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Outline

I what is the subleading 3N contact interaction

I why (motivation)

I when (at which order)

I how (numerics)

Recap of the present status

I proof of principle using the AV18

A few formal developments:

I “relativistic counting” in ChEFT

I large-Nc limit
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What it is
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Motivation
I ChEFT is formally an extremely predictive framework for 3NF

only two (only one truly three-nucleon) LECs appear up to N3LO

I is the convergence fast enough to describe the data?
I well-known discrepancies exist between theory and data (cfr. Ay

puzzle) [LENPIC, EPJA(2014)]

I Ay , a problem at low energy −→ effectively pointlike interactions

I notice that p−3He Ay is almost solved by
chiral 3NF at N2LO (or by AV18+IL7)
[Viviani et al. PRL111 (2013) 172302]

I For Nd , possibly affected by large
uncertainty [LENPIC, PRC93 (2016) 044002]
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Failure of ChEFT series?

I ChEFT is not predictive enough to provide a realistic 3NF at N2LO,
with just 2 LECs

I next genuine 3N LECs appear at N4LO: 10 independent LECs

+

I consistency would require to consider them together with other
pion-exchange 3NF at N4LO (and with a N4LO NN potential), or
within π/EFT

I nevertheless, contact LECs could have a prominent role, as in the
case of electroweak nuclear observables

I why?
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The unbearable heavyness of deuteron

I chiral symmetry has little to say on the “unitary limit” a→∞

T ∼ p2

Λ
∼ 20 MeV, V ∼ M3

π

4πF 2
π

∼ p3

ΛFπ
∼ p2

Λ
∼ 20 MeV

I emergence of a new light scale ε ∼ 1/a is unnatural

ε ∼ T + V ∼ 2 MeV� 20 MeV

I what are the consequences for the size of the LECs?
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Näıve dimensional analysis

L =
∑
klm

cklmA

(
N̄N

B

)k (
∂µ,Mπ

C

)l ( π
D

)m
, cklm ∼ 1

The scale factors are uniquely fixed by the lowest order Lagrangian

L = N̄(i /∂ −mN)N +
1

2
∂µπ · ∂µπ −

1

2
M2
ππ

2 − gA
2Fπ

N̄γµγ5∂µπ · τN + ...

to be

L =
∑
klm

cklmΛ2F 2
π

(
N̄N

F 2
πΛ

)k (
∂µ,Mπ

Λ

)l ( π

Fπ

)m

if a new scale is identified as ε, it must come from a further interaction

∆L = −D0

2
(N̄N)2, D0 ∼

4πa

mN
∼ 4π

mNε
∼ 1

Fπε

=⇒ L =
∑
klm

cklmΛ2Fπε

(
N̄N

FπΛε

)k (
∂µ,Mπ

Λ

)l ( π

Fπ

)m
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Unitary limit in /πEFT

I a 3-body parameter is needed at LO to set a scale for the theory
[Bedaque, Hammer, van Kolck, PRL 82 (1999) 463]

I the inclusion of OPEP doesn’t change the picture

[Kievsky et al., PRC 95 (2017) 024001]
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Relative promotion

I if the leading contact TNI gets promoted to LO, then also the
subleading terms do the same to NLO

=⇒ classify all possible 3N contact operators involving 2 derivatives,
respecting all discrete symmetries
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Minimal subleading contact TNI

I in [LG et al. PRC78 (2011) 014001] we classified all possible 3N contact
terms with two derivatives

I they are strongly constrained by the Pauli principle and Poincaré
invariance: 10 operators

I a local 3N potential

V =
∑
i 6=j 6=k

(E1 + E2τi · τj + E3σi · σj + E4τi · τjσi · σj )

[
Z ′′0 (rij ) + 2

Z ′0(rij )

rij

]
Z0(rik )

+(E5 + E6τi · τj )Sij
[
Z ′′0 (rij )−

Z ′0(rij )

rij

]
Z0(rik )

+(E7 + E8τi · τk )(L · S)ij
Z ′0(rij )

rij
Z0(rik )

+(E9 + E10τj · τk )σj · r̂ijσk · r̂ikZ ′0(rij )Z
′
0(rik )

Spin-orbit terms suitable for the Ay puzzle [Kievsky PRC60 (1999) 034001]

L. Girlanda (Univ. Salento) Subleading Contact TNI 10



Minimal subleading contact TNI

I in [LG et al. PRC78 (2011) 014001] we classified all possible 3N contact
terms with two derivatives

I they are strongly constrained by the Pauli principle and Poincaré
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Isospin projection

I N − d scattering only gives access to the T = 1/2 component of 3NF

I we can project each operator on isospin channels

oi = P(1)(oi ) + P(3)(oi ) ≡ oiP1/2 + oiP3/2

P1/2 =
1

2
− 1

6
(τ1 · τ2 + τ2 · τ3 + τ1 · τ3), P1/2 + P3/2 = 1

I the projected operators can again be expressed in the initial
10-operator basis, using the Fierz identities

I at the end we find 9 independent operators among the 10 P(1)(oi )

I there is a single combination which is purely T = 3/2

o3/2 = 3o1 − 2o2 + 3o5 + o6 + 36o7 + 12o8 + 9o9 + 3o10

(up to cutoff effects ...)

