

Nicola D'Ambrosio Laboratori Nazionali del Gran Sasso, L'Aquila, Italy On behalf of the NEWSdm Collaboration

WIN 2019, Bari 2019 June 5th

NEWSdm COLLABORATION

75 physicists 14 Institutes

<u>ITALY</u>

University and INFN Bari LNGS, Gran Sasso University and INFN Napoli INFN Roma

SOUTH KOREA Gyeongsang University

RUSSIA LPIRAS Moscow JINR Dubna

INR Moscow

Chiba, Nagoya, Toho

SINP MSU Moscow

JAPAN

C*

TURKEY METU Ankara

Website: news-dm.Ings.infn.it

Yandex School of Data Analysis

Letter of intent: https://arxiv.org/pdf/1604.04199.pdf

POWER OF DIRECTIONALITY

- Direction of DM particle is (preferentially) opposite to the velocity of the Sun in the Galaxy, i.e. from Cygnus Constellation
- Directional measurement would provide a strong signature and unambiguous proof of the galactic origin of Dark Matter
- Unique possibility to overcome the "neutrino floor", where coherent neutrino scattering creates an irreducible background

NEWSdm PRINCIPLE

- <u>Aim</u>: detect the direction of **nuclear recoils**
- <u>Target</u>: nanometric emulsion films acting both as target and tracking detector
- Background reduction: neutron
 shield surrounding the target
- <u>Fixed pointing</u>: target mounted on equatorial telescope pointing to the Cygnus Constellation
- **Location**: Underground labs

NIT EMULSIONS (Nano Imaging Tracker)

		(Constituent	Mass Fraction		1	
			AgBr-I		0.78		
			Gelatin		0.17		
			PVA		0.05		
		(a) Constituents of nuclear emulsion					
	:	Element	Element Mass Fraction		Atomic Fraction		
	1	Ag	0.44		0.	12	
ieavy (Br	0.32		0.	12	
1uclei 🔪		Ι	0.019		0.003		
		C 0.101			0.172		
ight /		0	0.074 0.027		0.129		
		Ν			0.057		
		\mathbf{H}	0.016		0.396		
		S	0.003		0.003		
		(b) Elemental composition					

AgBr-I: sensitive elements Organic gelatine: retaining structure PVA to stabilise the crystal growth

NIT

U-NIT

Detection principle

- 1. Ionization induced by a particle
 - 2.6 eV band gap
- 2. Electrons trapped at a lattice defect on the crystal surface
 - Attract interstitial silver ions
 - Produce a "latent image"
- 3. Chemical amplification of signal
 - Development \rightarrow silver filaments
 - 10⁷ 10⁸ amplification
- 4. Dissolve crystals
- 5. Observe it at optical microscopes

TRACK IDENTIFICATION

- Challenge: detect tracks with lengths comparable/shorter than optical resolution
- Strategy: two-steps approach

CANDIDATE IDENTIFICATION WITH OPTICAL MICROSCOPES <u>Pros</u>: Fast scanning, <u>Limit</u>: Resolution ~ 200 nm

CANDIDATE VALIDATION Super resolution microscope (resonant light scattering) Pros: High resolution Cons: Relatively slow

Optical Microscope Read-Out: Step 1

Resolution: 28 nm/pixel View Size: 65.2 x 48.3 μm²

Test using 400 keV Kr ions

Nikon Oil Objective 100x, 1.45 N.A., Plan Apo

Scanning with **optical microscope** and **shape recognition analysis**

- Selection of clusters with elliptical shape: major axis along track direction
- Background: spherical cluster

Selection of Kr ion tracks with shape analysis

10

INTRINSIC ANGULAR RESOLUTION

- Neutron test beam sample: exposure at FNS (Japan)
- Compare clusters with elliptical (e > 1.1) shape with the proton recoil direction
- Scattering contribution negligible

INTRINSIC ANGULAR RESOLUTION $\sigma = 235 \text{ mrad} = 13^{\circ}$

11

BEYOND OPTICAL RESOLUTION: NEW TECHNOLOGIES

RESONANT LIGHT SCATTERING FROM AG NANOPARTICLES

Occurring when nanometric metallic (silver) grains are dispersed in a dielectric

Sensitive to the shape of nanometric grains: when silver grains are **not spherical**, the resonant response depends on the polarization of the incident light.

