm N} \simeq n_{\rm Ice} & \sigma_{\rm Ann} \leq 4\pi/(m_{\rm DM}^2 v^2) \quad \underset{\rm limit}{\text{from unitarity}} \end{split}$$

Decaying dark matter

Feldstein, Kusenko, Matsumoto, Yanagida PRD (2013)

$$\Gamma_{\rm Events} \sim V L_{\rm MW} n_{\rm N} \sigma_{\rm N} \frac{\rho_{\rm DM}}{m_{\rm DM}} \Gamma_{\rm DM} \sim \left(\frac{\lambda}{10^{-29}}\right)^2 / \text{ year}$$

Decay seems favorite with respect to annihilation

Standard Model particles and dark matter stability: a comment

- photon stable because massless (for gauge symmetry motivation) Credits: Hambye
- neutrino stable because is lightest fermion (Lorentz invariance)
- electron stable because is lightest charged particle (electric charge conservation)
- proton (?) stable if baryon number exactly conserved

What is the symmetry that stabilize DM? (R)-parity, mirror world,....but so far no evidence

To have a stable particle on top of SM without any extra symmetry is not automatic even if not impossible.... **BUT quite baroque**

Decaying Dark Matter and IceCube

100 200 300 400 TeV

Aisati, Gustafsson, Hambye PRD 2015 Chianese, SM, Miele, Vitagliano PLB 2016 Chianese, SM, Miele JCAP 2017 Chianese, SM, Miele PLB 2017 Hirishima, Kitano, Murase, PRD 2018 Sui, Dev, JCAP 18 Chianese, SM, Miele, Peinado, JCAP 2018 Bhattacharya, Esmaili, Ruiz, Sarcevic, arxiv 1903.12623 Feldstein, Kusenko, Matsumoto, Yanagida PRD (2013) Esmaili, Serpico JCAP 2013 Bai, Lu, Salvado JHEP 2013 Higaki, Kitano, Sato JHEP 2014 Bhattacharya, Gandhi, Gupta JCAP 2015 Murase, Laha, Ando, Ahlers PRL 2015 Esmaili, Kang, Serpico, JCAP 2014 Fong, Minakata, Panes, Funchal JHEP 2015 Cheng, Dev, Soni PRD 2015 Koop, Liu, Wang, JHEP 2015 Anchordoqui et al, PRD 2015 Boucenna, Chianese, Mangano, Miele, SM, Pisanti, JCAP 2015 Ko, Tang PRB 2015 Fiorentin, Niro, Fornengo JHEP 2016 DeV, Kazanas, Mohapatra, Tepliz, Zhang JCAP 2016 Dibari, Ludl, Ruiz, JCAP 2016 Battacharya, Esmaili, Ruiz, Sarcevic, JCAP 2017 Kachelriess, Kalashev, KuznetsovPRD18

50 PeV

5

DM mass

Decaying Dark Matter and IceCube

100 200 300 400 TeV

Aisati, Gustafsson, Hambye PRD 2015 Chianese, SM, Miele, Vitagliano PLB 2016 Chianese, SM, Miele JCAP 2017 Chianese, SM, Miele PLB 2017 Hirishima, Kitano, Murase, PRD 2018 Sui, Dev, JCAP 18 Chianese, SM, Miele, Peinado, JCAP 2018 Bhattacharya, Esmaili, Ruiz, Sarcevic, arxiv 1903.12623

Search for neutrino from decaying DM with IC

IceCube Collaboration EPJC 2018

1 5 .. 50 PeV

Feldstein, Kusenko, Matsumoto, Yanagida PRD (2013) Esmaili, Serpico JCAP 2013 Bai, Lu, Salvado JHEP 2013 Higaki, Kitano, Sato JHEP 2014 Bhattacharya, Gandhi, Gupta JCAP 2015 Murase, Laha, Ando, Ahlers PRL 2015 Esmaili, Kang, Serpico, JCAP 2014 Fong, Minakata, Panes, Funchal JHEP 2015 Cheng, Dev, Soni PRD 2015 Koop,Liu,Wang, JHEP 2015 Anchordoqui et al, PRD 2015 Boucenna, Chianese, Mangano, Miele, SM, Pisanti, JCAP 2015 Ko, Tang PRB 2015 Fiorentin, Niro, Fornengo JHEP 2016 DeV, Kazanas, Mohapatra, Tepliz, Zhang JCAP 2016 Dibari, Ludl, Ruiz, JCAP 2016 Battacharya, Esmaili, Ruiz, Sarcevic, JCAP 2017 Kachelriess, Kalashev, KuznetsovPRD18

