Exploring the primordial Universe with QUBIC the Q U Bolometric Interferometer for Cosmology

J.-Ch. Hamilton (APC - Paris, CNRS/IN2P3) On behalf of the QUBIC Collaboration

Bari. Italv

ine /th

OUBIC

See P. de Bernardis talk yesterday for a detailed review

CMB B-modes

Observing the CMB B-modes polarization gives access to the Primordial Universe physics (inflation epoch)

Difficulties:

- Sensitivity (few nK signal)
- Instrumental Systematics (I,Q,U leakage)
- Foregrounds (Polarized dust, ...)

Bari, Italy June 7th 2019

Possible instruments

Imagers:

★ With bolometers (or MKIDs...):

Wide band & Low noise

Coherent detectors

- Well mastered, not too noisy from the ground, great at low-frequency
- Usually significant cross-pol & ground-pickup from telescope

Interferometers:

- ★ Long history in CMB
 - CMB anisotropies in the late 90s (CAT: 1st detection of subdegrees anisotropies, VSA)
 - CMB polarization 1st detection (DASI, CBI)

Technology used so far

- Antennas + HEMTs : higher noise (but reasonable from ground)
- Correlators : hard to scale to large #channels

Clean systematics:

- No telescope (lower ground-pickup & cross-polarization)
- Angular resolution set by receivers geometry (well known)

Bolometric Interferometry ? → QUBIC

Bari, Italy June 7th 2019

Primordial B-modes with QUBIC

Very weak signal

Focal Plane:

- 2048 TES with NEP ~ 4x10⁻¹⁷ W.Hz^{-1/2}
- 128:1 SQUIDs+ASIC Mux Readout
- End-To-End Sims. show $\sigma(r)=0.01$ with 2 years

Instrumental systematics

Cryogenic Optics after HWP and Polarizer + Full power detectors

Instrumental Polarization has no effect

400 elements Interferometer

• Synthesized Imaging (well controlled beam) – angular resolution 23.5 arcmin

Bari, Italy

• Self-Calibration using switches + active source

Polarized foregrounds

Increased Frequency Resolution More Complex dust models can be constrained

Two wide bands: 150 and 220 GHz

1 focal plane for each channel

I.-Ch. Hamiltor

QUBIC Site: near San Antonio de los Cobres (Salta, Argentina)

Bari, Italy

une /th

- 5000m a.s.l.
- Logistics + mount : Argentina
- Access road built, works started on site and in Salta city (integration hall)

QUBIC Site: near San Antonio de los Cobres (Salta, Argentina)

Bari, Italy

une /th

- 5000m a.s.l.
- Logistics + mount : Argentina
- Access road built, works started on site and in Salta city (integration hall)

 $\begin{pmatrix} \mathsf{E}_{\mathsf{X}} \\ \mathsf{E}_{\mathsf{Y}} \end{pmatrix} \Rightarrow \begin{pmatrix} \mathsf{Q} \\ \mathsf{U} \end{pmatrix} \times$

© M. Stolpovskiy

QUBIC

J.-Ch. Hamilton

Bari, İtaly

une 7th

 $\begin{pmatrix} E_{X} \\ E_{Y} \end{pmatrix} \Rightarrow \begin{pmatrix} Q \\ U \end{pmatrix} \begin{pmatrix} + \\ U \end{pmatrix} \\ \\ \begin{pmatrix} E_{X} \cos 2\psi(t) + E_{Y} \sin 2\psi(t) \\ \\ E_{X} \cos 2\psi(t) - E_{Y} \sin 2\psi(t) \end{pmatrix}$ Half. Wave Plate

