Direct Dark Matter Search with the XENON1T EXPERIMENT

Pietro **DI GANGI**

XENON Dark Matter Project Alma Mater Studiorum University of Bologna INFN Bologna

WIN2019 | Bari | 5 June 2019

THE XENON COLLABORATION

INFN

DARK MATTER DETECTION STRATEGY

DIRECT DETECTION

INDIRECT DETECTION

PRODUCTION AT COLLIDERS

XENON TARGET FOR WIMP INTERACTION

 $\sigma_{\text{WIMP-N}} \sim \text{A}^2 \rightarrow \text{Larger probability of SI}$ WIMP-nucleon interactions

SELF SHIELDING

High Z=54 and high density ρ =2.8 g/cm³

SCALABILITY

Compact detectors scalable to larger dimensions

HIGH PURITY

¹³⁶Xe decay rate negligible⁸⁵Kr removed to <ppt level

****** LIGHT AND CHARGE YIELDS

Highest among noble liquids

* "EASY" CRYOGENICS

Xenon is liquid at -95° C

**** VUV SCINTILLATION LIGHT**

178 nm \rightarrow no need for wavelength shifters

**** ODD-NUCLEON ISOTOPES**

¹³¹Xe and ¹²⁹Xe allow to study also the Spin-Dependent interaction

• WIMP SIGNATURE Single elastic scatter on target nucleus Recoil energy <50 keV

4

INFN

DARK MATTER SEARCH WITH XENON1T

UNDERGROUND LNGS (ITALY) 3600 m.w.e. rock shielding

MUON VETO CHERENKOV DETECTOR

700 tonnes active ultra-pure water shield instrumented with 84 PMTs

THE XENON1T EXPERIMENT

INFN

Eur. Phys. J. C. (2017) 77:881

THE XENON1T EXPERIMENT AT LNGS

INFŇ

THE XENON1T EXPERIMENT

INFN

THE STORE

June 2019

ഗ

Bari

WIN2019

Pietro Di Gangi

8

Eur. Phys. J. C. (2017) 77:881

THE XENON1T EXPERIMENT

INFN AT LNGS

Eur. Phys. J. C. (2017) 77:881

DUAL PHASE TIME PROJECTION CHAMBER

DETECTION PRINCIPLE

ΡΑΧ

TER STOORD

A REAL XENON1T WAVEFORM

FOR SPATIAL-DEPENDENT DETECTOR RESPONSE

S1 - S2 SIGNAL CORRECTIONS

^{83m}Kr CALIBRATIONS

41.5 KeV line uniformly distributed in the TPC

S2 LCE

x-ydependent correction

13

INFN

RECOIL TYPE DISCRIMINATION

WIMP Neutron Neutrino (CNNS)

14

RECOIL TYPE DISCRIMINATION ELECTRONIC RECOILS

80

INFŃ

Gamma

Neutrino

Beta

NUCLEAR RECOIL BACKGROUND

INFN

COSMOGENIC NEUTRONS

- Induced by cosmic muons
- Reduced to negligible contribution by rock overburden, water passive shield and active <u>Cherenkov Muon Veto</u>

RADIOGENIC NEUTRONS

Eur. Phys. J. C. (2017) 77:890

JINST 9, P11006 (2014)

- **••** From (α, n) and spontaneous fission in detector's materials
- **P** Reduced via <u>radiopure material selection</u>, scatter multiplicity and volume fiducialization
- Final prediction constrained by multiple neutron scatters observation

COHERENT ELASTIC NEUTRINO-NUCLEUS SCATTERING (CNNS)

- **9** Mainly from ⁸B solar ν
- Irreducible background at very low energy (< 1 keV)</p>
- ****** Constrained by solar ν flux and CNNS cross section measurement

JCAP 04, 027 (2016)

	Rate [t ⁻¹ y ⁻¹]	Fraction [%]	
Cosmogenic neutrons	<0.01	<2.0	
Radiogenic neutrons	0.6 ± 0.1	96.5	
CNNS	0.012	2.0	

Expectations in 1 t FV, in [4,50] $keV_{nr}\!,$ single scatters

ELECTRONIC RECOIL BACKGROUND

INTRINSIC RADIOACTIVE ISOTOPES

⁹⁹ ²²²Rn (10 μBq/kg)

Most dangerous is β -decay of ²¹⁴Pb. Emanated from inner surfaces in contact with Xenon. Extensive screening campaign and careful radiopure material selection.