DM mass

$$\frac{\mathrm{d}\phi}{\mathrm{d}E_{\nu}\mathrm{d}\Omega} = \frac{\mathrm{d}\phi^{\mathrm{bkg}}}{\mathrm{d}E_{\nu}\mathrm{d}\Omega} + \frac{\mathrm{d}\phi^{\mathrm{Astro}}}{\mathrm{d}E_{\nu}\mathrm{d}\Omega} + \frac{\mathrm{d}\phi^{\mathrm{DM}}}{\mathrm{d}E_{\nu}\mathrm{d}\Omega}$$

three componets are assumed:

1) Atmospheric neutrino

Honda, Kajita, Kasahara, Midorikawa, Sanuki, PRD (2007) Enberg, Reno, Sarcevic, PRD (2008)

2) Astrophysical isotropic neutrino flux

$$\frac{d\Phi_{\rm astro}}{dE_{\nu}d\Omega} = \Phi_{\rm astro}^0 \left(\frac{E_{\nu}}{100 \text{ TeV}}\right)^{-\gamma_{\rm astro}}.$$

3) Decaying Dark Matter neutrino flux

$$\frac{\mathrm{d}\phi_{\alpha}^{\mathrm{DM}}}{\mathrm{d}E_{\nu}\mathrm{d}\Omega} = \sum_{\beta} P_{\alpha\beta} \left[\frac{\mathrm{d}\phi_{\beta}^{\mathrm{G}}}{\mathrm{d}E_{\nu}\mathrm{d}\Omega} + \frac{\mathrm{d}\phi_{\beta}^{\mathrm{EG}}}{\mathrm{d}E_{\nu}\mathrm{d}\Omega} \right]$$

Dark Matter Neutrino flux: Galactic and Extra-Galactic contributions

$$\frac{\mathrm{d}\phi_{\alpha}^{\mathrm{DM}}}{\mathrm{d}E_{\nu}\mathrm{d}\Omega} = \sum_{\beta} P_{\alpha\beta} \left[\frac{\mathrm{d}\phi_{\beta}^{\mathrm{G}}}{\mathrm{d}E_{\nu}\mathrm{d}\Omega} + \frac{\mathrm{d}\phi_{\beta}^{\mathrm{EG}}}{\mathrm{d}E_{\nu}\mathrm{d}\Omega} \right]$$

P: flavor convertion due to oscillation See for instance

e for instance Mena,Ruiz,Vincent, PRL 2014 Palladino, Pagliaroli, Villante VissaniPRL 2015

Dark Matter Neutrino flux: Galactic and Extra-Galactic contributions

the contributions are comparable but difference in the angular distributions

Esmaili, Serpico JCAP 2013

Data prefer mildly DM rather than isotropic distribution at 98% CL

Chianese, SM, Miele, Vitagliano PLB 2016

10% p-values, DM scenario can not be excluded

Neutrino spectrum from DM decay (weak corrections)

WIN - June 2019 - Bari

IceCube Collaboration analysis

		Tracks	С		
	Bg.	Signal+Bg.	Bg.	Signal+B	g.
$m_{\rm DM}$ / PeV	-	X 1.3	-	0.1	
$\tau_{\rm DM}/10^{27}{\rm s}$	-	22	-	8.3	
Astroph. norm. ¹	0.97	0.16	2.15	1.62	A 1.1
Spectr. index	2.16	1.99	2.75	2.81	Alth
$\mathrm{TS} = 2 \times \varDelta \mathrm{LLH}$	6.7 ((p = 0.035)	3.4	(p = 0.55)	

six-years nu-mu track events: North-hemisphere

- the two analysis give very different DM mass
- but not surprising: different data
- p-value above 1%

though best fit includes a non-zero DM component the result is not significant, no DM signal

