Three-nucleon force correlations and electromagnetic response in finite nuclei with Self-Consistent Green's Functions

TNPI2017 - XVI Conference on Theoretical Nuclear Physics in Italy

3-5 October 2017

Cortona

Collaborators:

Carlo Barbieri (University of Surrey) Andrea Idini (University of Surrey)

Francesco Raimondi

(University of Surrey)

Outline

• Extension of the Algebraic Diagrammatic Construction (ADC) method with three-nucleon interactions

 Dipole Response Function and Polarisability in Oxygen and Calcium isotopes

• Effective charges in Oxygen and Nickel isotopes from realistic nuclear interactions

Outline

• Extension of the Algebraic Diagrammatic Construction (ADC) method with three-nucleon interactions

Dipole Response Function and Polarisability in Oxygen
 and Calcium isotopes

• Effective charges in Oxygen and Nickel isotopes from realistic nuclear interactions

Motivations: Role of 3N forces in nuclear phenomena

See C. Barbieri's and T. Fukui's talks

Method: Self-consistent Green's function formalism

W. Dickhoff, C. Barbieri, Prog. Part. Nucl. Phys. **52**, 377 (2004) C. Barbieri, A. Carbone, Lectures notes in Phys., Vol. **936**, 571 (2017)

W. Dickhoff, C. Barbieri, Prog. Part. Nucl. Phys. **52**, 377 (2004) C. Barbieri, A. Carbone, Lectures notes in Phys., Vol. **936**, 571 (2017)

Gorkov formalism: C. Barbieri, T. Duguet, V. Somà

"What a nucleon does in the nucleus"

(i.e. in a strongly interacting many-fermions systems)?

Spectroscopic information (⁵⁶Ni)

Binding energies and driplines (O)

- Ground state properties
- Spectroscopic informations
- One- (two-, ...) body operators matrix elements
- Optical potentials (A. Idini, C. Barbieri, Acta Phys. Pol. B 88, 273 (2017))

Microscopic nuclear Hamiltonian

Green's function (Lehmann representation)

Dyson equation

$$\hat{H} = \sum_{\alpha} \varepsilon_{\alpha}^{0} a_{\alpha}^{\dagger} a_{\alpha} - \sum_{\alpha\beta} U_{\alpha\beta} a_{\alpha}^{\dagger} a_{\beta} + \frac{1}{4} \sum_{\substack{\alpha\gamma \\ \beta\delta}} V_{\alpha\gamma,\beta\delta} a_{\alpha}^{\dagger} a_{\gamma}^{\dagger} a_{\delta} a_{\beta} + \frac{1}{65} \sum_{\substack{\alpha\gamma \\ \beta\delta}} W_{\alpha\gamma\epsilon,\beta\delta\eta} a_{\alpha}^{\dagger} a_{\gamma}^{\dagger} a_{\epsilon}^{\dagger} a_{\eta} a_{\delta} a_{\beta}$$
$$g_{\alpha\beta}(\omega) = \sum_{n} \frac{\langle \Psi_{0}^{A} | a_{\alpha} | \Psi_{n}^{A+1} \rangle \langle \Psi_{n}^{A+1} | a_{\beta}^{\dagger} | \Psi_{0}^{A} \rangle}{\omega - \varepsilon_{n}^{+} + i\eta} + \sum_{k} \frac{\langle \Psi_{0}^{A} | a_{\beta}^{\dagger} \rangle \Psi_{k}^{A-1} \rangle \langle \Psi_{k}^{A-1} | a_{\alpha} | \Psi_{0}^{A} \rangle}{\omega - \varepsilon_{k}^{-} - i\eta}$$
$$G_{\alpha\beta}(\omega) = G_{\alpha\beta}^{(0)}(\omega) + \sum_{\gamma\delta} G_{\alpha\gamma}^{(0)}(\alpha) \sum_{\gamma\delta} (\omega) G_{\delta\beta}(\omega)$$
Solf-production potential affecting

the s.p. propagation in the nuclear medium

(A. Carbone et al, Phys. Rev. C 88 (2013) 054326)

With 3N forces, # of self-energy diagrams is too cumbersome...