99 85Kr (0.66 ppt)

 β -emitter, Xenon contaminant.

Reduced by a factor $>10^3$ via cryogenic distillation.

99 **136Xe (~9% of natXe)** Double- β -emitter.

SOLAR NEUTRINOS

- •• Well constrained from solar and nuclear physics.
- Subdominant and rreducible background.

RADIOACTIVE ISOTOPES IN DETECTOR MATERIALS

- γ-rays from ²³⁸U and ²³²Th decay chains and from ⁶⁰Co and ⁴⁰K.
- They can undergo forward Compton scattering before entering the LXe active mass and produce a flat spectrum at low energies.
- Reduced by radiopure material selectrion and volume fiducialization.

	Rate [t ⁻¹ y ⁻¹]	Fraction [%]	
²²² Rn	620 ± 60	85.4	
⁸⁵ Kr	31 ± 6	4.3	
Solar $ u$	36 ± 1	4.9	
Materials	30 ± 3	4.1	
¹³⁶ Xe	9 ± 1	1.4	

Expectations in 1 t FV, in [1,12] keV_{ee}, single scatters, **before ER/NR discrimination** JCAP 04, 027 (2016)

Pietro Di Gangi

June 2019

LO

Bari

WIN2019

XENON1T BACKGROUND LEVEL

THE LOWEST EVER FOR DARK MATTER DETECTORS

GEANT4 SIMULATIONS of all known background components Convolved with the measured energy resolution

** LOW ENERGY BACKGROUND RATE

82⁺⁵₋₃ (sys) ± 3 (stat) (t y keV)⁻¹

The lowest ever among DM detetctors

ER background in 1300 kg FV and below 25 keV_{ee}

****** SIMULATION PREDICTION

71 ± 7 (t y keV)⁻¹ Very well understanding of background

June 2019

ഗ

DETECTOR RESPONSE MODEL

ER

NR

TO LOW ENERGY ERS AND NRS

- Combined ER/NR fit
- Detailed MC simulations of LXe microphysics and detector processes
- **99.7% ER rejection** in NR reference region [NR median, -2σ]

BACKGROUND MODEL FOR WIMP SEARCH

1 TON-YEAR EXPOSURE

1.3 t Volume

-100

1000

 R^2 [cm²]

1500

2000

2500

table are for illustration; final results from complete PLR statistical inference.

DATA UNBLINDING

INFN

BLINDING AND SALTING Data blinded in the NP circle

Data blinded in the NR signal region and salted with unknown number of fake events

PIE CHARTS

Events passing all selection criteria are shown as pie charts representing the relative PDF from each component for the best-fit model for 200 GeV WIMP ($\sigma_{\rm SI}$ =4.7·10⁻⁴⁷ cm²)

****** STATISTICAL INTERPRETATION

Unbinned profile likelihood with all model uncertainties included as nuisance parameters.

SPIN-INDEPENDENT WIMP INTERACTION

Phys. Rev. Lett. 121, 111302

INFŃ

**** WORLD BEST CONSTRAINT ON WIMP DARK MATTER**

Most stringent exclusion limits (at 90% CL) for WIMPs > $6 \text{ GeV}/c^2$

SPIN-DEPENDENT WIMP SEARCH

Same data selection
 Different interpretation

Phys. Rev. Lett. 122, 141301

 Excluded new parameter space in isoscalar theory with axial-vector mediator (restricted model for comparison with LHC)