© M. Stolpovskiy

QUBIC

Bari, Italy June 7th 2019

 $\begin{pmatrix} \mathbf{E}_{\mathbf{X}} \\ \mathbf{E}_{\mathbf{Y}} \end{pmatrix} \Rightarrow \begin{pmatrix} \mathbf{Q} \\ \mathbf{U} \end{pmatrix} \times$ Half-Wave $\left(\begin{array}{c} E_{x} \cos 2\psi(t) + E_{y} \sin 2\psi(t) \\ E_{x} \cos 2\psi(t) - E_{y} \sin 2\psi(t) \end{array} \right)$ Plate Polarizing $[E_{x} \cos 2\psi(t) + E_{y} \sin 2\psi(t)]$ GRid $S = I + Q \cos 4\varphi(t) + U \sin 4\varphi(t)$

Bari, Italy

une 7th

© M. Stolpovskiy

QUBIC

 $\begin{pmatrix} \mathbf{E}_{\mathbf{X}} \\ \mathbf{E}_{\mathbf{Y}} \end{pmatrix} \Rightarrow \begin{pmatrix} \mathbf{Q} \\ \mathbf{U} \end{pmatrix} \times$ Half-Wave $\left(\begin{array}{c} E_{x} \cos 2\psi(t) + E_{y} \sin 2\psi(t) \\ E_{x} \cos 2\psi(t) - E_{y} \sin 2\psi(t) \end{array} \right)$ Plate Polarizing (Ex W52y(t) + Ey Sin 2y(t)) GRid HORNS ~, $S = I + Q \cos 4\varphi(t) + U \sin 4\varphi(t)$ © M. Stolpovskiy

Bari, Italy

une /th

QU Bolometric Interferometer for Cosmology

QUBIC

Half-Wave $\left(\begin{array}{c} E_{x} \cos 2\varphi(t) + E_{y} \sin 2\varphi(t) \\ E_{x} \cos 2\varphi(t) - E_{y} \sin 2\varphi(t) \end{array} \right)$ Plate Polarizing (Ex W524(t) + Ey Stn 24(t)) GRid HORNS - $S = I + Q \cos 4\varphi(t) + U \sin 4\varphi(t)$ Mirrors - on the 220GHz focal plane Dichroic 150GHz

Bari, Italy

une /th 20

© M. Stolpovskiy

QU Bolometric Interferometer for Cosmology

QUBIC

Half-Wave $\left(\begin{array}{c} E_{x} \cos 2\psi(t) + E_{y} \sin 2\psi(t) \\ E_{x} \cos 2\psi(t) - E_{y} \sin 2\psi(t) \end{array} \right)$ Plate Polarizing (Ex W524(t) + Ey Stn 24(t)) GRid HORNS - $S = I + Q \cos 4\varphi(t) + U \sin 4\varphi(t)$ tocus beam Mirrors - on the 220GHz focal plane Dichroic 150GHz Focal planes © M. Stolpovskiy

Bari, Italy

une /th

QU Bolometric Interferometer for Cosmology

I horn open

une /th 20

•

I horn open

20

I baseline

000

I baseline

I baseline

2

total signal (all baselines)

OUBIC

Bari, Italy

une 7th 20

1.547m high 1.42m diameter About 800kg

Integrated over 2018 in Paris Now being calibrated

- Outer cryostat: Roma
- IK Box / detectors: APC, CSNSM / IRAP
- Fridges: Manchester
- Optics: Roma / Maynooth / Cardiff
- Mount: La Plata

Bari, Italy

une 7th 20

Site: CNEA

Tests show expected behaviour of the instrument

Primary horns array

Synthesized beam (on the sky)

150-220 GHz, 20x20 horns, 13 deg. FWHM, D=1.2 cm

Synthesized beam used to scan the sky as with an imager

Bari, Italy

une 7th 20

Primary horns array

Synthesized beam (on the sky)

150-220 GHz, 20x20 horns, 13 deg. FWHM, D=1.2 cm

Synthesized beam used to scan the sky as with an imager

Bari, Italy

une 7th 20

Primary horns array

Synthesized beam (on the sky)

