

Vincenzo Minissale Università di Catania – INFN LNS

Light and heavy hadron production in heavy-ion collisions from a coalescence model

In collaboration with: S. Plumari, V. Greco, F. Scardina, S.K. Das

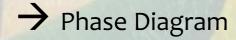
TNPI2017 XVI Conference on Theoretical Nuclear Physics in Italy/

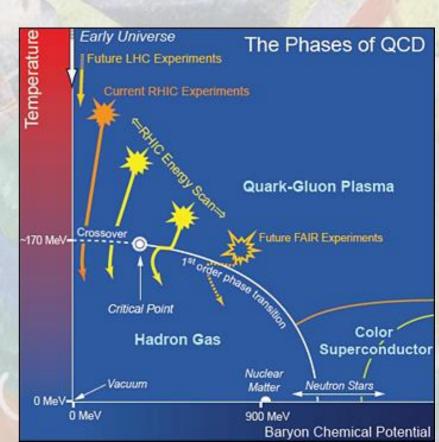
Outline

Hadronization:

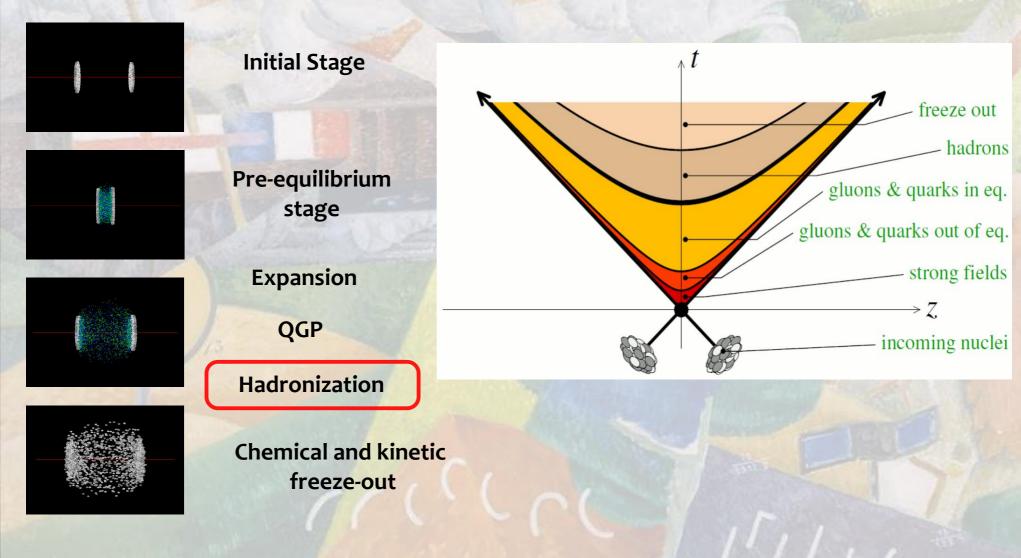
- Fragmentation
- Coalescence model
- \circ p,π, k, Λ spectra and baryon/meson ratio

Heavy Quarks: Λ_c and D mesons spectra for RHIC and LHC energies Λ_c/D^o ratio


Conclusions


Quark Gluon Plasma

 Nuclear matter: Critical Energy and Temperature in the transition between confined and deconfined phase


$$\varepsilon_c \approx 0.7 \, GeV / fm^3$$

 $T_c \approx 165 \, MeV \approx 10^{12} \, K$

- If T>T_c colour charges are deconfined in a Quark Gluon Plasma (QGP)
- Different value of T and ρ for deconfinement

Ultra-relativistic heavy ion collisions

Hadronization

b

c hadrons

 $\frac{dN_h}{d^2p_h} = \sum_f \int dz \frac{dN_f}{d^2p_f} D_{f \to h}(z)$

Fragmentation function

We use the AKK fragmentation function

S. Albino, B.A. Kniehl, G. Kramer, NPB 803 (2008)

Hadronization

 $\frac{dN_h}{d^2p_h} = \sum_f \int dz \frac{dN_f}{d^2p_f} D_{f \to h}(z)$

Fragmentation function

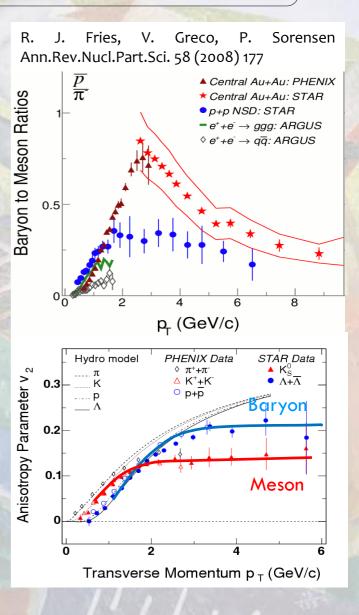
 $\frac{D_{c \to p}(z)}{D_{c \to \pi}(z)}$