• WIMP interaction on ¹²⁹Xe and ¹³¹Xe

WIMP-PION COUPLING SEARCH

Phys. Rev. Lett. 122, 071301

NFN

- WIMP coupling to a virtual pion exchanged between nucleons in a nucleus
- Pion-exchange currents can be coherently enhanced by **99** total number of nucleon
- May dominate in scenarios where SI WIMP-nucleon interaction is suppressed
- First ever result on WIMP-pion coupling

Signal model similar to SI WIMPnucleon coupling

DISCOVERY OF DOUBLE ELECTRON CAPTURE IN ¹²⁴Xe

- First observation of 2vECEC decay
- Measured half-life (1.8 ± 0.5_{stat} ± 0.1_{sys}) x 10²² yr The longest ever!
- •• ~10¹² times larger than the age of the Universe

Vol. 568. No. 7753

¹²⁴Xe 2vECEC DECAY

SIGNATURE: mono-energetic peak at (64.3 ± 0.6) keV Energy released by X-rays and Auger electrons (atomic relaxation)

Blinded search in (56, 72) keV

¹²⁴**Xe** \rightarrow ¹²⁴Te + ν_e + ν_e

- Total fiducial mass $(1502 \pm 9_{stat})$ kg
- Dataset livetime 177.7 days
- ¹²⁴Xe isotopic abundance $(9.94 \pm 0.14_{\text{stat}} \pm 0.15_{\text{sys}}) \times 10^{-4}$
- Close ¹²⁵I peak at 67.3 keV Expectation derived from ¹²⁵Xe activation model (during neutron calibrations)
- Energy resolution at $E_{2\nu FCFC}$ (4.1 ± 0.4) %

¹²⁴Xe 2vECEC DECAY

UNBLINDING RESULTS

Nature 568, 532-535 (2019)

FIT RESULTS

- **99 2** ν **ECEC PEAK** $\mu = (64.2 \pm 0.5) \text{ keV}$ $\sigma = (2.6 \pm 0.3) \text{ keV}$
- •• 125 BACKGROUND $N_{I-125} = 9 \pm 7$ Expected 10 ± 7
- Provide the second s
- **PISCOVERY** SIGNIFICANCE 4.4 σ

THE RAREST DECAY EVER OBSERVED

INFN

$T_{1/2} = (1.8 \pm 0.5_{stat} \pm 0.1_{sys}) \times 10^{22} \text{ yr}$

Nature 568, 532-535 (2019)

This measurements is the first benchmark for nuclear structure models of proton-rich nuclei

 $T_{1/2}^{2\nu\text{ECEC}} = \ln 2 \frac{\epsilon \eta N_{\text{A}} m t}{M_{\text{Xe}} N_{2\nu\text{ECEC}}}$

```
Data selection acceptance

\varepsilon = 0.967 \pm 0.007_{stat} \pm 0.033_{sys}

<sup>124</sup>Xenon isotopic abundance

\eta = (9.94 \pm 0.14_{stat} \pm 0.15_{sys}) \times 10^{-4}

Avogadro's number

N_A = 6.022 \times 10^{22} \text{ mol}^{-1}

Fiducial mass

m = (1502 \pm 9_{stat}) \text{ kg}

Livetime

t = 177.7 \text{ d}

Xenon mean molar mass

M_{Xe} = 131.293 \text{ g/mol}

Number of 2\nuECEC events

N_{2\nu FCFC} = 126 \pm 29
```

⁹⁹ It sets the stage for 0ν ECEC searches hunting for the Majorana neutrino

WHAT'S NEXT: XENONnT

LXe TARGET ▶ Fiducial mass 1t → 4 t

LARGER TPC ▶ 248 → 494 PMTs

ER BACKGROUND

Radon distillation Improved LXe purification

Neutron Veto

FAST UPGRADE Installation ongoing

DIRECT DARK MATTER SEARCHES

- Improve XENON1T results on WIMPs by 1 order of magnitude
- Test several DM hypotheses (ALPs, Dark Photons, Annual modulation, ...)