150-220 GHz, 20x20 horns, 13 deg. FWHM, D=1.2 cm

Synthesized beam used to scan the sky as with an imager

Bari, Italy

une 7th 20

Primary horns array

150-220 GHz, 20x20 horns, 13 deg. FWHM, D=1.2 cm

Synthesized beam (on the sky)

Single detector beam - 400 horns 25% BW - 3 mm detectors

(including detector finite size and 30% BW)

FWHM 23.5 arcmin

Bari, Italy

une 7th

[Interestingly close to an analogic and polarization sensitive version of the « Omniscope » discussed in 2009 by Tegmark & Zaldarriaga]

8.5 deg.

(0.0, 90.0) Galactic

Synthesized beam used to scan the sky as with an imager

une 7th 2019

Synthesized beam:

Depends on horns configuration
 AND on frequency !

ex: a point source emitting at 140 and 160 GHz

Synthesized beam:

Depends on horns configuration
 AND on frequency !

ex: a point source emitting at 140 and 160 GHz

Synthesized beam:

Depends on horns configuration
 AND on frequency !

ex: a point source emitting at 140 and 160 GHz

Synthesized beam:

Depends on horns configurationAND on frequency !

ex: a point source emitting at 140 and 160 GHz

There is spatial + frequency information !

Synthesized beam:

Depends on horns configurationAND on frequency !

ex: a point source emitting at 140 and 160 GHz

There is spatial + frequency information !

Multi-frequency map-making with the same TOD ★ Spectral resolution Δν/ν~0.05

Shown to be quasi-optimal with simulations

★ article being finalized

Sky: Continuous frequency maps

Output: N broadband frequency maps

QU Bolometric Interferometer for Cosmology

OUBIC

Bari, Italy June 7th 20

Data Analysis more complex but richer than with a classical imager

QU Bolometric Interferometer for Cosmology

-

Bari, Italy June 7th 2019

Sky: « Infinite # bands »

QU Bolometric Interferometer for Cosmology

Bari, Italy June 7th 2019

TOD(220 GHz)

TOD(150 GHz)

Instrument: 2 wide bands

QU Bolometric Interferometer for Cosmology

Bari, Italy June 7th 2019

Sky: ' « Infinite # bands »

Instrument: 2 wide bands Data Analysis: 5 narrow bands

QU Bolometric Interferometer for Cosmology

Bari, Italy

QU Bolometric Interferometer for Cosmology

Bari, Italy une 7th <u>2019</u>

Bari, Italy

une 7th 20

QU Bolometric Interferometer for Cosmology

QUBIC

Systematics: Self-Calibration

• Unique possibility to handle systematic errors

Use horn array redundancy to calibrate systematics

- In a perfect instrument redundant baselines should see the same signal
- Differences due to systematics
- Allow to fit systematics with an external source on the field
- Unique specificity of Bolometric Interferometry !

[Bigot-Sazy et al., A&A 2012, arXiv:1209.4905]

QU Bolometric Interferometer for Cosmology

OUBIC

Bari, Italy
June 7th 2019

Cryostat designed and manufactured in Roma - La Sapienza At 4K continuously since Jan. 2019 ~50 cycles of the 300mK fridge

OUBIC

Bari, Italy

une 7th 20

B2B platelets horn-array Milano Statale

Switches and electronics Milano Bicocca + APC

QUBIC QU Bolometric Interferometer for Cosmology

QUBIC HWP Rotator Roma - La Sapienza

QUBIC BL QU Bolom

QU Bolometric Interferometer for Cosmology

Detection chain APC-CSNSM-IRAP

I:128 SQUIDs+ASIC Mux 2048 TES Bolometers (256 for TD)

Yield: ~84% (array ref P87) - State of the Art

Bari, Italy

une 7th 20

Optics box at IK

M1 Initial measured points - Mirror in HexRF

Structure: APC Mirrors + alignment: Milano, Roma, APC

QU Bolometric Interferometer for Cosmology

Bari, Italy

une 7th 20

Bari. Italı

-Ch. Hamilton

Quasi-optical cryogenic components: filters, Half-Wave-Plate, Polarizer Designed and fabricated in Cardiff