< 0.25

We use the AKK fragmentation function

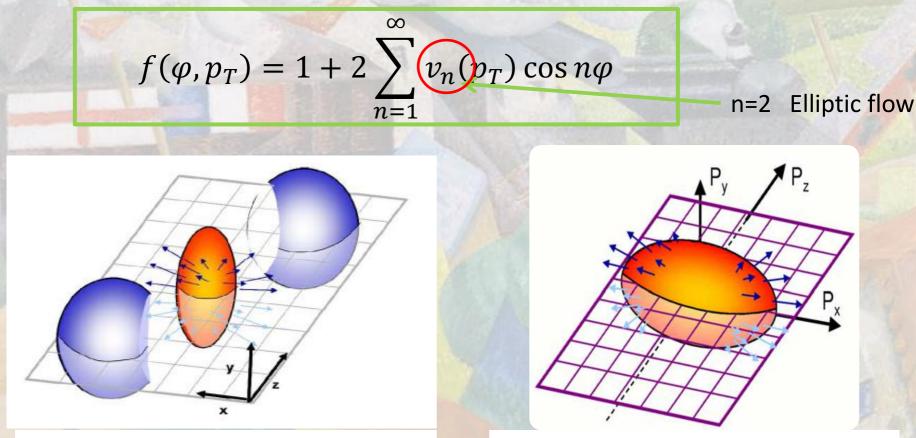
S. Albino, B.A. Kniehl, G. Kramer, NPB 803 (2008)

Proton to pion ratio Enhancement:


In vacuum from fragmentation functions the ratio is small

Elliptic flow splitting:

For p_T>2 GeV Both hydro and fragmentation predicts similar v, for pions and protons


Another hadronization mechanism is by coalescence

V. Greco, C.M. Ko, P. Levai PRL 90, 202302 (2003). V. Greco, C.M. Ko, P. Levai PRC 68, 034904 (2003). R.J. Fries, B. Muller, C. Nonaka, S.A. Bass PRL 90, 202303 (2003). R.J. Fries, B. Muller, C. Nonaka, S.A. Bass PRC 68,044902 (2003).

Elliptic Flow

Fourier expansion of the azimuthal distribution

Coordinate space: initial anisotropy

Momentum space: final anisotropy Free streaming v₂=0

Hadronization

 $\frac{dN_h}{d^2p_h} = \sum_f \int dz \frac{dN_f}{d^2p_f} D_{f \to h}(z)$

Fragmentation function

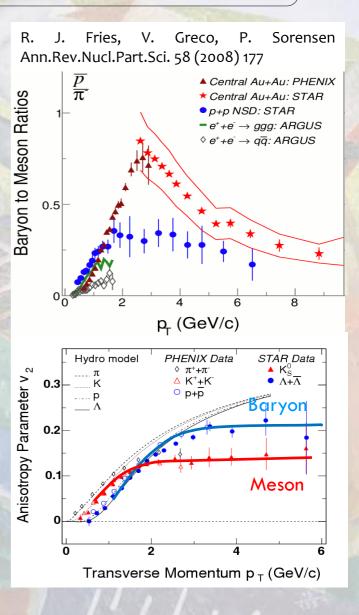
 $\frac{D_{c \to p}(z)}{D_{c \to \pi}(z)}$

< 0.25

We use the AKK fragmentation function

S. Albino, B.A. Kniehl, G. Kramer, NPB 803 (2008)

Proton to pion ratio Enhancement:


In vacuum from fragmentation functions the ratio is small

Elliptic flow splitting:

For p_T>2 GeV Both hydro and fragmentation predicts similar v, for pions and protons

Another hadronization mechanism is by coalescence

V. Greco, C.M. Ko, P. Levai PRL 90, 202302 (2003). V. Greco, C.M. Ko, P. Levai PRC 68, 034904 (2003). R.J. Fries, B. Muller, C. Nonaka, S.A. Bass PRL 90, 202303 (2003). R.J. Fries, B. Muller, C. Nonaka, S.A. Bass PRC 68,044902 (2003).

Hadronization

 $\frac{dN_h}{d^2p_h} = \sum_f \int dz \frac{dN_f}{d^2p_f} D_{f \to h}(z)$

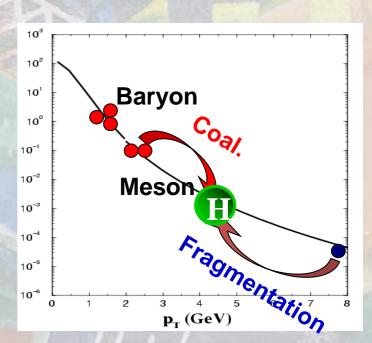
Fragmentation function

We use the AKK fragmentation function

S. Albino, B.A. Kniehl, G. Kramer, NPB 803 (2008)

Proton to pion ratio Enhancement:

In vacuum from fragmentation functions the ratio is small


Elliptic flow splitting:

For $p_T>2$ GeV Both hydro and fragmentation predicts similar v_2 for pions and protons

Another hadronization mechanism is by coalescence

V. Greco, C.M. Ko, P. Levai PRL 90, 202302 (2003).
V. Greco, C.M. Ko, P. Levai PRC 68, 034904 (2003).
R.J. Fries, B. Muller, C. Nonaka, S.A. Bass PRL 90, 202303 (2003).
R.J. Fries, B. Muller, C. Nonaka, S.A. Bass PRC 68,044902 (2003).