I we can exclude 1 LEC from the fits (e.g. E8) and absorb its effect in
the remaining LECS
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Numerical implementation
The N-d scattering wave function is written as

ΨLSJJz = ΨC + ΨA

with ΨC expanded in the HH basis

|ΨC 〉 =
∑
µ

cµ|Φµ〉

and ΨA describing the asymptotic relative motion

ΨA ∼ ΩR
LS(k , r) +

∑
L′S ′

RLS ,L′S ′(k)ΩI
L′S ′(k , r)

with the unknown cµ and R-matrix elements (related to the S-matrix) to
be determined so that the Kohn functional is stationary

[RLS ,L′S ′ ] = RLS ,L′S ′ − 〈ΨC + ΨA|H − E |ΨC + ΨA〉

L. Girlanda (Univ. Salento) Subleading Contact TNI 12



imposing the Kohn functional to be stationary leads to a linear system∑
L′′S ′′

RLS ,L′′S ′′XL′S ′,L′′S ′′ = YLS ,L′S ′

with the matrices

XLS,L′S′ = 〈ΩI
LS + ΨI

C |H − E |ΩI
L′S′〉 YLS,L′S′ = −〈ΩR

LS + ΨR
C |H − E |ΩI

L′S′〉

and the Ψ
R/I
C solutions of∑

µ′

cµ〈Φµ|H − E |Φµ′〉 = −DR/I
LS (µ)

with
D

R/I
LS (µ) = 〈Φµ|H − E |ΩR/I

LS 〉

11 set of matrices are calculated once for all, and only linear systems are
solved for each choice of Ei ’s
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Results with AV18
we have 11 LECs, E = cE

F 4
πΛ

(LO) and Ei=1,...,10 =
eNN
i

F 4
πΛ3 (NLO)

to be fitted to B(3H), 2and , 4and and the p-d phaseshifts for different
values of Λ

I χ2 from 2-parameter fit
with (cE , ei )

I strong sensitivity of Ay

and iT11 to E7, E8 and E9

I all fits are performed with
POUNDerS algorithm
[T. Munson et al. @ ANL]
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3-parameter fits

I use cE and E3 to account for B(3H) and 2and

I use another one of the Ei to fit scattering observables at 3 MeV
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I the χ2 decreases as the number of parameters increases until 7
(correlations?) The best results show χ2/d.o.f. = 1.5− 1.6
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next step: use with the Norfolk potentials
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M. Piarulli et al. arXiv:1707.02883
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Subleading contact terms from “relativistic counting”

“relativistic corrections are in
the data”
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Relativistic counting applied to contact TNI

There are 25 C−, P− and T− relativistic invariant operators
o1,2 = (ψ̄ψ)1(ψ̄ψ)2(ψ̄ψ)3[1, τ1 · τ2]

o3,4,5 = (ψ̄ψ)1(ψ̄γ5ψ)2(ψ̄γ5ψ)3[1, τ2 · τ3, τ1 · (τ2 + τ3)]
o6,7,8 = (ψ̄ψ)1(ψ̄γµψ)2(ψ̄γµψ)3[1, τ2 · τ3, τ1 · (τ2 + τ3)]

o9,10,11 = (ψ̄ψ)1(ψ̄γµγ5ψ)2(ψ̄γµγ5ψ)3[1, τ2 · τ3, τ1 · (τ2 + τ3)]
o12,13,14 = (ψ̄ψ)1(ψ̄σµνψ)2(ψ̄σµνψ)3[1, τ2 · τ3, τ1 · (τ2 + τ3)]

o15 = (ψ̄γ5ψ)1(ψ̄γµψ)2(ψ̄γµγ5ψ)3[τ1 · τ2 × τ3]
o16 = (ψ̄σµνψ)1(ψ̄γµψ)2(ψ̄γνψ)3[τ1 · τ2 × τ3]
o17 = (ψ̄σµνψ)1(ψ̄γµγ5ψ)2(ψ̄γνγ5ψ)3[τ1 · τ2 × τ3]
o18 = (ψ̄σµνψ)1(ψ̄σµαψ)2(ψ̄σαν ψ)3[τ1 · τ2 × τ3]

o19,20,21 = (ψ̄γ5ψ)1(ψ̄σµνψ)2(ψ̄σµνγ5ψ)3[1, τ2 · τ3, τ1 · (τ2 + τ3)]
o22,23,24,25 = (ψ̄γµψ)1(ψ̄γνγ5ψ)2(ψ̄σµνγ5ψ)3[1, τ2 · τ3, τ1 · (τ2 + τ3), τ1 · (τ2 − τ3)]

