

GAPS: Searching for Dark Matter using Antinuclei in Cosmic Rays

WIN 2019, Bari, 3-8 June 2019

Riccardo Munini, INFN Trieste On behalf of the GAPS collaboration

AXA

The GAPS experiment

- GAPS is a balloon flight experiment for low energy (<0.25 GeV/n) antideuteron in cosmic rays (CRs) that would result from certain dark matter (DM) interactions
- GAPS will also conduct a high statistics measurement of low energy **antiproton** and will search for **antihelium**
- The first of a series of flight from Antarctica is expected for late 2021
- The detector is composed by a ToF system and a Tracker made of 10 plane of SiLi detector
- GAPS uses a detection technique based on exotic atom formation and subsequent decay and annihilation with X rays and pions emission

Antimatter production in CRs

a) Primary CRs interacting with interstellar medium (IM)

b) Decay or annihilation of DM particles in galactic halo (beyond standard model theories)

Antimatter from DM is expected to be a significant fraction (antiproton) or higher (antideuteron) with respect to secondaries CRs

INFN

Why antideuteron for DM search?

 Models predict antideuteron from DM decay or annihilation to be order of magnitude higher than the secondaries

Even a single antideuteron detection with GAPS would point to new physics

GAPS - antideuteron search

Antiproton from DM

 Models predict antideuteron from DM decay or annihilation to be order of magnitude higher than the secondaries

Even a single antideuteron detection with GAPS would point to new physics

 Antiproton signal from dark matter is expected to be a fraction (10-30%) of the secondary from CR interaction.

AntiHelium from DM

 Models predict antideuteron from DM decay or annihilation to be order of magnitude higher than the secondaries

Even a single antideuteron detection with GAPS would point to new physics

- Antiproton signal from dark matter is expected to be a fraction (10-30%) of the secondary from CR interaction.
- Antihelium is also expected but with much lower intensity

General requirements

- Large acceptance
- Restrictive trigger
- Velocity measurements
- Background rejection
 - X-rays detection
 - Track primary
 - Track secondaries

1 LDB flight (35 days) → **high-statistic antiP:** 1500 (100< BESS, 7 PAMELA) 3 LDB flights (105 days) → **antiD sensitivity**: $2 \cdot 10^{-6} m^{-2} s^{-1} sr^{-1} GeV/n^{-1}$

GAPS - antideuteron search

NASA

14XA

TOF system

Trigger based on:

- **Beta**: rejects high beta particles.
- **Charge**: rejects high Z particles.
- **Hit**: count the number of paddles hit.

Expected Trigger Rates (H, He, C) Raw : 82,000 Hz → After cuts : 550 Hz

4	1.6-1.8m		
	196 plastic scintillate	or	
Item	Value	Comments	
TOF resolution Velocity resolution	σ_{T} < 400 ps $\Delta\beta/\beta$ < 0.12	Laboratory	Si-PMs (x6) Better performance Save mass, power, cos
Charge resolution	(σ _q) _{68%} < 0.20e	Initial study	
Position resolution	σ_x = 3.0 cm (length) σ_y = 4.6 cm (width)	Laboratory	
Angular resolution	σ_{θ} < 3° (typical)		1 8m SiDM paddlo
ntiprotons Trigger	36%		
ntideuterons Trigger	76%	4.	<i>t</i> . 1
		34	

05/06/19

INFN

Tracker system

Requirements

- 4 keV FWHM resolution (100 KeV)
- Large area, relatively high temperature
- Leakage current < 5 nA/strip
- Huge dynamical range ($\sim keV \rightarrow 100 \text{ MeV}$)
- Low cost, high-yield fabrication process

05/06/19

Simulation and reconstruction

Fully detector simulation with (GEANT4)

Vertex reconstruction based on:

- Kalman-like filter for primary reconstruction
- Hough transformation for secondaries
- Vertex reconstruction with minimization

GAPS - antideuteron search

05/06/19

NASA

J**∦X**A

Simulation and reconstruction

Fully detector simulation with (GEANT4)

Vertex reconstruction based on:

- Kalman-like filter for primary reconstruction
- Hough transformation for secondaries
- Vertex reconstruction with minimization

NASA

JXA

Acceptance and identification

The main background for antideuteron identification is antiprotons ($\bar{p}/\bar{d} \sim 10^{3}$)

Multivariate approach (Likelihood):

- Depth vs beta
- Number of secondaries
- X-rays
- "Calorimetric" approach
 - Total hit number
 - · Total energy deposition
 - Energy pattern deposition
 - ...

Neural network (developing)

Machine learning (developing)

Acceptance for antideuterons after applying identification cuts (10⁵ antiP rejection)

Under study: Identification using reconstructed variable

05/06/19

JAXA

GAPS and solar modulation

Precise modeling of the solar modulation has to be taken into account to interpret the data.

3D numerical model for CRs propagation inside heliosphere: factor 4 of intensity variation for DM antiD between solar minimum and maximum **J**XA

- This is a "background free" channel since the secondary antideuteron from CRs interaction is expected to be orders of magnitude lower.
- Complementary detection technique with respect to magnetic spectrometer with exotic nucleus formation and annihilation.
- GAPS will also perform the highest statistical antiproton measurement at these energies and will search for antihelium.
- Construction is proceeding along with simulation and identification studies.
- First flight late 2021 from McMurdo station.