IK and 300mK He4 fridges - Manchester

More than 50 cycles of the 300mK fridges so far

Bari, Italy

une /th

Site and Integration Hall ITeDA, CNEA, Argentina

New road to site

Works in progress

Preparatory work for basement on site

I.-Ch. Hamilton

Bari, Italy

une 7th 20

QUBIC QU Bolometric Interferometer for Cosmology

Site and Integration Hall ITeDA, CNEA, Argentina

New road to site

Works in progress

Preparatory work for basement on site

I.-Ch. Hamilton

Bari, Italy

une 7th 20

QUBIC QU Bolometric Interferometer for Cosmology

2018-2019 : at APC

- Calibration on the way
- Technological Demonstrator (reduced QUBIC)
 - 1/4 focal plane, 64 horns, small mirrors

In-Lab demonstration of Bolometric Interferometry

Bandwidth measurement: as expected

OUBIC

Bari, Italy

ine 7th

Synthesized beams: first measurement ever !

Frequency scaling is the basis of Spectro-Imaging A possibility unique to Bolometric Interferometry to constrain foregrounds

OUBIC

QU Bolometric Interferometer for Cosmology

Bari. Italv

Synthesized beams: first measurement ever !

Frequency scaling is the basis of Spectro-Imaging A possibility unique to Bolometric Interferometry to constrain foregrounds

OUBIC

QU Bolometric Interferometer for Cosmology

Bari. Italv

QU Bolometric Interferometer for Cosmology

une 7th

Individual baseline fringe pattern

A first step towards self-calibration !

OUBIC

Bari, Italy

une 7th

2018-2019 : at APC

- Calibration on the way •
- Technological Demonstrator (reduced QUBIC) •
 - 1/4 focal plane, 64 horns, small mirrors

In-Lab demonstration of **Bolometric Interferometry**

2018-2019 : at APC

- Calibration on the way
- Technological Demonstrator (reduced QUBIC)
 - 1/4 focal plane, 64 horns, small mirrors

In-Lab demonstration of Bolometric Interferometry

Late 2019 : Argentina

- Late 2019: Installation on site
- First Light with ¼ focal plane

2018-2019 : at APC

- Calibration on the way •
- Technological Demonstrator (reduced QUBIC) •
 - 1/4 focal plane, 64 horns, small mirrors

In-Lab demonstration of **Bolometric Interferometry**

Late 2019 : Argentina

- Late 2019: Installation on site
- First Light with ¼ focal plane

On-Sky demonstration of **Bolometric Interferometry**

2018-2019 : at APC

- Calibration on the way
- Technological Demonstrator (reduced QUBIC)
 - 1/4 focal plane, 64 horns, small mirrors

In-Lab demonstration of Bolometric Interferometry

Late 2019 : Argentina

- Late 2019: Installation on site
- First Light with ¼ focal plane

On-Sky demonstration of Bolometric Interferometry

2020 : Argentina

- Upgrade to QUBIC 1st module (2 focal planes 150 and 220 GHz)
- Data taking: 2-3 years $\sigma(r)=0.01$

2018-2019 : at APC

- Calibration on the way •
- Technological Demonstrator (reduced QUBIC) •
 - 1/4 focal plane, 64 horns, small mirrors

In-Lab demonstration of **Bolometric Interferometry**

Late 2019 : Argentina

- Late 2019: Installation on site
- First Light with ¼ focal plane

On-Sky demonstration of **Bolometric Interferometry**

2020 : Argentina

- Upgrade to QUBIC 1st module (2 focal planes 150 and 220 GHz)
- Data taking: 2-3 years $\sigma(r)=0.01$