BASIC IDEA:

Effective interaction concept generalises the HF approximation of the twobody forces to the N-body forces and with respect to the correlated propagator

With 3N forces, # of self-energy diagrams is too cumbersome...

BASIC IDEA:

Effective interaction concept generalises the HF approximation of the twobody forces to the N-body forces and with respect to the correlated propagator

With 3N forces, # of self-energy diagrams is too cumbersome...

BASIC IDEA:

Effective interaction concept generalises the HF approximation of the twobody forces to the N-body forces and with respect to the correlated propagator

With 3N forces, # of self-energy diagrams is too cumbersome...

BASIC IDEA:

Effective interaction concept generalises the HF approximation of the twobody forces to the N-body forces and with respect to the correlated propagator

Example of diagram with effective interaction

1p Interaction-**irreducible** second-order self-energy diagram

Interaction-irreducible Self-Energy with 3N forces

(A. Carbone et al, Phys. Rev. C 88 (2013) 054326)

$$G_{\alpha\beta}(\omega) = G_{\alpha\beta}^{(0)}(\omega) + \sum_{\gamma\delta} G_{\alpha\gamma}^{(0)}(\omega) \Sigma_{\gamma\delta}^{\star}(\omega) G_{\delta\beta}(\omega)$$

Second-order diagrams with 3N forces

Third-order diagrams with 3N forces

Interaction-irreducible Self-Energy with 3N forces

(A. Carbone et al, Phys. Rev. C 88 (2013) 054326)

$$G_{\alpha\beta}(\omega) = G_{\alpha\beta}^{(0)}(\omega) + \sum_{\gamma\delta} G_{\alpha\gamma}^{(0)}(\omega) \Sigma_{\gamma\delta}^{\star}(\omega) G_{\delta\beta}(\omega)$$

Diagrams with effective 2N forces (A. Cipollone et al, Phys. Rev. C 92 (2015) 014306)

Diagram with irreducible 3N forces

(F.R., C. Barbieri, Proceeding of NTSE (2016)) (F.R., C. Barbieri, arXiv:1709.04330 (2017))

Third-order diagrams with 3N forces

Algebraic Diagrammatic Construction method at order 3

J. Schirmer and collaborators:

Phys. Rev. A26, 2395 (1982) Phys. Rev. A28, 1237 (1983)

Self-energy expansion is treated NON-perturbatively:

Entire classes of self-energy diagrams (ladder and ring) are summed at infinite order by means of a geometric series

Self-energy expansion is treated NON-perturbatively:

Entire classes of self-energy diagrams (ladder and ring) are summed at infinite order by means of a geometric series

The set of ladder diagrams is a geometric series

How does ADC(n) work practically

General form of the irreducible self-energy

$$\Sigma_{\alpha\beta}(\omega) = \mathcal{M}^{\dagger} \frac{1}{\hbar\omega - E_{ph} - \mathcal{C}} \mathcal{M}$$

E2p1h, E3p2h, ...

Formal expansion of \mathcal{M} in powers of interactions $\mathcal{M} = \mathcal{M}^{(I)} + \mathcal{M}^{(II)} + \mathcal{M}^{(III)} + \dots$

How does ADC(n) work practically

General form of the irreducible self-energy

$$\Sigma_{\alpha\beta}(\omega) = \mathcal{M}^{\dagger} \frac{1}{\hbar\omega - E_{ph} - \mathcal{C}} \mathcal{M}$$

$$\sum_{\substack{\epsilon \geq 2p1h, \epsilon \leq 3p2h, \dots}} \mathcal{K}$$
First order in the interaction

Formal expansion of \mathcal{M} in powers of interactions $\mathcal{M} = \mathcal{M}^{(I)} + \mathcal{M}^{(II)} + \mathcal{M}^{(III)} + \dots$

