DarkSide-50 recent results and future prospects

Luca Pagani
UC Davis
on the behalf of the DarkSide collaboration

WIN 2019, Bari - June, 7th 2019
• **Water Cherenkov** detector (1,000 tons of ultra pure water): active veto for \(\mu \) and passive shield for external radiation

• **Liquid scintillator** detector (30 tons of PC+PPO+TMB): active \(\gamma \)s and neutron detector thanks to \(^{10}\text{B}\) loading

• **LAr TPC** detector (current phase \(\sim \)50 kg of argon in the fiducial volume): inner detector for WIMP
DarkSide-50

Water Cherenkov

Liquid scintillator

Cryogenic amplifiers on PMTs

TPC
Dual phase TPC technology: S1

- **Light signal (S1)** time profile allows Pulse Shape Discrimination (PSD) thanks to f_{90} parameter (fraction of light in the first 90ns)

\[f_{90} \approx 0.7 \]
Nuclear Recoil (NR)

\[f_{90} \approx 0.3 \]
Electron Recoil (ER)
Dual phase TPC technology: S2

- Electroluminescence/ionization signal (S2) due to drifted electrons allows 3d position reconstruction, additional discrimination (S2/S1), and improved energy reconstruction

\[\int (S1) \ll \int (S2) \]

Nuclear Recoil (NR)

\[\int (S1) \ll \int (S2) \]

Electron Recoil (ER)
DarkSide-50 recent results

• High mass WIMP search (S1+S2)

 Physical Review D 98 (10), 102006 (2018)

• Low mass WIMP searches:

 • S2-only

 Physical Review Letters 121 (8), 081307 (2018)

 • Sub-GeV

 Physical Review Letters 121 (11), 111303 (2018)
High mass WIMP search ($S1+S2$)

• A blind analysis of 532-days (16 660 kg d) exposure using a target of low-radioactivity argon extracted from underground sources: PRD 98, 102006 (2018)

• Blinding box (red solid line) drawn using early 71-days (2616 kg d) results PRD 93, 081101(R) (2016)

• Goal: design an analysis that will have <0.1 background events in the to-be-designed search box

• Backgrounds: β and γ, neutrons, surface α, and Cherenkov
Background: ERs

- **β and γ**: External γs but mostly main source is internal (PMTs, cryostat, target itself). UAr has (0.73 ± 0.11) mBq/kg of 39Ar, and (2.05 ± 0.13) mBq/kg of 85Kr. Rejected by:
 - PSD rejection power in ROI is down to 6×10^{-8} for single-site ERs
 - WCD + LSV

- **Cherenkov + scintillation**: γ multiple scatters in LAr and PTFE or fused-silica. Cherenkov ($f_{90} \approx 1$) moves regular scintillation into NR band. Rejected by:
 - light distribution in top PMTs
 - radial fiducialization

Results obtained thanks to intensive background modeling done with a data/MonteCarlo hybrid approach - [JINST 12, P10015 (2017)]
Background: NRs

- **Neutrons:** cosmogenic (produced by muons interaction with surrounding materials) or spontaneous 238U (α,n) reactions. **PMTs are the main source.** Rejected by:
 - Multiple scatter in TPC
 - Coincidence with LSV: measured efficiency with AmC 99.64±0.04% (fraction of event surviving veto cuts)
 - Coincidence with WCD

- **Alphas:** stringent radio pure material selection constrains α-emitters to Rn daughters on surfaces (fabrication/assembly process) or in LAr (recirculation).
 - Degraded α can follow in NR band. Rejected by:
 - **Self-vetoing:**
 - Very small or absent S2
 - S2 has long scintillation tail due to TPB scintillation
Final dataset and dark matter box

Background

<table>
<thead>
<tr>
<th>Background</th>
<th>Events surviving all the cuts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cosmogenic neutrons</td>
<td>$< 3 \times 10^{-4}$</td>
</tr>
<tr>
<td>Radiogenic neutrons</td>
<td>$< 5 \times 10^{-3}$</td>
</tr>
<tr>
<td>Surface α</td>
<td>$< 1 \times 10^{-3}$</td>
</tr>
<tr>
<td>Cherenkov + scintillation</td>
<td>0.08</td>
</tr>
<tr>
<td>Total</td>
<td>0.09 ± 0.04</td>
</tr>
</tbody>
</table>

Goal of <0.1 background events achieve and **final dark matter search box** defined: **let’s open the box!**

