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Why nuclear Physics is (again) cool? 
•  Atomic nuclei are strongly interacting many-body systems exhibiting fascinating properties 

including: shell structure, pairing and superfluidity, deformation, and self-emerging clustering.

• Understanding their structure, reactions, and electroweak properties within a unified framework 
well-rooted in quantum chromodynamics has been a long-standing goal of nuclear physics. 



QCD and the nuclear Hamiltonian 
• Owing to its non-abelian character, QCD is strongly nonperturbative at “large” distances.

• Quark and gluons do not exists in the physical spectrum as asymptotic states

• Lattice-QCD is the most reliable way of “solving” 
QCD in the low-energy regime, and it promises to 
provide a solid foundation for the structure of nuclei 
directly from QCD

Lattice QCD  
QFT in a Finite and Discretized Spacetime

Lattice Spacing :

1/Λχa << 

m⇡L >> 2⇡
Lattice Volume : 

Extrapolate to a = 0 and L =1

(Nearly Continuum)

(Nearly Infinite Volume)

Systematically remove non-QCD parts of calculation
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•The applicability of Lattice-QCD is limited to few 
body systems, (A<4), and to a nuclear physics in 
which the pion mass must be kept much higher 
than the physical one. 

• Effective theory: non relativistic nucleons interacting via instantaneous potentials
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The Argonne v18 is a finite, local, configuration-space potential controlled by ~4300 np and pp 
scattering data below 350 MeV of the Nijmegen database

• Static part

• Spin-orbit

Two-body potential 

v18(rij) = v�ij + v⇡ij + vIij + vSij =
18X
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Some of the diagrams included in this potential are

N N

N N

N N

N N

N N

N N



Three-body potential 

Urbana IX 

contains the attractive Fujita and 
Miyazawa two-pion exchange interaction 
and a phenomenological repulsive term.
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also includes terms originating from 
three-pion exchange diagrams and the 
two-pion S-wave contribution.
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An Hamiltonian which only includes Argonne v18 does not provide enough binding in the light 
nuclei and overestimates the equilibrium density of symmetric nuclear matter.


Three-body force is needed




Nuclear currents 
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FIG. 4: (Color online) Magnetic moments in nuclear magne-
tons for A ≤ 9 nuclei. Black stars indicate the experimen-
tal values [35–37], while blue dots (red diamonds) represent
GFMC calculations which include the IA one-body EM cur-
rent (total χEFT current up to N3LO). Predictions are for
nuclei with A > 3.

and the NLO OPE term contributes in both the trinu-
cleon clusters and in between the trinucleon clusters and
the valence pp (nn) pair. The IA m.m. for 9Be is close
to the experimental value, while those for 9Li and 9C
are far from the data, so this pattern of small and large
MEC corrections provides good overall agreement with
the data.

The χEFT results reported in Tables III and V are
summarized in Fig. 4, where the experimental data [34–
37] (there are no data for the m.m. of 9B) are repre-
sented by black stars. We show also the experimen-
tal values for the proton and neutron m.m.’s, as well
as their sum, which corresponds to the m.m. of an S-
wave deuteron. The experimental values of the A = 2–3
m.m.’s have been utilized to fix the LECs, therefore pre-
dictions are for A > 3 nuclei. The blue dots labeled
as GFMC(IA) represent theoretical predictions obtained
with the standard IA one-nucleon EM current entering
at LO: diagram (a) of Fig. 1. The GFMC(IA) results
reproduce the bulk properties of the m.m.’s of the light
nuclei considered here. In particular, we can recognize
three classes of nuclei with non-zero m.m.’s, i.e., odd-
even nuclei whose m.m.’s are driven by an unpaired va-
lence proton, even-odd nuclei driven by an unpaired va-
lence neutron, and odd-odd nuclei with either a deuteron
cluster or a triton-neutron (3He-proton) cluster outside
an even-even core. Predictions which include all the con-
tributions to the N3LO χEFT EM currents illustrated
in Fig. 1 are represented by the red diamonds of Fig. 4,
labeled GFMC(TOT). In all cases except 6Li and 9Be
(where the IA is already very good and the MEC correc-
tion is very small) the predicted m.m.’s are closer to the
experimental data when the MEC corrections are added
to the IA one-body EM operator.