RARE PROCESS SEARCHES

- Neutrinoless double electron capture
 ¹²⁴Xe decays with positron emission (2νECβ⁺, 2νβ⁺β⁺, 0νECβ⁺, 0νβ⁺β⁺)
- Neutrinoless double beta decay

🔓 | Pietro Di Gangi | WIN2019 Bari | 5 June 2019

NEUTRON VETO

A NEW SUB-DETECTOR FOR XENONnT

- Region outside the cryostat instrumented with additional 120 PMTs
- Doped water with 0.2% concentration of Gadolinium sulphate
- Optically separated from Muon Veto system by ePTFE reflector
- Reduction of neutron background thanks to ~85% neutron tagging efficiency
- Boost in the sensitivity to WIMPs by a factor ~2

SUMMARY AND OUTLOOK

• FIRST MULTI-TON LXe-TPC

Operated > 1 year

- **LOWEST BACKGROUND** ever among DM detectors
- **BEST WIMP LIMITS** SI > 6 GeV/c²
- 124Xe 2vECEC DISCOVERY Rarest decay ever observed directly
- ****** XENON1T ANALYSES

Many DM and rare processes searches ongoing

XENONnT GOAL: x10 BETTER SENSITIVITY

Larger detector, lower background, 5 years data taking

31

BACKUP SLIDES

XENON

EVIDENCES OF DARK MATTER

Galaxy

MBB

ROTATION CURVES

l uminous ve Dark matt

STRUCTURE FORMATION

0 ALE

DSS J1038+4849 Cluster

33

PARTICLE DARK MATTER

WIMP "MIRACLE"

- **STABLE**
- NON-RELATIVISTIC
- NEUTRAL
- NO EM INTERACTION
- **NO STRONG INTERACTION**
- **NON-BARYONIC**

NO SM CANDIDATE

The measured dark matter **relic density***

 $\Omega_{DM}h^{2} = \frac{3 \times 10^{-27} \text{cm}^{3} \text{s}^{-1}}{\langle \sigma_{ann} v \rangle} = 0.120 \pm 0.001$

is obtained with mass (~100 GeV/c²) and annihilation cross section (~10⁻²⁵ cm³s⁻¹) typical of the weak scale

Weakly Interacting Massive Particles

Most investigated class of DM candidates
 Naturally arise in SUSY models
 (e.g. neutralino)

Other candidates

- Axions or ALPs
- ► Kaluza-Klein
- Wimpzillas
- and many others...

UNIVERSE ENERGY: BARYONIC MATTER 5% DARK MATTER 26.5% * DARK ENERGY 68.5%

XENON PURIFICATION ELECTRON LIFETIME

- electron lifetime is monitored regularly with ERs calibration sources.
- Current value, following increase in gas flow, approaches 1 msec

- Electronegative impurities in the Xe gas and from materials outgassing reduce charge (and light) signal.
- To drift electrons over 1 meter requires < 1ppb (O2 equivalent)
- Solution: continuous gas circulation at high flow through heated getter material

MUON VETO WATER CHERENKOV SUB-DETECTOR

- 700 ton pure water instrumented with 84 high-QE 8" PMTs
- Active shield against muons
- Trigger efficiency > 99.5% for muons in water tank
- Cosmogenic neutron background suppressed to < 0.01 events/ton/yr

JINST 9, 11007 (2014)

POSITION RECONSTRUCTION

INFŃ

- X-Y reconstruction via **neural network**:
 - Input: charge/channel top array
 - Training: Monte Carlo simulation

Position resolution using ^{83m}Kr

- Two interactions (9, 31 keV), same x-y
- Position resolution (1-2 cm)
- PMT diameter (7.62 cm)

Position corrections using ^{83m}Kr

- Drift field distortion
 - Localized inhomogeneities from inactive PMTs
- Data-derived correction verified by comparison to MC with several event sources

CALIBRATIONS

Stable background conditions after a couple days (10.6h longest $T_{1/2}$)

(~150 ns delay) homogeneous in volume

Neutrons: Signal

Length:

6 weeks (AmBe)

2 days (generator)