Explicit expressions for \mathcal{M} and \mathcal{C} are found by comparing with derived expressions of self-energy Goldstone diagrams up to the same order

$$\mathcal{M}^{\dagger} \frac{1}{\hbar\omega - E_{ph} - \mathcal{C}} \mathcal{M} = \mathcal{M}^{(I)\dagger} \frac{1}{\hbar\omega - E_{ph}} \mathcal{M}^{(I)} + \mathcal{M}^{(II)\dagger} \frac{1}{\hbar\omega - E_{ph}} \mathcal{M}^{(I)} + \mathcal{M}^{(I)\dagger} \frac{1}{\hbar\omega - E_{ph}} \mathcal{M}^{(II)} + \mathcal{M}^{(I)\dagger} \frac{1}{\hbar\omega - E_{ph}} \mathcal{C} \frac{1}{\hbar\omega - E_{ph}} \mathcal{M}^{(I)} + \text{fourth order} + \dots$$

How does ADC(n) work practically

General form of the irreducible self-energy

$$\Sigma_{lphaeta}(\omega) = \mathcal{M}^{\dagger} \frac{1}{\hbar\omega - E_{ph} - \mathcal{C}} \mathcal{M}$$

Explanation is a single set of the First order in the

interaction

Formal expansion of \mathcal{M} in powers of interactions $\mathcal{M} = \mathcal{M}^{(I)} + \mathcal{M}^{(II)} + \mathcal{M}^{(III)} + \dots$

Explicit expressions for \mathcal{M} and C are found by comparing with derived expressions of self-energy Goldstone diagrams up to the same order

$$\mathcal{M}^{\dagger} \frac{1}{\hbar\omega - E_{ph} - \mathcal{C}} \mathcal{M} = \mathcal{M}^{(I)\dagger} \frac{1}{\hbar\omega - E_{ph}} \mathcal{M}^{(I)} + \mathcal{M}^{(I)\dagger} \frac{1}{\hbar\omega - E_{ph}} \mathcal{M}^{(I)} + \mathcal{M}^{(I)\dagger} \frac{1}{\hbar\omega - E_{ph}} \mathcal{M}^{(II)} + \mathcal{M}^{(I)\dagger} \frac{1}{\hbar\omega - E_{ph}} \mathcal{C} \frac{1}{\hbar\omega - E_{ph}} \mathcal{M}^{(I)} + \mathcal{M}^{(I)\dagger} \frac{1}{\hbar\omega - E_{ph}} \mathcal{C} \frac{1}{\hbar\omega - E_{ph}} \mathcal{M}^{(I)} + \mathcal{M}^{(I)\dagger} \frac{1}{\hbar\omega - E_{ph}} \mathcal{C} \frac{1}{\hbar\omega - E_{ph}} \mathcal{M}^{(I)} + \mathcal{M}^{(I)\dagger} \frac{1}{\hbar\omega - E_{ph}} \mathcal{C} \frac{1}{\hbar\omega - E_{ph}} \mathcal{M}^{(I)} + \mathcal{M}^{(I)\dagger} \frac{1}{\hbar\omega - E_{ph}} \mathcal{M}^{(I)} + \mathcal{M}^{(I)\dagger} \frac{1}{\hbar\omega - E_{ph}} \mathcal{C} \frac{1}{\hbar\omega - E_{ph}} \mathcal{M}^{(I)} + \mathcal{M}^{(I)\dagger} \mathcal{M}^{(I)} + \mathcal{M}^{(I)\dagger} \frac{1}{\hbar\omega - E_{ph}} \mathcal{M}^{(I)} + \mathcal{M}^{(I)} + \mathcal{M}^{(I)\dagger} \frac{1}{\hbar\omega - E_{ph}} \mathcal{M}^{(I)} +$$

Features of Self-Energy in ADC(n)

Compatible with the Lehmann representation Principle of Causality

Hermitian

 $\Sigma_{\alpha\beta}(\omega)$

Non perturbative resummation

Dyson equation is solved as eigenvalue problem poles and residues of the propagator are found as eigenvalues and eigenvectors of the Self-Energy Hermitian matrix

Complete set of ADC(3) working equations can be found in:

(F.R., C. Barbieri, Proceeding of NTSE (2016))

(F.R., C. Barbieri, ArXiv:1709.04330 (2017))

Work in progress: Implementation in BcDor Code

Outline

• Extension of the Algebraic Diagrammatic Construction (ADC) method with three-nucleon interactions