It is also interesting to consider the spatial distribution
of the various contributions to the m.m., i.e., to examine
the magnetic density. The one-body IA contributions
from the starting VMC wave functions are shown in Fig. 5
for the isobaric analog pairs 7Li–7Be, 8Li–8B, and 9Li–
9C. (The VMC values for the IA m.m.’s are within a few
% of the final GFMC values, so we expect their spatial
distribution to be reasonably accurate.) In the figure, the
red upward-pointing triangles are the contribution from
the proton spin, µp[ρp↑(r)−ρp↓(r)], and similarly the blue
downward-pointing triangles are the contribution from
the neutron spin. The green diamonds are the proton
orbital (convection current) contribution, and the black
circles are the sum. The integrals of the black curves over
d3r give the total m.m.’s of the nuclei in IA.

For the neutron-rich lithium isotopes, there is one un-
paired proton (embedded in a p-shell triton cluster) with
essentially the same large positive contribution in all
three cases. The proton orbital term is also everywhere
positive, but relatively small. For 7Li and 9Li, the neu-
trons are paired up, and give only a small contribution,
so the total m.m. is close to the sum of the proton spin
and orbital parts. However 8Li has one unpaired neu-
tron which acts against the proton and significantly re-
duces the overall m.m. values. For the proton-rich iso-
baric analogs, there is one unpaired neutron (embedded
in a p-shell 3He cluster) with the same sizable negative
contribution in all three cases. In 7Be and 9C, the pro-
tons are paired up and give little net contribution, but
the orbital term is always positive and acts against the
neutron spin term. In 8B there is also one unpaired pro-
ton, which gives a bigger contribution than the unpaired
neutron and results in a net positive m.m. value.

In Table VI, we explicitly show the various contribu-
tions entering the χEFT operator. The labeling in the
table has been defined in Sec. III A. We list the contribu-
tions at each order. At N3LO, we separate the terms that
do not depend on EM LECs (i.e. the LOOP contribution
and the contact MIN currents; the former depends on the
known axial coupling constant, gA, and pion decay am-
plitude, Fπ , while the latter depends on the strong LECs
entering the NN χEFT potential at N2LO) and those
that depend on them (i.e. the contact NM and the OPE
current whose isovector component has been saturated
with the ∆ transition current). In most cases, chiral
convergence is observed but for the isovector N3LO OPE
contribution whose order of magnitude is in some cases
comparable to the OPE contribution at NLO. It is likely
that the explicit inclusion of ∆ degrees of freedom in the
present χEFT would significantly improve the conver-
gence pattern, since in such a theory this isovector OPE
current, presently entering at N3LO, would be promoted
to N2LO.

In Table VI, we do not provide the errors associated
with the individual terms at each order because they are
highly correlated. We limit ourselves to report the errors
associated with the IA, MEC, and total results. Also
in this table, we denote calculations performed enforcing

• They are essential for low-momentum and 
low-energy transfer transitions.

 The nuclear electromagnetic current is constrained by the Hamiltonian through the continuity equation

r · JEM + i[H, J0
EM] = 0

• The above equation implies that          involves 
two-nucleon contributions.

JEM

⇡

� ⇡ ⇡

⇡ ⇡ ⇢,!

S. Pastore at al., PRC 87, 035503 (2013)



Why quantum Monte Carlo? 
Quantum Monte Carlo provides a way to go from the nuclear hamiltonian to nuclear properties
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Lepton-nucleus scattering 
The inclusive cross section of the process in which a lepton scatters off a nucleus can be written 
in terms of five response functions
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• The response functions contain all the information on target structure and dynamics
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• In the electromagnetic case only the longitudinal  
and the transverse  response functions contribute

R↵�(!,q) =
X

f

h 0|J†
↵(q)| f ih f |J�(q)| 0i�(! � Ef + E0)

• They account for initial state correlations, final state correlations and two-body currents



Lepton-nucleus scattering 
• At (very) large momentum transfer, scattering off a nuclear target reduces to the sum of scattering 

processes involving bound nucleons              short-range correlations.