$$\frac{D_{c \to p}(z)}{D_{c \to \pi}(z)} < 0.25$$

Hadronization: Coalescence

Parton Distribution

function

Statistical factor colour-spin-isospin

$$\frac{dN_{Hadron}}{d^2 p_T} = g_H \int \prod_{i=1}^n p_i \cdot d\sigma_i \frac{d^3 p_i}{(2\pi)^3} f_q(x_i, p_i) f_W(x_1, \dots, x_n; p_1, \dots, p_n) \delta\left(p_T - \sum_i p_{iT}\right)$$

Constraints from experiments

Thermal Distribution (p_T < 2 GeV)</p>

$$\frac{dN_q}{d^2 r_T d^2 p_T} = \frac{g_q \tau m_T}{(2\pi)^3} \exp\left(-\frac{\gamma_T (m_T - p_T \cdot \beta_T)}{T}\right)$$

- Collective flow $\beta_T = \beta_0 \frac{7}{R}$
- Minijet Distribution (p_T> 2 GeV)
- Fireball radius+radial flow constraints dN_{ch}/dy and dE_T/dy

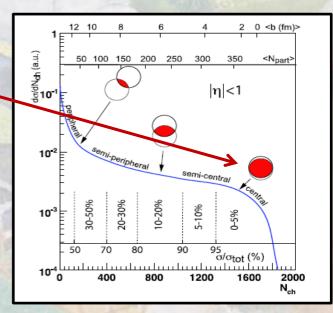
$$f_{Meson} = \frac{9\pi}{2} \Theta(\sigma_x^2 - x_{r1}^2) \Theta(\sigma_p^2 - p_{r1}^2 + \Delta m_{12}^2)$$

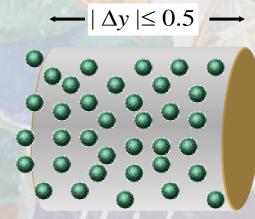
Hadron Wigner

function

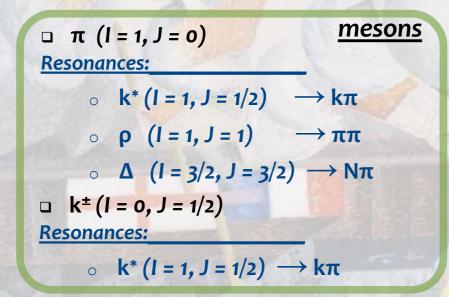
$$f_{Baryon} = \frac{9\pi}{2} \Theta \left(\sigma_x^2 - \frac{1}{2} x_{r_1}^2 \right) \Theta \left(\sigma_p^2 - p_{r_1}^2 + \Delta m_{12}^2 \right)$$
$$\times \frac{9\pi}{2} \Theta (\sigma_x^2 - x_{r_2}^2) \Theta \left(\sigma_p^2 - p_{r_2}^2 + \Delta m_{123}^2 \right)$$

 $\sigma_x = 1/\sigma_p$ Only one free parameter in f_W


V. Greco, C.M. Ko, P. Levai PRC 68, 034904 (2003) V. Minissale, F. Scardina, V. Greco PRC 92, 054904 (2015)


Fireball

Central Collision 0-10% impact parameter b=2.5 fm


From Experiment RHIC \rightarrow LHC $dE_T/dy \sim 740 \text{ GeV} \rightarrow 2100 \text{ GeV}$ $dN_{ch}/dy \approx 670 \rightarrow 1600$ $T_c \sim 160 \text{ MeV}$

Lifetime and Volume implied $\tau \sim 4.5 \text{ fm/c} \rightarrow 8 \text{ fm/c}$ $\beta_0 = 0.37 \rightarrow 0,63$ $V \sim 1100 \text{ fm}^3 \rightarrow 2500 \text{ fm}^3$ In agreement with HBT

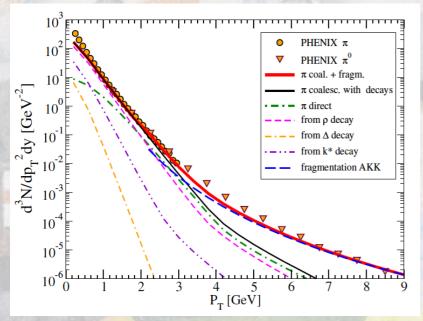
Resonance decay

p (l = 1/2, J = 1/2)
<u>Resonances:</u>

$$^{\circ}$$
 Δ (I = 3/2, J = 3/2) → Nπ
□ Λ (1116) (I = 0, J = 1/2)
Resonances:

- \circ Σ^o(1193) (I = 1, J = 1/2) → Λγ
- \circ Λ (1405) (I = 0, J = 1/2) → Σπ
- $\Sigma^{\circ}(1385)$ (I = 1, J = 3/2) → Λπ with B. R. = 88%

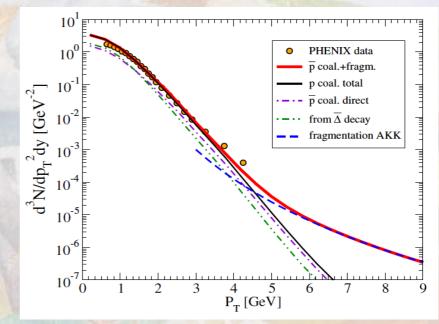
 $\rightarrow \Sigma \pi$ with B. R. = 11,7%