After deriving all sort of Fierz identities like

(σµα)[σ ν
α ]− µ↔ ν = i(σµν ][)− i(][σµν) + i(σµνγ5][γ5)− i(γ5][σµνγ5)

using the 3×25 linear relations we are left with 5 operators

o1, o3, o6, o9, o12

=⇒ test the relativistic counting by including only 5 combinations of the
10 LECs
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Insight from the large-Nc limit

I initially proposed by ’t Hooft in 1974, to define a weak coupling limit
of QCD, g2Nc =const giving rise to substantial simplifications over
QCD, but with similar physical properties

I a topological expansion emerges in which only planar diagrams
survive, and no dynamical quark loops

I extended to baryons by Witten in 1979

I a spin-flavour symmetry appears, in which e.g. N and ∆ belong to
the same SU(4) multiplet

[Kaplan, Savage, Dashen, Jenkins, Manohar,...]

I as a result, one finds e.g.

1 ∼ σ1 · σ2τ1 · τ2 ∼ O(Nc)

while
σ1 · σ2 ∼ τ1 · τ2 ∼ O(1/Nc)
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Large-Nc and Pauli principle
however, nowhere in the argument we have used that the baryons are
identical bosons or fermions!

I in an effective theory one obtains that amplitude from

L = c1N
†NN†N + c2N

†σiNN
†σiN + c3N

†τ aNN†τ aN + c4N
†σiτ

aNN†σiτ
aN ≡

∑
i

cioi

I but from the identicality of N, o3 = −o2 − 2o1, o4 = −3o1 which do
not conform with the large-Nc scaling

I one way to implement the Pauli principle is to start with a redundant
set of operators, and declare, by tree-level matching, c1 ∼ c4 ∼ Nc ,
c2 ∼ c3 ∼ 1/Nc

I observable quantities will depend on two combinations of LECs,

L = (c1 − 2c3 − 3c4)N†NN†N + (c2 − c3)N†σiNN
†σiN

reobtaining the well-established fact that CS >> CT
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3NF and large-Nc

the generalization to 3 nucleon forces has been given recently
[D.R.Phillips and C.Schat, PRC88 (2013) 034002]

at the leading order one finds

L ≡ −
6∑
i

EiOi = −E1N
†NN†NN†N − E2N

†σiNN†σiNN†N

−E3N
†τ aNN†τ aNN†N − E4N

†σiτ aNN†σiτ aNN†N

−E5N
†σiNN†σiτ aNN†τ aN − E6ε

ijkεabcN†σiτ aNN†σjτbNN†σkτ cN

I only E1, E4 and E6 are O(Nc)

I but since the 6 operators are all proportional, the LEC associated to
any choice will be ∼ O(Nc)

I operators with different scaling properties in 1/Nc get mixed
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Large-Nc constraints on subleading 3N contact interaction

I applying Phillips and Schat counting to our redundant operators we
get 13 leading structures

I using Fierz identities we find 4 vanishing LECs in the large-Nc limit

E2 = E3 = E5 = E9 = 0

thus reducing the number of subleading LECs to 6 but...
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Is large-Nc at work in NN scattering?

I at leading order CS � CT

I at subleading order C1,C4,C6 � others

I at N2LO D1,D4,D6 � others

Maria’s fit to observables up to E = 10 MeV, Λ = 200 MeV, χ2 ∼ 1.8

LO (fm2) N2LO (fm6)
CS = −4.525 D1 = −2.136
CT = 0.166 D2 = −0.276

NLO (fm4) D3 = 0.011
C1 = −3.824 D4 = 0.326
C2 = −0.483 D5 = 0.430
C3 = −0.099 D6 = 0.101
C4 = −1.189 D7 = −0.696
C5 = 0.009 D8 = 0.041
C6 = −1.098 D9 = 1.675
C7 = −1.054 D10 = −2.494

D11 = −0.076
D12 = 0.381
D13 = −0.425
D14 = 0.110
D15 = −0.134

prediction satisfied but for spin-orbit operators
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Evidence for large-Nc violation in the vacuum channel?

I as is well known, spin-orbit couplings are generated by scalar-isoscalar
exchange (e.g. σ)

I large-Nc violation is observed in the 0+ channel in the meson sector,
in the form of OZI rule violation

R32 =
〈ūu〉(mu=md=ms=0)

〈ūu〉(mu=md=0;ms 6=0)
= 1− 0.54± 0.27

[Moussallam, EPJC 14 (2000) 111]

I this is possibly related to a proximity of a chiral phase transition, as a
function of the number of light quark flavours Nf

I it would be wonderful if nuclear physics would reveal such subtle
properties of the QCD vacuuum!
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