• Relativistic effects play a major role and need to be accounted for along with nuclear 
correlations (Non trivial interplay between them)

• Resonance production and deep inelastic scattering also need to be accounted for

| f i ' |p1, p2i ⌦ | f iA�2

| f i ' |p1i ⌦ | f iA�1
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At finite imaginary time the contributions from 
large energy transfer are quickly suppressed

Euclidean response function 
Valuable information on the energy 
dependence of the response functions can 
be inferred from their Laplace transforms

The system is first heated up by the transition operator.

Its cooling determines the Euclidean response of the system

Quantum Monte Carlo

Zero Temperature

 0 = exp [�H⌧ ]  T

H =
X

i

p2i
2m

+
X

i<j

V0 �(rij)

Diffusion Branching
In nuclear physics, we have a!
set of amplitudes for each spin !
and isospin

Brownian motion
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Same technique used in Lattice QCD, condensed 
matter physics…



12C electromagnetic response 

q=300 MeV

2

to self-consistently account for nucleon and nuclear struc-
ture [24, 25], leads to a reduction of the proton elec-
tric form factor, and, as a consequence, to a significant
quenching of the longitudinal response function of nu-
clear matter and associated Coulomb sum rule [18]. Such
a model does not explain the large enhancement of the
transverse response or the momentum-transfer depen-
dence in the quenching of the longitudinal one. It should
also be noted that medium modifications are not an in-
evitable consequence of the quark substructure of the nu-
cleon. For example, a study of the two-nucleon problem
in a flux-tube model of six quarks interacting via single
gluon and pion exchanges [26] indicates that the nucle-
ons retain their individual identities down to very short
separations, with little distortion of their substructures.

Figures 1–2, showing a comparison between the exper-
imental and theoretical RL(q,!) and RT (q,!) for mo-
mentum transfer values in the range 300–570 MeV/c,
immediately lead to the main conclusions of the present
work: (i) the dynamical approach outlined above (with
free nucleon electromagnetic form factors) is in excellent
agreement with experiment in both the longitudinal and
transverse channels; (ii) as illustrated by the di↵erence
between the plane-wave-impulse-approximation (PWIA)
and GFMC one-body-current predictions (curves labeled
PWIA and GFMC-O

1b), correlations and interaction ef-
fects in the final states redistribute strength from the
quasi-elastic peak to the threshold and high-energy trans-
fer regions; and (iii) while the contributions from two-
body charge operators tend to slightly reduce RL(q,!)
in the threshold region, those from two-body currents
generate a large excess of strength in RT (q,!) over
the whole !-spectrum (curves labeled GFMC-O

1b and
GFMC-O

1b+2b), thus o↵setting the quenching noted in
(ii) in the quasi-elastic peak.

As a result of the present study, a consistent picture
of the electromagnetic response of nuclei emerges, which
is at variance with the conventional one of quasi-elastic
scattering as being dominated by single-nucleon knock-
out. This fact also has implications for the nuclear weak
response probed in inclusive neutrino scattering induced
by charge-changing and neutral current processes. In
particular, the energy dependence of the cross section
is quite important in extracting neutrino oscillation pa-
rameters. An earlier study of the sum rules associated
with the weak transverse and vector-axial interference re-
sponse functions in 12C found [27] a large enhancement
due to two-body currents in both the vector and axial
components of the neutral current. Only neutral weak
processes have been considered so far, but one would
expect these conclusions to remain valid in the case of
charge-changing ones. In this connection, it is important
to realize that neutrino and anti-neutrino cross sections
only di↵er in the sign of this vector-axial interference re-

FIG. 1. (Color online) Electromagnetic longitudinal response
functions of 12C for q in the range (300–570) MeV. Exper-
imental data are from Refs. [9, 10]. See text for further
explanations.

sponse, and that this di↵erence is crucial for inferring the
charge-conjugation and parity violating phase, one of the
fundamental parameters of neutrino physics, to be mea-
sured at DUNE. The rest of this paper deals succinctly
with the most salient aspects of the present calculations.