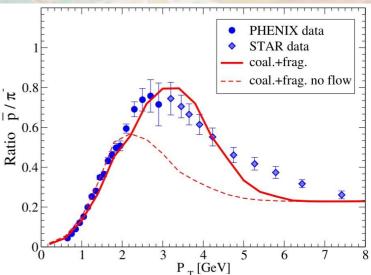

Main hadronic channels including the ground states and the first excited states have been taken into account

Statistical factor

baryons

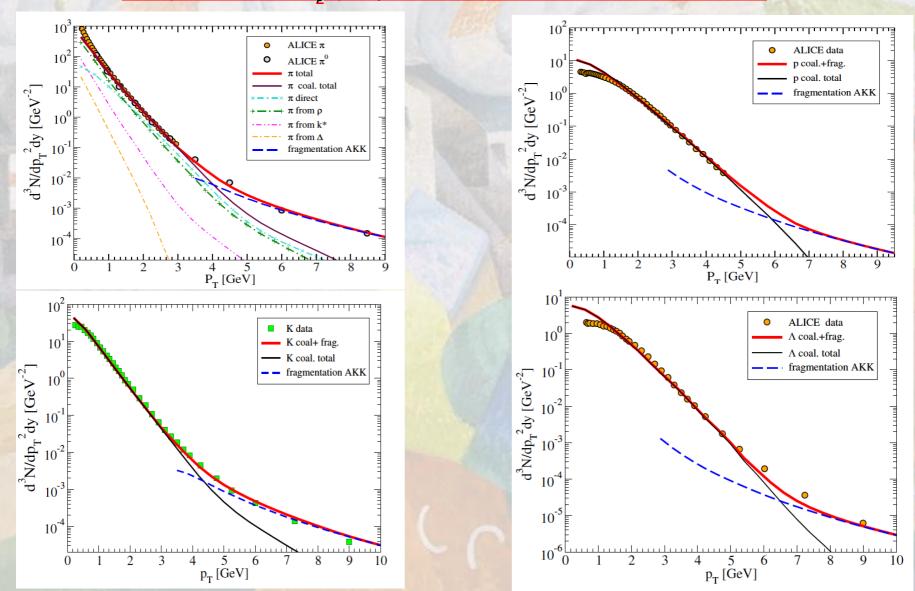
$$\frac{[(2J+1)(2I+1)]_{H*}}{[(2J+1)(2I+1)]_{H}} \left(\frac{m_{H*}}{m_{H}}\right)^{3/2} e^{-(E_{H*}-E_{H})/T}$$

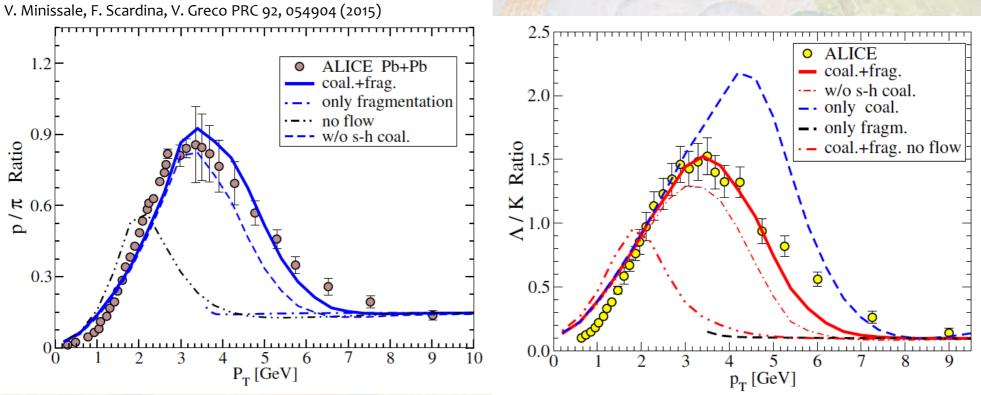

RHIC: spectra and baryon/meson



Resonances improve the description at low p_T

- Height and p_T position of the peak well described
- □ Lack of fragmentation at $p_T \approx 5$ GeV (seen in pp with AKK)
- Without radial flow ... (similar to pp collisions but not exactly)


V. Minissale, F. Scardina, V. Greco PRC 92, 054904 (2015)


LHC: spectra π , p, k, Λ

wave function widths σ_p of baryon and mesons are the same at RHIC and LHC!

LHC: baryon/meson

wave function widths σ_p of baryon and mesons are the same at RHIC and LHC!

 \checkmark Height and p_T position of the peak well described.

✓ Soft-minijet coalesc. contribution around and above the peak

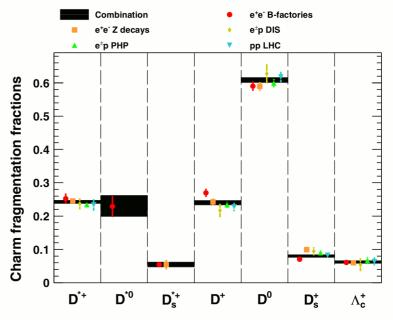
✓ Lack of fragmentation at $p_T \approx 6$ GeV (seen also in pp with AKK)

✓ in-medium fragmentation as a quark recombination of shower partons taking into account also the gluon splitting into quark pairs that recombine

➤ Rainer J. Fries, Kyongchol Han, and Che Ming Ko, Nucl. Phys. A956, 601 (2016).