Other analysis 1

Decay channel	$\tau_{\rm DM} [10^2]$	8 s] ($N_{\rm DM}$)	$m_{\rm DM}$ [TeV]	$\phi_{\rm astro}$	$(N_{\rm astro})$	γ	Bhattacharva Esmaili Ruiz Sarcevic 1903 12623
$\overline{u}\overline{u}$	0.11	(28.4)	1761	0.52	(13.0)	2.34	Dhattacharya, Esthani, Kuiz, Sarcevic, 1703.12023
$b \overline{b}$	0.07	(26.9)	1103	0.58	(14.3)	2.35	$DM \rightarrow W^+ W^-$
$tar{t}$	0.11	(28.7)	598	0.45	(12.5)	2.27	10 ²
W^+W^-	0.37	(28.5)	412	0.47	(12.6)	2.29	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
ZZ	0.43	(27.8)	407	0.52	(13.3)	2.32	Total best fit [60 TeV - 10 PeV] $DM \rightarrow W^+ W^: \tau_{ab} (412) = 0.37$
hh	0.12	(28.8)	611	0.45	(12.6)	2.27	astro v: $\Phi_{astro} = 0.47 (E_{100} \text{ TeV})^{-2.29}$
e^+e^-	2.20	(4.0)	4160	3.53	(37.3)	3.36	atm. μ best fit [60 TeV - 10 PeV]
$\mu^+\mu^-$	9.77	(4.9)	6583	3.51	(36.5)	3.39	$\frac{1}{2}$ 10^{1} $\frac{1}{2}$ $\frac{1}{$
$ au^+ au^-$	0.89	(27.4)	472	0.59	(14.3)	2.36	
$ u_e ar u_e$	4.12	(3.6)	4062	3.52	(37.7)	3.33	
$ u_{\mu} ar{ u}_{\mu}$	4.63	(5.0)	4196	3.52	(36.4)	3.41	
$ u_{ au}ar{ u}_{ au}$	0.96	(16.6)	341	1.58	(24.9)	2.74	
	-						
s S	10						
10^{2}	Ē		í N				
A []	-		-				
D'A	1 = ;	$\gamma \wedge i$		1			
Ľ	E /	`~ 、(.) /					10^{1} 10^{2} 10^{3} 10^{4}
						Deposited EM-Equivalent Energy in Detector [TeV]	
	0.1						
	0.1		1	1	.0		
		$m_{ m D}$	$_{\rm M}$ [PeV]				

WIN - June 2019 - Bari

Other analysis 2

WIN - June 2019 - Bari

Life-time vs DM mass: comparing different analysis

DM -> neutino

Neutrino and gamma: a multimessenger approach

WIN - June 2019 - Bari

Fermi limits for decaying dark matter

Cohen, Murase, Rodd, Safdi, Soreq, PRL 2017

WIN - June 2019 - Bari

Clasification of operator with neutrino final state

$\Bigl(R_{SU(2)}\Bigr)_Y$	operator	final states			
spin 0					
	$\chi H^{\dagger}H$	$hh,Z^0Z^0,W^+W^-,f\bar{f}$			
	$\chi (LH)^2$	$ \begin{array}{l} \nu \nu hh, \ \nu \nu Z^0 Z^0, \ \nu \nu Z^0 h, \\ \nu e^- h W^+, \ \nu e^- Z^0 W^+, \ e^- e^- W^+ W^+, \\ \nu \nu h, \ \nu \nu Z^0, \ \nu e^- W^+, \ \nu \nu \end{array} $			
	$\chi H \bar{L} E$	$h\ell^+\ell^-, Z^0\ell^+\ell^-, W^{\pm}\ell^{\mp} u, \ell^+\ell^-$			
$(0)_{0}$	$\chi \tilde{H} \bar{Q} U, \ \phi H \bar{Q} D$	$hqar{q},Z^0qar{q},W^\pm q'ar{q},qar{q}$			
	$\chi B_{\mu u} \overset{(\sim)}{B}{}^{\mu u}$	$\gamma\gamma,\gamma Z,ZZ$			
	$\chi W_{\mu u} \overset{(\sim)}{W}{}^{\mu u}$	$\gamma\gamma, \gamma Z^0, Z^0 Z^0, W^+W^{-\ b}$			
	$\chi G_{\mu u} \overset{(\sim)}{G}{}^{\mu u}$	hadrons			
	$\chi D_{\mu} H^{\dagger} D^{\mu} H$	$hh, Z^0 Z^0, W^+ W^-$			
	$V_{\hat{\lambda}}$ [114] ^e	hhh,hZ^0Z^0,hW^+W^-			
$(2)_{a} = d$	$V_{c_{\beta-\alpha}}$ [114] ^{e,f}	$hh, Z^0 Z^0, W^+ W^-$			
(2)1/2	$\phi ar{L} E$	$\ell^+\ell^-$			
	$ ilde{\phi} ar{Q} U, \ \phi ar{Q} D$	$qar{q}$			
(3) ₀	$\phi^a \tilde{H} \sigma^a H$	$hh,Z^0Z^0,W^+W^-,far{f}$			
	$\phi^a W^a_{\mu\nu} B^{\mu\nu}$	$\gamma\gamma, Z^0\gamma, Z^0Z^0$			
	$\phi^a \bar{L} E \sigma^a H$	$h\ell^+\ell^-, Z^0\ell^+\ell^-, W^\pm\ell^\mp u, \ell^+\ell^-$			
	$\phi^a \bar{Q} U \sigma^a \tilde{H}, \phi^a \bar{Q} D \sigma^a H$	$k_{ar{q}ar{ar{q}}}, Z^0 qar{ar{q}}, W^{\pm} a'ar{a}, qar{ar{q}}$			
$(3)_1$	$\phi^a L^T \sigma^a \sigma^2 L$	νν			