The longitudinal and transverse response functions are
defined as

R↵(q,!) =
X

f

hf |j↵(q,!)|0ihf |j↵(q,!)|0i⇤

⇥ �(Ef � ! � E
0

) , ↵ = L, T (1)

where |0i and |fi represent the nuclear initial and final
states of energies E

0

and Ef , and jL(q,!) and jT (q,!)
are the electromagnetic charge and current operators, re-
spectively. A direct calculation of R↵(q,!) is impractical,
since it would require evaluating each individual transi-
tion amplitude |0i �! |fi induced by the charge and cur-
rent operators. To circumvent this di�culty, the use of
integral transform techniques has proven to be quite help-
ful. One such approach is based on the Laplace transform
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• Very good agreement with the experimental data. Small contribution from two-body currents.

• We inverted the electromagnetic Euclidean response of 12C
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2

to self-consistently account for nucleon and nuclear struc-
ture [24, 25], leads to a reduction of the proton elec-
tric form factor, and, as a consequence, to a significant
quenching of the longitudinal response function of nu-
clear matter and associated Coulomb sum rule [18]. Such
a model does not explain the large enhancement of the
transverse response or the momentum-transfer depen-
dence in the quenching of the longitudinal one. It should
also be noted that medium modifications are not an in-
evitable consequence of the quark substructure of the nu-
cleon. For example, a study of the two-nucleon problem
in a flux-tube model of six quarks interacting via single
gluon and pion exchanges [26] indicates that the nucle-
ons retain their individual identities down to very short
separations, with little distortion of their substructures.

Figures 1–2, showing a comparison between the exper-
imental and theoretical RL(q,!) and RT (q,!) for mo-
mentum transfer values in the range 300–570 MeV/c,
immediately lead to the main conclusions of the present
work: (i) the dynamical approach outlined above (with
free nucleon electromagnetic form factors) is in excellent
agreement with experiment in both the longitudinal and
transverse channels; (ii) as illustrated by the di↵erence
between the plane-wave-impulse-approximation (PWIA)
and GFMC one-body-current predictions (curves labeled
PWIA and GFMC-O

1b), correlations and interaction ef-
fects in the final states redistribute strength from the
quasi-elastic peak to the threshold and high-energy trans-
fer regions; and (iii) while the contributions from two-
body charge operators tend to slightly reduce RL(q,!)
in the threshold region, those from two-body currents
generate a large excess of strength in RT (q,!) over
the whole !-spectrum (curves labeled GFMC-O

1b and
GFMC-O

1b+2b), thus o↵setting the quenching noted in
(ii) in the quasi-elastic peak.

As a result of the present study, a consistent picture
of the electromagnetic response of nuclei emerges, which
is at variance with the conventional one of quasi-elastic
scattering as being dominated by single-nucleon knock-
out. This fact also has implications for the nuclear weak
response probed in inclusive neutrino scattering induced
by charge-changing and neutral current processes. In
particular, the energy dependence of the cross section
is quite important in extracting neutrino oscillation pa-
rameters. An earlier study of the sum rules associated
with the weak transverse and vector-axial interference re-
sponse functions in 12C found [27] a large enhancement
due to two-body currents in both the vector and axial
components of the neutral current. Only neutral weak
processes have been considered so far, but one would
expect these conclusions to remain valid in the case of
charge-changing ones. In this connection, it is important
to realize that neutrino and anti-neutrino cross sections
only di↵er in the sign of this vector-axial interference re-

FIG. 1. (Color online) Electromagnetic longitudinal response
functions of 12C for q in the range (300–570) MeV. Exper-
imental data are from Refs. [9, 10]. See text for further
explanations.

sponse, and that this di↵erence is crucial for inferring the
charge-conjugation and parity violating phase, one of the
fundamental parameters of neutrino physics, to be mea-
sured at DUNE. The rest of this paper deals succinctly
with the most salient aspects of the present calculations.