Heavy flavour Hadronization: Fragmentation

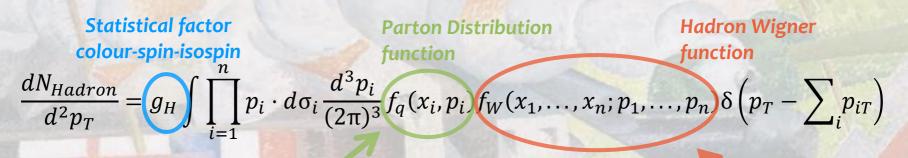
$$\frac{dN_h}{d^2p_h} = \sum_f \int dz \frac{dN_f}{d^2p_f} D_{f \to h}(z)$$


The distribution function is evaluated at the Fixed-Order plus Next-to-Leading-Log (FONLL) M. Cacciari, P. Nason, R. Vogt, PRL 95 (2005) 122001

We use the Peterson fragmentation function

C. Peterson, D. Schalatter, I. Schmitt, P.M. Zerwas PRD 27 (1983) 105

$$D_{f \to h}(z) \propto \frac{1}{z \left[1 - \frac{1}{z} - \frac{\epsilon}{1 - z}\right]^2}$$


The parameter ε for D meson hadronization fixed by pp collisions data. For baryons we fix it in accordance with e⁺+e⁻ collisions as done in <u>S.K. Das et al</u>, PRD94 (2016) no.11, 114039. Measurement in $e^{\pm}p$, pp and $e^{+}e^{-}$ are in agreement within uncertainties: fragmentation at most independent of the specific production process

M. Lisovyi, et al. EPJ C76 (2016) no.7, 397

3 and 2 times smaller respect to the one expected from thermal models A. Andronic et al., Phys. Lett. **B**571, 36 (2003) I. Kuznetsova, J. Rafelski, EPJ C51, 113 (2007)

Hadronization: Coalescence

charm distribution function at midrapidity from parton simulations solving Boltzmann transport eq. that give good description of both R_{AA} and $v_2(p_T)$ from RHIC to LHC energies.

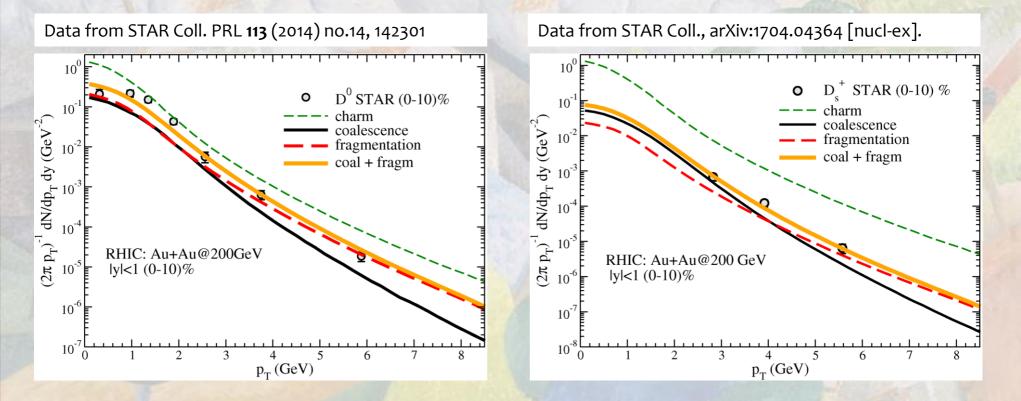
•The width parameters σ in $f_w(...)$ fixed by the root-mean-square charge radius as predicted by quark models

C.-W. Hwang, EPJ C23, 585 (2002). C. Albertus et al., NPA 740, 333 (2004)

 $\begin{aligned} \langle r^2 \rangle_{D^+} &= 0.184 fm^2; \langle r^2 \rangle_{D_s^+} = 0.124 fm^2; \\ \langle r^2 \rangle_{\Lambda_c^+} &= 0.152 fm^2 \end{aligned}$

•Normalization in $f_W(...)$ fixed by requiring that $P_{coal}=1$ for p=0

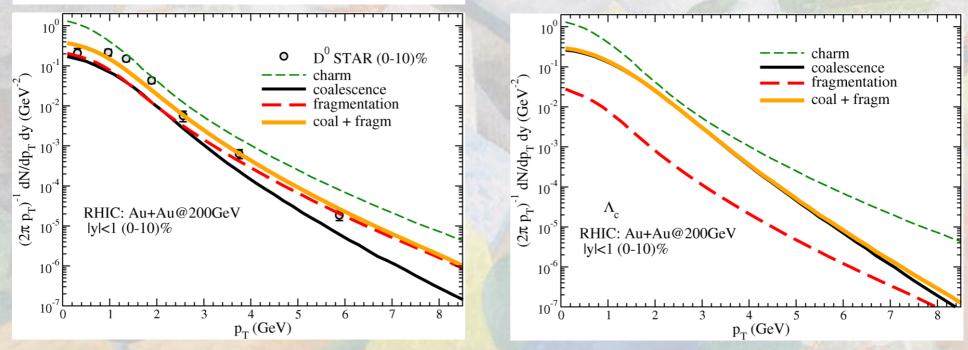
Heavy flavour: Resonance decay


In our calculations we take into account main hadronic channels, including the ground states and the first excited states for D and Λ_c