39 | Pietro Di Gangi | WIN2019 Bari | 5 June 2019

ER AND NR MODELING REAL DATA AND MC SIMULATIONS

June 2019 LO Bari WIN2019 Pietro Di Gangi 6

XENON1T TIMESCALE SCIENCE AND CALIBRATION DATA

- 279 days high quality data (livetime-corrected) spanning more than 1 year of stable detector's operation. The LXeTPC has been "cold" since Summer 2016
- 1 tonne x year exposure given 1.3 tonne fiducial volume- the largest reported to-date with this type of detector
- Experiment still running smoothly and collecting more data

NFŃ

LIGHT DETECTION SYSTEM PMT STABILITY

42 | Pietro Di Gangi | WIN2019 Bari | 5 June 2019

LIGHT AND CHARGE SIGNALS

Position dependence of light (solid angle) and charge (attenuation length) signals very well understood through measurement with ^{83m}Kr, ²²²Rn alphas. Excellent agreement with optical Monte Carlo simulations and with model of purity evolution

Light and charge yield stability monitored with several sources:

- ²²²Rn daughters
- Activated Xe after neutron calibrations
- ^{83m}Kr calibrations
- Stability is within a few %

WIMP SEARCH DATA SELECTION AND DETECTION EFFICIENCY

- Detection efficiency dominated by 3-fold coincidence requirement
 - Estimated via novel waveform simulation including systematic uncertainties
- Selection efficiencies estimated from control or MC data samples
- Search region defined within 3-70 PE in cS1
- 50 GeV (dotted) and 200 GeV (dashed and dotted) WIMP spectra shown

INFŃ

RESULTS SPATIAL DISTRIBUTION

Core volume

The innermost volume is free of surface and neutron background. The spatial modeling of backgrounds allows to increase the fiducial volume.

STATISTICAL INTERPRETATION <1 SIGMA DISCOVERY SIGNIFICANCE

- No significant (>3 sigma) excess at any scanned WIMP mass
- Background only hypothesis is accepted although the p-value of ~0.2 at high mass (200 GeV and above) does not disfavor a signal hypothesis either

- Extended unbinned profile likelihood analysis
- Example left: Background and 200 GeV WIMP signal best-fit predictions, assuming 4.2 x 10⁻⁴⁷ cm², compared to data in 1.3T and 0.9T
- Most significant ER & Surface backgrounds shape parameters included
- Safeguard to protect against spurious mismodeling of background

PREDICTED AND OBSERVED DATA

Reference and smaller fiducial masses are illustrative. Data analysis and statistical inference is performed on the full dataset with PLR approach and backgrounds/signal shape accounted.

Mass	$1.3 \mathrm{~t}$	1.3 t	0.9 t	0.65 t
$(cS1, cS2_b)$	Full	Reference	Reference	Reference
ER	627 ± 18	$1.62{\pm}0.30$	$1.12{\pm}0.21$	$0.60{\pm}0.13$
neutron	$1.43{\pm}0.66$	$0.77{\pm}0.35$	$0.41{\pm}0.19$	$0.14{\pm}0.07$
$\mathrm{CE} \nu \mathrm{NS}$	$0.05{\pm}0.01$	$0.03{\pm}0.01$	0.02	0.01
AC	$0.47\substack{+0.27 \\ -0.00}$	$0.10\substack{+0.06\\-0.00}$	$0.06\substack{+0.03\\-0.00}$	$0.04\substack{+0.02\\-0.00}$
Surface	106 ± 8	$4.84{\pm}0.40$	0.02	0.01
Total BG	735 ± 20	$7.36{\pm}0.61$	$1.62{\pm}0.28$	$0.80{\pm}0.14$
$WIMP_{\tt best-fit}$	3.56	1.70	1.16	0.83
Data	739	14	2	2

WIMP expectation under best-fit model at m=200 GeV (cross-section = 4.7x10⁻⁴⁷ cm²)

NFN

THE RAREST DECAY EVER OBSERVED

Double Electron Capture (2vECEC)

Binding energy released: ~ 1 MeV carried away mostly by neutrinos

Experimental signature: O(keV) cascade of X-rays and Auger electrons

THE RAREST DECAY EVER OBSERVED

INFN

Key ingredients for discovery

•• Very large detector Huge number of atoms (¹²⁴Xe) present in the LXe target

****** Very silent detector

Extremely low and well characterized background level

HOW ABOUT 2vECEC of ¹²⁴Xe?