The longitudinal and transverse response functions are
defined as

R↵(q,!) =
X

f

hf |j↵(q,!)|0ihf |j↵(q,!)|0i⇤

⇥ �(Ef � ! � E
0

) , ↵ = L, T (1)

where |0i and |fi represent the nuclear initial and final
states of energies E

0

and Ef , and jL(q,!) and jT (q,!)
are the electromagnetic charge and current operators, re-
spectively. A direct calculation of R↵(q,!) is impractical,
since it would require evaluating each individual transi-
tion amplitude |0i �! |fi induced by the charge and cur-
rent operators. To circumvent this di�culty, the use of
integral transform techniques has proven to be quite help-
ful. One such approach is based on the Laplace transform

q=380 MeV

2

to self-consistently account for nucleon and nuclear struc-
ture [24, 25], leads to a reduction of the proton elec-
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quenching of the longitudinal response function of nu-
clear matter and associated Coulomb sum rule [18]. Such
a model does not explain the large enhancement of the
transverse response or the momentum-transfer depen-
dence in the quenching of the longitudinal one. It should
also be noted that medium modifications are not an in-
evitable consequence of the quark substructure of the nu-
cleon. For example, a study of the two-nucleon problem
in a flux-tube model of six quarks interacting via single
gluon and pion exchanges [26] indicates that the nucle-
ons retain their individual identities down to very short
separations, with little distortion of their substructures.

Figures 1–2, showing a comparison between the exper-
imental and theoretical RL(q,!) and RT (q,!) for mo-
mentum transfer values in the range 300–570 MeV/c,
immediately lead to the main conclusions of the present
work: (i) the dynamical approach outlined above (with
free nucleon electromagnetic form factors) is in excellent
agreement with experiment in both the longitudinal and
transverse channels; (ii) as illustrated by the di↵erence
between the plane-wave-impulse-approximation (PWIA)
and GFMC one-body-current predictions (curves labeled
PWIA and GFMC-O

1b), correlations and interaction ef-
fects in the final states redistribute strength from the
quasi-elastic peak to the threshold and high-energy trans-
fer regions; and (iii) while the contributions from two-
body charge operators tend to slightly reduce RL(q,!)
in the threshold region, those from two-body currents
generate a large excess of strength in RT (q,!) over
the whole !-spectrum (curves labeled GFMC-O

1b and
GFMC-O

1b+2b), thus o↵setting the quenching noted in
(ii) in the quasi-elastic peak.

As a result of the present study, a consistent picture
of the electromagnetic response of nuclei emerges, which
is at variance with the conventional one of quasi-elastic
scattering as being dominated by single-nucleon knock-
out. This fact also has implications for the nuclear weak
response probed in inclusive neutrino scattering induced
by charge-changing and neutral current processes. In
particular, the energy dependence of the cross section
is quite important in extracting neutrino oscillation pa-
rameters. An earlier study of the sum rules associated
with the weak transverse and vector-axial interference re-
sponse functions in 12C found [27] a large enhancement
due to two-body currents in both the vector and axial
components of the neutral current. Only neutral weak
processes have been considered so far, but one would
expect these conclusions to remain valid in the case of
charge-changing ones. In this connection, it is important
to realize that neutrino and anti-neutrino cross sections
only di↵er in the sign of this vector-axial interference re-

FIG. 1. (Color online) Electromagnetic longitudinal response
functions of 12C for q in the range (300–570) MeV. Exper-
imental data are from Refs. [9, 10]. See text for further
explanations.

sponse, and that this di↵erence is crucial for inferring the
charge-conjugation and parity violating phase, one of the
fundamental parameters of neutrino physics, to be mea-
sured at DUNE. The rest of this paper deals succinctly
with the most salient aspects of the present calculations.

The longitudinal and transverse response functions are
defined as

R↵(q,!) =
X
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where |0i and |fi represent the nuclear initial and final
states of energies E

0

and Ef , and jL(q,!) and jT (q,!)
are the electromagnetic charge and current operators, re-
spectively. A direct calculation of R↵(q,!) is impractical,
since it would require evaluating each individual transi-
tion amplitude |0i �! |fi induced by the charge and cur-
rent operators. To circumvent this di�culty, the use of
integral transform techniques has proven to be quite help-
ful. One such approach is based on the Laplace transform
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to self-consistently account for nucleon and nuclear struc-
ture [24, 25], leads to a reduction of the proton elec-
tric form factor, and, as a consequence, to a significant
quenching of the longitudinal response function of nu-
clear matter and associated Coulomb sum rule [18]. Such
a model does not explain the large enhancement of the
transverse response or the momentum-transfer depen-
dence in the quenching of the longitudinal one. It should
also be noted that medium modifications are not an in-
evitable consequence of the quark substructure of the nu-
cleon. For example, a study of the two-nucleon problem
in a flux-tube model of six quarks interacting via single
gluon and pion exchanges [26] indicates that the nucle-
ons retain their individual identities down to very short
separations, with little distortion of their substructures.