MESONS	
$D^{+}(l=1/2, J=0)$ $D^{0}(l=1/2, J=0)$ $D_{s}^{+}(l=0, J=0)$	<u>[(2] +</u> [(2] -
<u>Resonances</u>	
□ $\mathbf{D^{*+}}(I=1/2,J=1) \rightarrow \mathbf{D^{o}} \pi^{+}$ B.R. 68% $\rightarrow \mathbf{D^{+} X}$ B.R. 32%	<u></u> ΒΑ □Λ_c^+
$\Box D^{*o} (l=1/2, J=1) \rightarrow D^{o} \pi^{o} B.R. 62\%$ $\rightarrow D^{o} \gamma B.R. 38\%$	Reson
$\Box \ \mathbf{D}_{s}^{*+}(l=0,J=1) \rightarrow \mathbf{D}_{s}^{+} \mathbf{X} B.R. \ 100\%$	 Δ Λ_c+(Δ Λ_c+(Σ_c+(
□ D_{so}^{*+} (<i>l</i> =0, <i>J</i> =0) → $D_{s}^{+}X$ B.R. 100%	$\Box \Sigma_c^+$

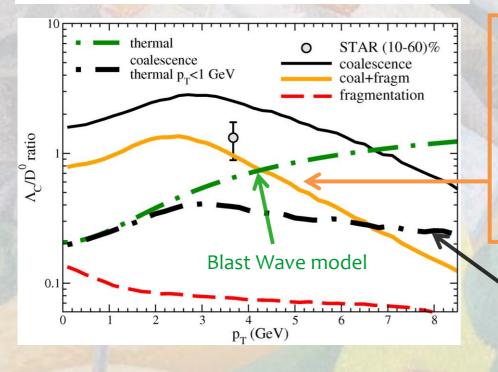
Statistical factor		
$\frac{[(2J+1)(2I+1)]_{H*}}{[(2J+1)(2I+1)]_{H}} \left(\frac{m_{H*}}{m_{H}}\right)^{3/2} e^{-(E_{H*}-E_{H})/T}$		
BARYONS		
$\Box \ \Lambda_{c}^{+} (I=0, J=1/2)$		
Resonances		

□ $\Lambda_c^+(2595)$ (l=0, J=1/2) $\rightarrow \Lambda_c^+$ B.R. 100% □ $\Lambda_c^+(2625)$ (l=0, J=3/2) $\rightarrow \Lambda_c^+$ B.R. 100% □ $\Sigma_c^+(2455)$ (l=1, J=1/2) $\rightarrow \Lambda_c^+\pi$ B.R. 100% □ $\Sigma_c^+(2520)$ (l=1, J=3/2) $\rightarrow \Lambda_c^+\pi$ B.R. 100%


RHIC: results

- For D^o coalescence and fragmentation comparable at 2 GeV
- fragmentation fraction for D⁺_s are small and less than about 8% of produced total heavy hadrons

RHIC: results


Data from STAR Coll. PRL 113 (2014) no.14, 142301

- For D^o coalescence and fragmentation comparable at 2 GeV
- fragmentation fraction for D⁺_s are small and less than about 8% of produced total heavy hadrons
- Λ_c⁺ fragmentation is even more smaller, coalescence gives the dominant contribution

RHIC: Baryon/meson

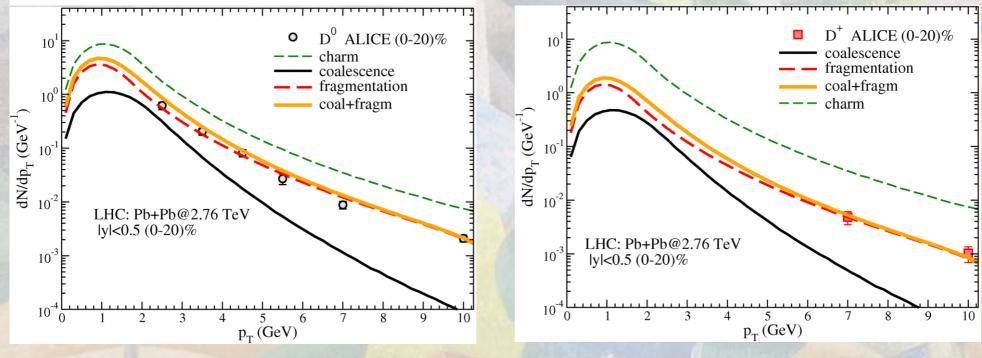
Data from STAR Coll., arXiv:1704.04364 [nucl-ex].