 Dipole Response Function and Polarisability in Oxygen and Calcium isotopes

• Effective charges in Oxygen and Nickel isotopes from realistic nuclear interactions

Electric Dipole Polarizability α_D

In general:

 $\alpha_D \propto E1$ electromagnetic response (quality of the nuclear wave function correlations)

Recent studies:

- Reinhard et al, PRC 81 051303(R) 2010
- Piekarewicz *et al*, PRC 85 041302(R) 2012

 $\alpha_{\rm D}$ as input quantity for constraining the isovector part of the nuclear interaction

· Hagen et alii, Nature Physics 12, 186 (2015)

Theory input for determining the Radius of Neutron stars

Electromagnetic response in SCGF

OBSERVABLES

$$\sigma_{\gamma}(E) = 4\pi^{2} \alpha E R(E)$$
PHOTOABSORPTION CROSS SECTION
$$\alpha_{D} = 2\alpha \int dE \frac{R(E)}{E}$$
ELECTRIC DIPOLE POLARIZABILITY

Response R(E) depends on excited states of the nuclear system, when "probed" with dipole operator \hat{D}

$$R(E) = \sum_{\nu} |\langle \psi_{\nu}^{A} | \hat{D} | \psi_{0}^{A} \rangle |^{2} \, \delta_{E_{\nu},E}$$

Electromagnetic response in SCGF

 $\sigma_{\gamma}(E) = 4\pi^{2} \alpha E R(E) \text{ photoabsorption cross section}$ $\alpha_{D} = 2\alpha \int dE \, \frac{R(E)}{E} \quad \text{electric dipole polarizability}$

Response R(E) depends on excited states of the nuclear system, when "probed" with dipole operator \hat{D}

$$R(E) = \sum_{\nu} |\langle \psi_{\nu}^{A} | \hat{D} | \psi_{0}^{A} \rangle|^{2} \delta_{E_{\nu},E}$$
$$\sum_{ab} \langle a | \hat{D} | b \rangle \langle \psi_{\nu}^{A} | c_{a}^{\dagger} c_{b} | \psi_{0}^{A} \rangle$$

S.p. matrix element of the dipole one-body operator

Nuclear structure correlations: g^{II} RPA level (first order) g^I "dressed" ADC(3) Results: cross section and dipole polarisability

¹⁶O ²²O ⁴⁰Ca ⁴⁸Ca

Results for Oxygen isotopes

 σ from RPA response (discretized spectrum) vs σ from photoabsorption and Coulomb excitation

NNLOsat

- GDR position of ¹⁶O reproduced
- · Hint of a soft dipole mode on the neutron-rich isotope

Dipole polarizability α_D (fm ³)				
Nucleus	SCGF	$\rm CC/LIT$	Exp	
¹⁶ O	0.50	0.57(1)	0.585(9)	
^{22}O	0.72	0.86(4)	0.43(4)	

Results for Calcium isotopes

σ from RPA response (discretized spectrum) vs σ from photoabsorption and Coulomb excitation

NNLOsat

GDR positions reproduced

Total sum rule reproduced but poor strength distribution (Lack of correlations)

Dipole polarizability α_D (fm ³)					
Nucleus	SCGF	CC/LIT	Exp		
⁴⁰ Ca	1.79	$1.47 \ (1.87)_{thresh}$	1.87(3)		
⁴⁸ Ca	2.08	2.45	2.07(22)		

Comparison with CC-LIT (Coupled Cluster- Lorentz Integral Transform method)

In collaboration with M. Miorelli and S. Bacca (TRIUMF, University of Mainz)

- · CC-Singles-Doubles (analogous to 2nd RPA)
- · LIT reduces a continuum state problem to a bound-state-like problem

Different treatment of the correlations:

SCGF

Reference state correlated RPA (first-order two-body correlator) **CC-SD-LIT**

HF Reference state Singles-Doubles

Role of the correlations included in the reference state

Outline

• Extension of the Algebraic Diagrammatic Construction (ADC) method with three-nucleon interactions

Dipole Response Function and Polarisability in Oxygen
 and Calcium isotopes

• Effective charges in Oxygen and Nickel isotopes from realistic nuclear interactions