$\left(R_{SU(2)}\right)_{Y}$	operator	final states			
spin 1/2					
$(1)_0$	$ ilde{H}ar{L}\psi$	$ u h, u Z^0, \ell^{\pm} W^{\mp}$			
$(2)_{1/2}$	$ ilde{H}ar{\psi}E$	$ u h, \nu Z^0, \ell^{\pm} W^{\mp}$			
(3)0	$H\bar{L}\sigma^a\psi^a$	$ u h, u Z^0, \ell^{\pm} W^{\mp}$			
spin 1					
(0)0	$\bar{f}\gamma_{\mu}V^{\prime\mu}f$	$f\bar{f}$			
	$B_{\mu u}F^{\prime\mu u}/2$	$far{f}$			

Cohen, Murase, Rodd, Safdi, Soreq, PRL 2017

Neutrinophilic Dark Matter model

Chianese, Miele, M, Peinado, JCAP 2018

Preserved in order to have a neutrino line

$$\mathcal{L}_{\nu} = \frac{1}{2} \lambda_{ij} L_i^T C^{-1} i \tau_2 \Delta L_j + \text{h.c.}$$

$$\Delta = \sum_{i=1}^{3} \delta_i \tau_i = \begin{pmatrix} \Delta^+ & \sqrt{2}\Delta^{++} \\ \sqrt{2}\Delta^0 & -\Delta^+ \end{pmatrix}$$
• Does not aquire a VEV

WIN - June 2019 - Bari

Reheating temperature below DM freeze-out temperature

$$T_F < T_{RH}$$

$$T_{RH} < T_F$$

$$\begin{split} \Omega_{\chi} h^2 &\simeq 7.3 \times 10^{-11} \frac{1}{g_*^{1/2} (T_{\rm F,std})} \frac{\rm GeV^{-2}}{\langle \sigma v \rangle \, x_{\rm F,std}^{-1}} \\ x_{\rm F,std} &\simeq \ln \left[0.038 \frac{g_{\chi} \, m_{\chi} \, M_{\rm Pl} \, x_{\rm F,std}^{1/2}}{g_*^{1/2} (T_{\rm F,std})} \, \langle \sigma v \rangle \right] \\ T_{\rm F,std} &= m_{\chi} / x_{\rm F,std} \end{split}$$

 $\langle \sigma v \rangle \simeq 2.8 \times 10^{-26} \, {\rm cm}^3 / {\rm s} \implies {\rm DM} \text{ about 2TeV}$ Larger DM mass overclose Universe

$$\begin{split} \Omega_{\chi}h^{2} \simeq 2.3 \times 10^{-11} \frac{g_{*}^{1/2} (T_{\rm RH})}{g_{*} (T_{\rm F,rh})} \frac{T_{\rm RH}^{3} \,{\rm GeV}^{-2}}{m_{\chi}^{3} \,\langle \sigma v \rangle \, x_{\rm F,rh}^{-4}} \\ x_{\rm F,rh} \simeq \ln \left[0.015 \frac{g_{\chi} \, g_{*}^{1/2} (T_{\rm RH})}{g_{*} (T_{\rm F,rh})} \frac{M_{\rm Pl} T_{\rm RH}^{2} \, x_{\rm F,rh}^{5/2}}{m_{\chi}} \,\langle \sigma v \rangle \right] \\ \\ \text{Giudice, Kolb, Riotto PRD 2001} \end{split}$$

Reheating temperature become a free parameter (lower limit from BBN)

$$T_{\rm RH} \simeq 660 \left(\frac{m_{\chi}}{100 \text{ TeV}}\right)^{1/2} {\rm GeV}$$

- Astrophysical exces at hundred TeV?
- Decaying (annihilating seems disadvantaged) Dark Matter could be a possible explanation
- Multimessenger analysis can strongly constraint the decay channel
- A rigorous angular distribution (an time) analysis will discriminate DM hypotesis

THANKS

WIN - June 2019 - Bari