•Compared to light baryon/meson ratio the Λ_c/D° ratio has a larger width (flatter)

•Similar to the one predicted in Y. Oh, C.M. Ko, S.H. Lee, S. Yasui PRC 79,044905 (2009)

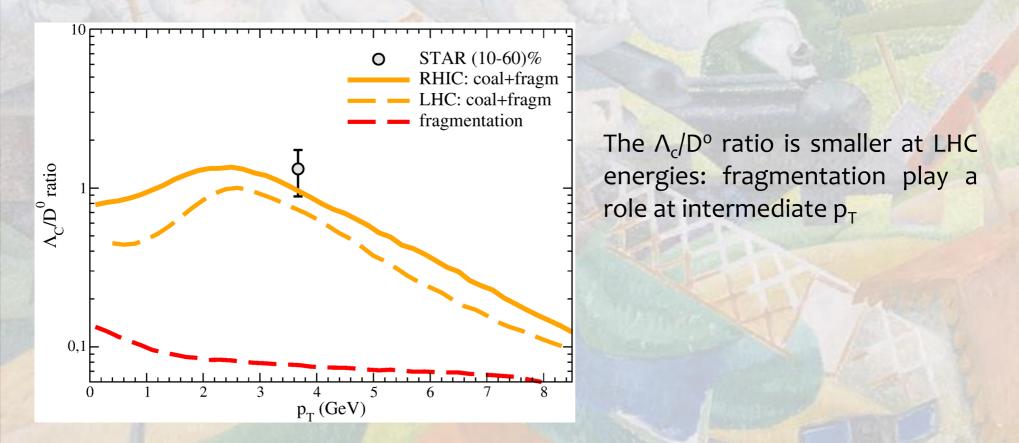
Coal with wave function width σ_p of D^o and Λ_c changed to have Λ_c/D^o =thermal ratio at $p_T \rightarrow 0$

Some more calculations on Λ_c/D can be found in:


S. Ghosh, S. K. Das, V. Greco, S. Sarkar, J. Alam, PRD90 (2014) no.5, 054018.

S. K. Das, J. M. Torres-Rincon, L. Tolos, V. Minissale, F. Scardina, V. Greco, PRD94 (2016) no.11,114039.

LHC: results


wave function widths σ_p of baryon and mesons are the same at RHIC and LHC!

Data from ALICE Coll. JHEP 1209 (2012) 112

LHC: results

wave function widths σ_p of baryon and mesons are the same at RHIC and LHC!

Conclusions

Sood agreement with RHIC and LHC data:

- \circ p, π , k, Λ spectra
- baryon/meson ratio
- Heavy Quarks:
 - Good agreement with experimental data of D°, D+, D_s+ mesons spectra
 - Λ_c production at intermediate p_T dominant role of coalescence mechanism
 - Λ_c/D^o ~1.5 for p_T ~3 GeV with Coal.+fragm. model

Extension to study Λ_b and B^o spectra and their ratio

Backup Slides

Elliptic Flow – Quark Number Scaling

Fourier expansion of the azimuthal distribution

$$f(\varphi, p_T) = 1 + 2 \sum_{n=1}^{\infty} v_n(p_T) \cos n\varphi$$
 n=2 Elliptic flow

momentum anisotropy in the transverse plane

Assumption

coalescence brings to

$$v_{2,M}(p_T) \approx 2v_{2,q}(p_T/2)$$

 $v_{2,B}(p_T) \approx 3v_{2,q}(p_T/3)$

Partonic elliptic flow

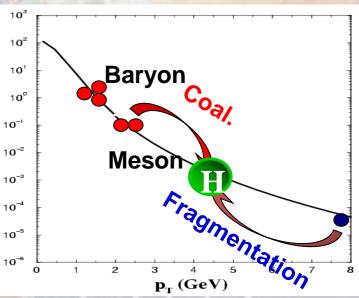
Hadronic elliptic flow

- one dimensional
- Dirac delta for Wigner function
- isotropic radial flow
- not including
 resonance effect