Methods: Particle-Vibration coupling in the Self-consistent Green function formalism

Theoretical effective charges (as opposed to the ones extracted from experiment)

Our purpose is to calculate effective charges without resorting to any measurement of electromagnetic observables

Basic idea: calculate the core-polarization effect felt by the single-particle orbital of interest because of the energy-dependent effective potential, calculated at ADC(3) level

Effective charge as the ratio between the transition strengths (with and without the core-polarization) of a given multipole field:

$$\frac{\langle \tilde{\alpha} | \hat{\phi}^{(\lambda \mu_{\lambda})} | \tilde{\beta} \rangle}{\langle \alpha | \hat{\phi}^{(\lambda \mu_{\lambda})} | \beta \rangle} = 1 + \frac{\tilde{\Sigma}_{\alpha \beta}^{(\lambda \mu)}}{\langle \alpha | \hat{\phi}^{(\lambda \mu_{\lambda})} | \beta \rangle}$$

 $|\tilde{lpha}
angle\equiv$ s.p. state with correlations induced by the nuclear interaction and electromagnetic operator

Results: Theoretical effective charges of Oxygen and Nickel isotopes for E2 operator

Features of the calculation

- Medium-mass isotopes:
 - Oxygen isotopes in *sd* and *psd* valence space: ¹⁴O, ¹⁶O, ²²O and ²⁴O
 - Nickel isotopes in $0f1p0g_{9/2}$: ⁴⁸Ni, ⁵⁶Ni, ⁶⁸Ni and ⁷⁸Ni
- NN and 3N nuclear interaction NNLOsat (Phys. Rev. C 91, 051301(R))
- Electric quadrupole operator E2 $\hat{\phi}^{(2\mu)} = \sum_{i} r_i^2 Y_{2\mu}(\hat{r}_i)$
- Dyson equation solved with self-energy truncated at ADC(3) level:

 Nuclear many-body wave function expanded in HO wave functions with N_{max}=13 and hΩ=20 MeV

Results for Oxygen isotopes

Standard values of e x p e r i m e n t a l effective charges in *psd* nuclei are $e_p=1.3$ and $e_n=0.5$

Neutron-rich nuclei have weaker core polarisation (quench of neutron effective charge)
Significant isotopic dependence especially for neutrons (compared with Bohr-Mottelson Eq. 6-386b with Sagawa parametrisation of PRC 70, 054316, 200 e_{\pi}^{eff} = e + a_{\overline{A}}^{Z} + b_{\overline{A}}^{N-Z} - \left(c + d_{\overline{A}}^{Z} \frac{N-Z}{A}\right)) $e_{\nu}^{eff} = a_{\overline{A}}^{Z} + b_{\overline{A}}^{N-Z} + \left(c + d_{\overline{A}}^{Z} \frac{N-Z}{A}\right)$

Single-particle state dependence also significant (yet to be studied and understood...)

Results for Oxygen isotopes

Neutron-rich nuclei have weaker core polarisation (quench of neutron effective charge)
Significant isotopic dependence especially for neutrons (compared with Bohr-Mottelson Eq. 6-386b with Sagawa parametrisation of PRC 70, 054316, 200 e_{\pi}^{eff} = e + a_{\overline{A}}^{Z} + b_{\overline{A}}^{N-Z} - \left(c + d_{\overline{A}}^{Z} \frac{N-Z}{A}\right)) $e_{\nu}^{eff} = a_{\overline{A}}^{Z} + b_{\overline{A}}^{N-Z} + \left(c + d_{\overline{A}}^{Z} \frac{N-Z}{A}\right)$

Single-particle state dependence also significant (yet to be studied and understood...)

Conclusions and Perspectives

- ADC(n) as a non-perturbative method for many-body physics
- Set of effective charges for Oxygen and Nickel isotopes
 calculated from realistic potential (ready to be used as input in Shell
 Model calculations)
- Expected isospin-dependence of neutron effective charges is found
- Dipole response and polarisability calculated from first principles
- Continuum to be included, but dipole polarisability seems quite insensitive to it
- Correlations: comparison with CC-LIT and extension of ADC to polarization propagator