XENONIT SENSITIVITY AND PREVIOUS LIMITS

PREVIOUS SEARCHES OF 124Xe DECAY

- Gas proportional counters using enriched Xenon
- Large Xe-based dark matter detectors

XENON1T ENERGY SCALE

INFN

- Fitting Gaussian functions to mono-energetic peaks
- ^{83m}Kr (41.5 keV) Injected calibration source

ENERGY RESOLUTION

- ^{131m}Xe (163.9 keV) and ^{129m}Xe (236.2 keV)
 Activated metastable isotopes during neutron calibrations
- ²¹⁴Pb (351.9 keV) and ²⁰⁸Tl (510.8 keV) Radioactive isotopes in the TPC materials

Data points fitted with the phenomenological function:

$$\frac{\sigma_E}{\mu_E} = \frac{a}{\sqrt{E}} + b$$

Perform Energy resolution at E_{2vECEC} = 64.3 keV (4.1 ± 0.4) %

THE ¹²⁵I BACKGROUND PEAK

ACTIVATION AND REMOVAL MODEL

- Additional background from EC decay of ¹²⁵I
 Due to neutron activation of ¹²⁵Xe, especially during neutron calibration runs
 - ${}^{124}Xe + n \rightarrow {}^{125}Xe + \gamma \qquad {}^{125}I \xrightarrow{59.4 \text{ d}} {}^{125}Te^* + \nu_e$ ${}^{125}Xe \xrightarrow{16.9 \text{ h}} {}^{125}I^* + \nu_e \qquad {}^{125}Te^* \xrightarrow{1.48 \text{ ns}} {}^{125}Te + \gamma + X$

PROOF OF CONTRACT PROOF OF CONTRACT PROVIDE PROVIDO PROV

ACTIVATION MODEL Based on ¹²⁵Xe rate evolution

99 ¹²⁵I REMOVAL TIME CONSTANT (9.1 \pm 2.6) d

Thanks to Xenon purification loop through hot Zirconium getters

```
<sup>99</sup> <sup>125</sup>I EXPECTED EVENTS IN 177.7 d
N<sub>1-125</sub> = 10 ± 7
```


FIDUCIAL MASS

OPTIMIZED ON DISCOVERY SENSITIVITY

TO 108

Sensitivity \propto Mass / $\sqrt{N_{background}}$ optimized in (80, 140) keV sideband since signal region was blinded

Total fiducial volume 1.502 t superellipsoid

Volume segmented intoINNER volume (1.0 t)

• OUTER volume (0.5 t)

Intrisic background sources and solar neutrinos are homegeneously distributed.

Background from materials is greatly reduced in the inner volume.

UNBLINDING THE SIGNAL REGION

INFN

4.4 σ

Schi-square difference between background and signal hypothesis

DISCOVERY SIGNIFICANCE

CONSISTENCY CHECKS

- Signal homogeneously distributed in space
- Signal events accumulated linearly with exposure
- ✓ Fits of inner (1.0 t) and outer (0.5 t) fiducial volumes yield consistent results
- ✓ Linearity of the energy response is ensured by the ¹²⁵I peak observed at the expected position and separated from the 2ν ECEC peak by more than the energy resolution
- ✓ Systematic uncertainties on cut acceptance, fiducial mass and number of ¹²⁵I events included as fit parameters
- Knowledge from external measurements (material screening, ⁸⁵Kr concentrations measurements, elemental abundances) are incorporated through constraint terms
- ✓ No constrained fit parameters are pulled significantly (<1 σ) away from the expected value

DEC FIT PARAMETERS

INFŃ

UPGRADED Xe PURIFICATION SYSTEM

REDUCING ²²²Rn CONTAMINATION