Stage III $\sigma(r) = 0.01$

Bari, Italy

ine 7th

2018-2019 : at APC

- Calibration on the way •
- Technological Demonstrator (reduced QUBIC)
 - 1/4 focal plane, 64 horns, small mirrors

In-Lab demonstration of **Bolometric Interferometry**

Late 2019 : Argentina

- Late 2019: Installation on site
- First Light with ¼ focal plane

2020 : Argentina

- Upgrade to QUBIC 1st module (2 focal planes 150 and 220 GHz)
- Data taking: 2-3 years $\sigma(r)=0.01$

2021-...: QUBIC evolves towards Stage-IV

- Extension of the collaboration
- Improved designs being investigated: eg/ BI tube in CMB-S4
- Excellent quality site open to development

Bari, Italy

ine 7th

On-Sky demonstration of **Bolometric Interferometry**

Stage III $\sigma(r) = 0.01$

2018-2019 : at APC

- Calibration on the way
- Technological Demonstrator (reduced QUBIC)
 - 1/4 focal plane, 64 horns, small mirrors

In-Lab demonstration of Bolometric Interferometry

Late 2019 : Argentina

- Late 2019: Installation on site
- First Light with ¼ focal plane

On-Sky demonstration of Bolometric Interferometry

2020 : Argentina

- Upgrade to QUBIC 1st module (2 focal planes 150 and 220 GHz)
- Data taking: 2-3 years $\sigma(r)=0.01$

2021-...: QUBIC evolves towards Stage-IV

- Extension of the collaboration
- Improved designs being investigated: eg/ BI tube in CMB-S4
- Excellent quality site open to development

Bari, Italy

ine 7th

Stage III $\sigma(r) = 0.01$

Evolution to Stage IV $\sigma(r) = 0.001$

Summary

QUBIC is a novel instrumental concept

- ★ First Bolometric Interferometer
- \star Dedicated to CMB polarimetry and inflationary physics
- ★ High sensitivity with ~2000 TES bolometers
- ★ Different and likely smaller instrumental systematics:
 - Self Calibration allowed by observing individual fringe patterns (Unique to QUBIC)
- ★ Spectro-Imaging with two physical bands (150 / 220 GHz) and 5-10 sub-bands:
 - Foregrounds contamination control and removal with up to 10 bands (unique to QUBIC)
- ★ <u>Target :</u>
 - First module (150-220 GHz): $\sigma(r)=0.01$ (incl. dust)
 - Stage IV evolution of QUBIC $\sigma(r)=0.001$

QUBIC deployment is on the way:

- \star TD calibration ongoing at APC
- ★ First light in Argentina late-2019
- ★ Upgrade to Nominal Instrument in 2020

Welcome to jump-in anytime !!!

Bari. Italy

Summary

QUBIC is a novel instrumental concept

- ★ First Bolometric Interferometer
- \star Dedicated to CMB polarimetry and inflationary physics
- ★ High sensitivity with ~2000 TES bolometers
- ★ Different and likely smaller instrumental systematics:
 - Self Calibration allowed by observing individual fringe patterns (Unique to QUBIC)
- **\star** Spectro-Imaging with two physical bands (150 / 220 GHz) and 5-10 sub-bands:
 - Foregrounds contamination control and removal with up to 10 bands (unique to QUBIC)
- ★ <u>Target :</u>
 - First module (150-220 GHz): $\sigma(r)=0.01$ (incl. dust)
 - Stage IV evolution of QUBIC $\sigma(r)=0.001$

QUBIC deployment is on the way:

- \star TD calibration ongoing at APC
- ★ First light in Argentina late-2019
- ★ Upgrade to Nominal Instrument in 2020

Welcome to jump-in anytime !!!

Thank you

View from the site

Integration timelapse (2018)

Bari, Italy

une 7th 20

Exciting times ahead !!!

Thank you

View from the site

Integration timelapse (2018)

Bari, Italy

une 7th 20

Exciting times ahead !!!