Nano-metal in medium ε_d

Oscillation of e-cloud

Scattering spectrum depends on the light polarization and on the grain shape *H.Tamaru et al., Applied Phys Letters 80, 1826 (2002)*

The polarization dependence of the resonance frequencies strongly reflects the shape anisotropy

STEP2: PLASMON ANALYSIS

Data categories:

- 1. Micro-tracks: two or more grains aligned
- 2. isolated grains
 - •Multi-grain clusters (≥ 2 brightness peaks) \longrightarrow microtracks
 - •Moving grains $(\Delta s > \Delta s_{thr}) \longrightarrow$
 - •Static grains $(\Delta s < \Delta s_{thr})$

Empty space between two grains

0.0

pol angle

15

STEP2: PLASMON ANALYSIS

STATIC GRAIN

CARBON ION SAMPLES

Plasmon analysis with C-Ion samples

Horizontal exposures to produce nanotracks in NIT with a preferred direction (signal-like samples)Vertical exposure to produce in most cases one grain in NIT with an isotropic direction (background-like sample)

EFFICIENCY OF PLASMON ANALYSIS

$$\epsilon_{pl} = \frac{N_{multi-grain} + N_{moving}}{N_{tot}}$$

C100keV:	48%
C60keV:	40%
C30keV:	31%

Plamon analysis essential for 30keV Carbon detection

efficiency \rightarrow track length threshold

track length threshold (120±5) nm

Further threshold lowering using U-NIT with larger granularity

BEYOND OPTICAL RESOLUTION: NEW TECHNOLOGIES

UNDER TEST

Multi-Camera System + Scanning technique using inclined focus plane

20

• Machine learning approach

 Localised Surface Plasmon Resonance using Colour Camera -> relation between colour and grain size

Technical Test at LNGS

- <u>Aim</u>: measure the detectable background from environmental and intrinsic sources and validate estimates from simulations
- Confirmation of a negligible background will pave the way for the construction of a pilot experiment with an exposure on the kg year scale
- Pilot experiment will act as a **demonstrator** to further extend the mass range

• Experimental setup:

- shield from environmental background
- cooling system to ensure required temperature to NIT emulsions

NEWSdm SENSITIVITY

SENSITIVITY OF A PILOT EXPERIMENT

- 10kg x year experiment
- Zero background assumed
- Directionality not exploited

TOWARDS NEUTRINO FLOOR

- Discrimination based on measurement of recoil direction
- Unique possibility to search for WIMP signal beyond "neutrino floor"

Neutrino coherent scattering indistinguishable from WIMP interactions *Phys.Rev.D89 (2014) no.2,* 023524 (Xe/Ge target)

REQUIREMENTS

- Larger mass scale detector
- Reduction of track length threshold

The neutrino bound is reached with:

- ⇒10 ton x year exposure if 30 nm threshold
- ⇒100 ton x year exposure if 50 nm threshold

10⁻⁴⁸

10² WIPM mass (GeV/c²)

 10^{3}

 10^{4}

10

NEWSdm Collaboration Eur.Phys.J. C78 (2018) no.7, 578

25

CONCLUSION AND PERSPECTIVES

- Nuclear emulsions with nanometric grains pave the way for a directional dark matter search with high sensitivity
- Breakthrough in readout technologies provide 3D and head/tail discrimination with high sensitivity
- Neutron background from intrinsic radioactivity negligible up to ~ 10 kg year, without any care on the material choice
- Machine learning approach to handle the complexity of the information
- Experimental tests this Summer in Gran Sasso to reproduce the full analysis chain
- Prepare a few kg scale detector as a demonstrator of the technology and for the first physics run
- TDR expected by Summer 2019