Baryon to meson ratio

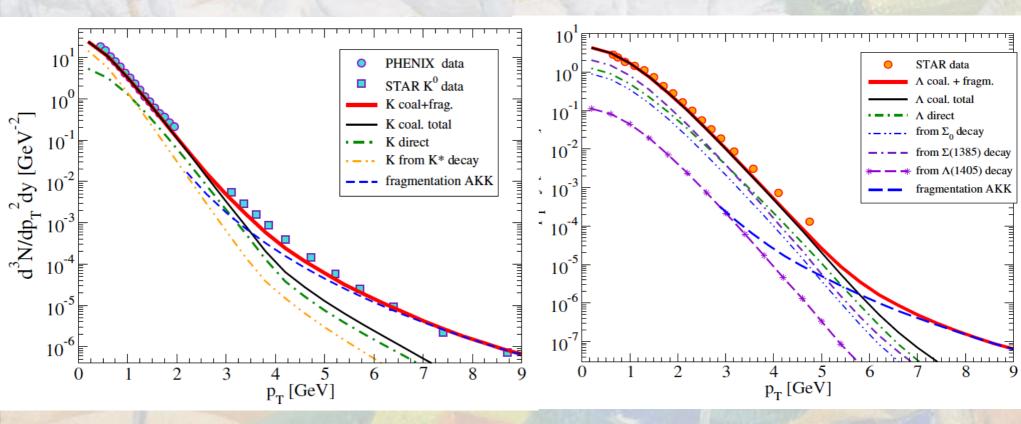
With a partonic thermal distribution

$$f_{th} \approx A e^{-p/T}$$

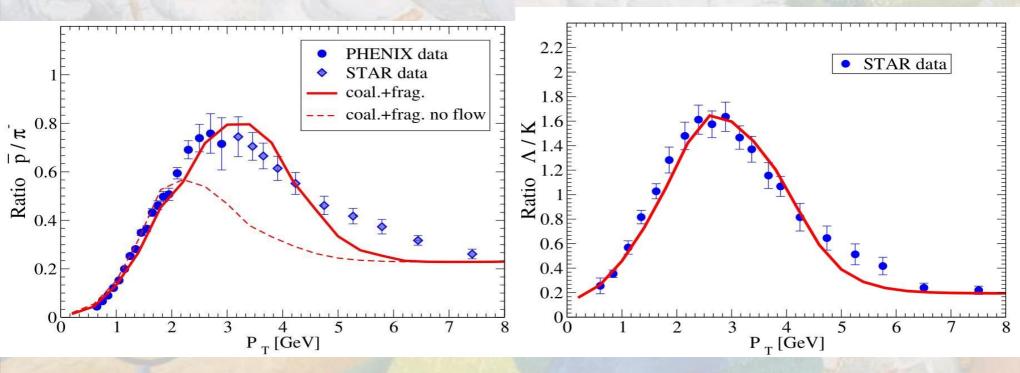

for a two-quark hadron with coalescence

$$e^{-p_1/T}e^{-p_2/T} \Rightarrow e^{-xP/T}e^{-(1-x)P/T} = e^{-P/T}$$

n-quark case


$$\prod_{n} e^{-p_{n}/T} \to e^{-n\frac{P}{n}\frac{1}{T}} \propto e^{-\frac{P}{T}}$$

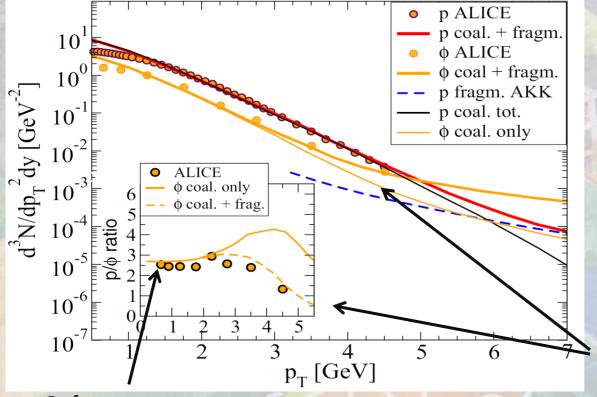
Baryon/Meson Ratio = 1


final Hadron momentum

Kaon and Lambda at RHIC

- ✤ For Kaon some lack of yield at $p_T \simeq 4GeV$ where the fragmentation is starting to be dominant
- For A there are several hadronic states that have a significant contribution

Baryon to meson ratio at RHIC

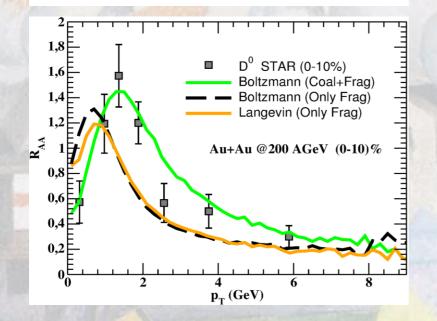


- \checkmark coalescence naturally predict a baryon/meson enhancement in the region p_{τ}
 - $\simeq 2-4GeV$ with respect to pp collisions
- ✓ Lack of baryon yield in the region $p_T \simeq 5-7$ GeV

LHC: φ meson

Discussed question for long time: φ meson behaviour \rightarrow meson-like or mass effect

Coalescence predicts a similar slope for φ and p.

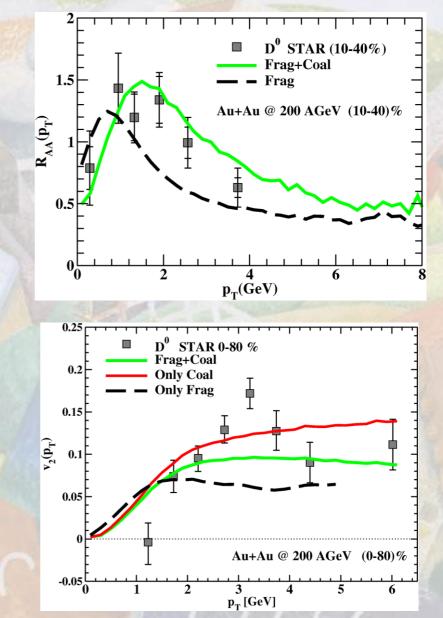

Proton is a combination of 3 quarks flowing each with a mass of about 330 *MeV* and φ is composed by 2 quarks flowing each with a mass of about 550 *MeV*

Missing fragmentation Contribution usually half of the yield at p_T≈4 GeV

Soft part same slope φ and p

V. Minissale, F. Scardina, V. Greco PRC 92, 054904 (2015)

Data from STAR Coll., PRL 113, 142301 (2014)


In 0-10% coalescence implies an increase of the R_{AA} for $p_T > 1$ GeV.

•The impact of coalescence decreases with p_T and fragmentation is dominant at high p_T .

In 0-80% the $v_2(p_T)$ due to only coalescence increase a factor 2 compared to the $v_2(p_T)$ charm.

In 0-80% coalescence+fragmentation give a good description of exp. data.

Data from STAR Coll. PRL 118, 212301 (2017)