![Graph showing energy vs. S1]
90% C.L. exclusion limit

The graph shows the 90% confidence level (C.L.) exclusion limits for WIMP-nucleon cross-sections σ_{SI} plotted against WIMP mass m_{WIMP}, with the x-axis in units of TeV/GeV and the y-axis in units of 10^{-6} cm2. The exclusion limits are indicated for various experiments:

- WARP (2007)
- DarkSide-50 (2015)
- DEAP-3600 (2017)
- LUX (2017)
- DarkSide-50 (2018)
- PANDAX-II (2017)
- XENON1T (2018)
Low mass WIMP searches

- Trigger on S1 imposes a threshold of 13 keV$_{nr}$ → limited sensitivity for WIMPs with mass <10GeV/c2

- But if same threshold is applied to ionization signal S2 → E$_{th}$$<$0.6keV$_{nr}$ allows to explore this parameter space!

- Using S2-only events is possible to search for low mass WIMPs interacting both with nuclei or even with electrons (with background)
Low mass WIMP search (S2-only)

- S2-only signal:
 - Sensitive to single extracted electron
 - No need of PSD

- Acceptance: estimated by data+MC (MC reproduces both spatial and temporal distribution of S2 as measured in electron diffusion - see arXiv:1802.01427)

- Fiducialization: no xy available, but use volume under inner 7 PMTs (position assigned by PMT collecting the largest amount of light)

\[N_e = \frac{S_2}{\eta} \text{ where } \eta = (23 \pm 1) \text{PE/e} \]
Energy scale for ER and NR

- ER energy scale obtained with 37Ar
 - Provides 2 X-rays at 0.27 and 2.82 keV
 - decayed with $t_{1/2} = 35$ days and no remain in the last 500d data set (compare black and blue spectra)

- NR energy scale obtained with AmBe and AmC
 - Bezrukov model fitted on calibration data
 - Difference with other measured points taken as systematic
 - Conservative assumption - measured points are higher than fit: less ionization \rightarrow less e$^{-}$ \rightarrow less sensitivity

First 100 days

Last 500 days

Single S2 (500d)

S1 + S2 (500d)

L/K BR Ratio = 0.11 \pm 0.01
Background and WIMP signal

- Background is constrained in region of interest by extrapolating from high energy part of the spectrum

- At low energy, excess of events it is not understood

- WIMP recoil energy spectra modeled using
 - Ionization, energy quenching and detector response
Profile likelihood method

- Upper limit σ_{SI} extracted observed N_e spectrum using binned profile likelihood (PL) method

- Two signal regions ($N_{e^{th}}$ of 4 and 7e-) which covers WIMP masses in the range $[1.8,10]$ GeV/c2

- PL includes uncertainties both on WIMP signals (NR ionization, single electron yield) and background spectrum (rates, ER ionization yield)

- Average ionization yield dominates uncertainties! Due to lack of knowledge two assumptions about fluctuation at low recoil energy: no fluctuation and binomial
90% C.L. Exclusion limit

![Graph showing 90% C.L. Exclusion limit for Dark Matter-Nucleon cross-section versus mass for various experiments.](image)
Sub-GeV dark matter search

- WIMP-electron interaction parametrized by form factor $F_{\text{DM}} = F_{\text{DM}}(q)$ which, depending on the mass of the mediator ($m_{A'}$), has different asymptotic momentum (q) dependence:
 - $F_{\text{DM}} \approx 1$ (heavy mediator)
 - $F_{\text{DM}} \approx 1/q^2$ (light mediator)

- 37Ar X-rays are used to convert electron recoil spectra to ionization spectra:
 - L-shell: 0.27 keV
 - K-shell: 2.82 keV
Sub-GeV dark matter search

- DM spectra $\overline{\alpha} = 10^{-36}$ cm2
 - Data
 - $F_{\text{det}} = 1$
 - G4DS MC All
 - 10 MeV/c2
 - Cryostat γ-rays
 - 100 MeV/c2
 - PMTs γ-rays
 - 1000 MeV/c2
 - $^{39}\text{Ar} + ^{85}\text{Kr}$

- DM spectra $\overline{\alpha} = 10^{-33}$ cm2
 - $F_{\text{det}} \propto 1/q^2$
 - Data
 - G4DS MC All
 - 10 MeV/c2
 - Cryostat γ-rays
 - 100 MeV/c2
 - PMTs γ-rays
 - 1000 MeV/c2
 - $^{39}\text{Ar} + ^{85}\text{Kr}$

- Events / $[N_{e^-} \times \text{kg} \times \text{day}]$

- Dark Matter-Electron
 - $F_{\text{det}} = 1$
 - DarkSide-50
 - XENON100
 - XENON10
 - $F_{\text{det}} \propto 1/q^2$
 - DarkSide-50
 - XENON100
 - XENON10

- m_χ [MeV/c2]
DarkSide program: what’s next?

