

The SABRE Proof of Principle

Simone Copello

on behalf of the SABRE collaboration

WIN2019 – Bari, Italy - June 5th 2019

Dark Matter detection through annual modulation

- Direct Dark Matter detection is based on elastic scattering off nuclei:
 - Single site event
 - For WIMP masses in the rage 10 GeV 1 TeV the typical recoil energy is 1 – 50 keV

- Expected rates are very low: 10⁻¹ to 10⁻⁶ events/day/kg
 - Very low background
 - Underground laboratory
- Annual modulation is a powerful signature in the event rate. It is caused by the combination of Earth and Sun velocities.

Dark Matter detection through annual modulation

Ingredients for the annual modulation signal:

 Standard halo model: spherical halo surrounding the galaxy, with a local mass density of

~0.3 GeV/c²/cm³

• WIMP velocity (with respect to Earth):

 $[220 + 15 \cos \omega(t-t0)] \text{ km/s}$

* Including DAMA/Nal and DAMA/LIBRA–phase1 data

WIMP interpretation is in tension with other experiments: an independent confirmation, using Nal, is needed.

Sodium iodide with Active Background REjection

SABRE aims to detect the annual modulation signal by using NaI(TI) crystals, in order to have a direct (model independent) confirmation/confutation of DAMA results.

4 key features:

- 1. High purity crystals: High purity powder and clean crystal growth method
- 2. Active background rejection: active veto of liquid scintillator
- 3. Low energy threshold: High QE Hamamatsu PMTs, directly coupled to the crystals
- 4. Double location: both in Northern and Southern hemispheres

The collaboration

~50 physicists from three countries

<u>U.S.A</u>

- Princeton University
- Lawrence Livermore National Laboratory (LLNL)
- Pacific Northwest National Laboratory (PNNL)

Gran Sasso Science Institute

•

Italy

University of Milano and INFN

Laboratori Nazionali del Gran Sasso (LNGS)

University of Roma "Sapienza" and INFN

Australia

- Australian Nuclear Science and Technology Organization
- Australian National University
- Swinburne University of Technology
- University of Adelaide
- University of Melbourne

Active veto

Achieved by means of:

• Liquid scintillator detector used as active veto for both external and intrinsic background (energy threshold ~100 keV)

In addition to:

- **Passive shielding** (water, lead and PE) against external backgrounds
- Underground laboratories against cosmic rays

High purity crystal

Ultra pure Nal crystal:

- Low contamination Astro Grade Nal powder (by Sigma Aldrich)
- Crystal growth procedure developed by Princeton University and Radiation Monitoring Devices in Boston

Target crystals are 4" in diameter and 8" in length (mass ~5 kg)

Low background detector module :

- Low radioactivity PMTs
- Material screening with HPGe

High purity crystal

- An ingot of 6 kg has been recently produced (96 mm diameter)
- Cut in octagonal shape, final length 151 mm (3.6 kg)
- Currently in travel by boat to LNGS
- Preliminary measurements of K contamination (ICP-MS of tip and tail samples) suggest a value below 5 ppb

Element	DAMA powder	DAMA crystals	Astro-Grade
	[ppb]	[ppb]	[ppb]
K	100	~13	9
Rb	n.a.	< 0.35	< 0.2
U	~ 0.02	$0.5 - 7.5 \times 10^{-3}$	$< 10^{-3}$
Th	~ 0.02	$0.7 - 10 \times 10^{-3}$	$< 10^{-3}$

• And a light yield of ~10 photo-electrons/keV

Expected amplitude for $\sigma_{\chi N} = 10^{-5}$ pb

Low energy threshold

When looking for annual modulation signature, the lowest is the energy threshold the better it is

- 2 Hamatsu R11065 3" PMTs per crystal (coincidence)
- High quantum efficiency (~35%)
- PMTs directly coupled to the crystal: no light guides to optimize light collection
- High crystal light yield

Double location

Seasonal effects have opposite phases

Both at ~3000 m.w.e. -> 10^6 muon flux reduction factor

Laboratori Nazionali del Gran Sasso (LNGS), Italy.

Stawell Underground Physiscs Laboratory (SUPL), Australia. clean room radon free area

34.5 m

10 m

SABRE *Proof of Principle* at LNGS

Main goal: validate the crystal growth procedure and the rejection power of the active veto

A single detector module will be used. It is composed by Teflon (also for crystal wrapping) and OFHC copper

Nal crystal

PMT (one on each side)

SABRE Proof of Principle at LNGS

The detector module, placed into the veto detector, will be isolated by the liquid scintillator by means of a copper tube.

The veto is composed by a vessel, filled with ~2 ton of liquid scintillator, internally covered with Lumirror reflector and equipped with ten 4" Hamamtsu R5912-100 PMTs

SABRE Proof of Principle at LNGS

Expected sensitivity

- Standard halo model
- 2 keV threshold (ROI is [2;6] keV)
- 50 kg of NaI detectors (~10 crystals)
- 3 years exposure
- Background 0.36 cpd/kg/keV_{ee} (from MC)
- Quenching: [0.13; 0.21] for Na and 0.09 for I

- The WIMP interpretation of DAMA result can be tested with three years of data
- Minimum of exclusion plot close to 10^{-42} cm²

Monte Carlo simulations and sensitivity study are described in <u>arXiv:1806.09340</u>

Conclusions

- The SABRE project aims to provide a direct confirmation/confutation of DAMA observations, through annual modulation signature.
- The two SABRE detectors, in the two hemispheres, will use ultrapure NaI crystals and active vetos, with liquid scintillator, for background reduction.
- The current stage, Proof of Principle, has the purpose to verify the background expectations and the crystal purity in few months.
- The SABRE PoP facility (fluid handling, shieldings, data acquisition SW and HW) are ready.
- A promising Nal(Tl) crystal is on its way to LNGS: SABRE PoP will start data taking very soon.