- DarkSide-20k @ LNGS
- Sealed acrylic TPC containing 50 tonnes of UAr in a ProtoDUNE-like cryostat filled with ~700 tonnes of AAr
- 30 m² SiPMs as photosensors (8280 channels for TPC and ~3000 channels for Veto)
- Gd-doped acrylic panels as neutron veto
SiPMs to replace PMTs

- Developed for LAr by a combined effort between DarkSide and FBK
- Compact and high coverage
- High S/N (>8)
- High PDE (~50%)
- SiPMs mass production by LFoundry and packaging of PDM and in NOA, L’Aquila
- Full production chain largely funded by Regione Abruzzo, Italy
A new neutron veto concept

- 4π coverage
- 10cm thick passive Gd-loaded acrylic shell to moderate and capture neutrons
- 40cm thick inner and outer active liquid AAr volumes to detect gamma cascade due to neutron captured on Gd
- Faraday cage to optically and electrically isolate both veto and TPC
- Vertical segmentations to reduce pile-up rate of 39Ar (1Bq/kg in AAr) event from AAr and ESR foil as reflector to maximize light collection
- All internal surface of each sector coated with TPB as wavelength shifter
ProtoDUNE-like cryostat

- Technology developed at CERN for ProtoDUNE experiment
- Membrane + passive thermal insulation
- Matured technique adopted from the Liquified Natural Gas carriers and vessels
- Access and support of TPC and Veto from top roof
Low-radioactive argon procurement and purification

- **Urania**: procurement of at least 60 tonnes of UAr from Colorado, USA (same as DS50) with extraction rate of 250 kg/day, with 99.9% purity

- **Aria**: UAr transported to Sardinia, Italy for final chemical purification via a 350m tall cryogenic distillation column in Seruci, Sardinia, Italy

 - Process ~1 tonne/day with 1000 reduction of all chemical impurities and isotopically separate 39Ar from 40Ar

Seruci-0 - prototype

Seruci-I and II
Projected sensitivity

![Graph showing projected sensitivity](image)
Conclusions

• DarkSide-50 results proved LAr technology is competitive both for high- (background free) and low-mass (best sensitivity for 1.8-5.5 GeV) WIMP searches

• Ambitious dark matter search program with DarkSide-20k which is developing essential technologies on several fronts

• LAr technology is very promising to lead the path towards the neutrino floor in both high- and low-mass WIMP regions
Backups
- Trigtime: the first pulse is within expected trigger time window
- S1sat: S1 pulse is not saturated
• Npulses: number of pulse is 2 or 3 if there is S3 (echo of S2)

• Most of surface events are gone
• 40μs fid: remove 40μs from top and bottom in t_drift

• Lots of γs from PMTs, unresolved S1+S2 events, and surface close to top are removed

Entries 4147304
Integral 1.838e+06
- **S1pmf**: fraction of prompt light in the maximum PMT is less than a threshold, which is a function of t_{drift} and S1

- Remove S1+Cherenkov events from fused silica windows
- min S2uncorr: S2≥200 PE

- This is more like quality cut, but remove surface events, which number of electrons are reduced by the surface effect
- *xy-recon*: reasonable x-y reconstructed values
- S2 f90: f90 of S2 pulse <0.20

- Remove S1+S1 pileup events
- min S_2/S_1: S_2/S_1 need to be above threshold, which is a function of S_1

- Remove strangely small S_2 events, like surface events
- max S2/S1: S2/S1 need to be below threshold, which is a function of S1

- Remove strangely large S2 events, which we don’t expect, but applied as a safety net
- S2 i90/i1: S2 have reasonable rise time
- Remove events in which S2 is actually S1+S2 pulses
• S1 TBA: z-position from S1 Top-Bottom Asymmetry agrees with t_drift

• Remove random pileup S1 and S2
- TPB Tail: remove events, which have long tail of scintillation caused by TPB scintillation

- Remove surface events, in which α goes through TPB layer
• NLL: Negative Log Likelihood cut, which compare event position from S1 light distribution among PMTs and event position from t_drift and S2 x-y

• Remove S1 + Cherenkov events which deposit energy in separate locations
• R 2: Radial cut as a function of \(t_{\text{drift}} \)
- Veto: all veto cuts
- Remove neutrons
Additional rejection S2/S1

Energy [keV_{nr}]

$S1$ [PE]

Energy levels: 1%, 50%, 99%
• NR energy scale obtained with AmBe and AmC fitted with Bezrukov model