Figures 1–2, showing a comparison between the exper-
imental and theoretical RL(q,!) and RT (q,!) for mo-
mentum transfer values in the range 300–570 MeV/c,
immediately lead to the main conclusions of the present
work: (i) the dynamical approach outlined above (with
free nucleon electromagnetic form factors) is in excellent
agreement with experiment in both the longitudinal and
transverse channels; (ii) as illustrated by the di↵erence
between the plane-wave-impulse-approximation (PWIA)
and GFMC one-body-current predictions (curves labeled
PWIA and GFMC-O

1b), correlations and interaction ef-
fects in the final states redistribute strength from the
quasi-elastic peak to the threshold and high-energy trans-
fer regions; and (iii) while the contributions from two-
body charge operators tend to slightly reduce RL(q,!)
in the threshold region, those from two-body currents
generate a large excess of strength in RT (q,!) over
the whole !-spectrum (curves labeled GFMC-O

1b and
GFMC-O

1b+2b), thus o↵setting the quenching noted in
(ii) in the quasi-elastic peak.

As a result of the present study, a consistent picture
of the electromagnetic response of nuclei emerges, which
is at variance with the conventional one of quasi-elastic
scattering as being dominated by single-nucleon knock-
out. This fact also has implications for the nuclear weak
response probed in inclusive neutrino scattering induced
by charge-changing and neutral current processes. In
particular, the energy dependence of the cross section
is quite important in extracting neutrino oscillation pa-
rameters. An earlier study of the sum rules associated
with the weak transverse and vector-axial interference re-
sponse functions in 12C found [27] a large enhancement
due to two-body currents in both the vector and axial
components of the neutral current. Only neutral weak
processes have been considered so far, but one would
expect these conclusions to remain valid in the case of
charge-changing ones. In this connection, it is important
to realize that neutrino and anti-neutrino cross sections
only di↵er in the sign of this vector-axial interference re-

FIG. 1. (Color online) Electromagnetic longitudinal response
functions of 12C for q in the range (300–570) MeV. Exper-
imental data are from Refs. [9, 10]. See text for further
explanations.

sponse, and that this di↵erence is crucial for inferring the
charge-conjugation and parity violating phase, one of the
fundamental parameters of neutrino physics, to be mea-
sured at DUNE. The rest of this paper deals succinctly
with the most salient aspects of the present calculations.

The longitudinal and transverse response functions are
defined as

R↵(q,!) =
X

f

hf |j↵(q,!)|0ihf |j↵(q,!)|0i⇤
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where |0i and |fi represent the nuclear initial and final
states of energies E

0

and Ef , and jL(q,!) and jT (q,!)
are the electromagnetic charge and current operators, re-
spectively. A direct calculation of R↵(q,!) is impractical,
since it would require evaluating each individual transi-
tion amplitude |0i �! |fi induced by the charge and cur-
rent operators. To circumvent this di�culty, the use of
integral transform techniques has proven to be quite help-
ful. One such approach is based on the Laplace transform
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to self-consistently account for nucleon and nuclear struc-
ture [24, 25], leads to a reduction of the proton elec-
tric form factor, and, as a consequence, to a significant
quenching of the longitudinal response function of nu-
clear matter and associated Coulomb sum rule [18]. Such
a model does not explain the large enhancement of the
transverse response or the momentum-transfer depen-
dence in the quenching of the longitudinal one. It should
also be noted that medium modifications are not an in-
evitable consequence of the quark substructure of the nu-
cleon. For example, a study of the two-nucleon problem
in a flux-tube model of six quarks interacting via single
gluon and pion exchanges [26] indicates that the nucle-
ons retain their individual identities down to very short
separations, with little distortion of their substructures.

Figures 1–2, showing a comparison between the exper-
imental and theoretical RL(q,!) and RT (q,!) for mo-
mentum transfer values in the range 300–570 MeV/c,
immediately lead to the main conclusions of the present
work: (i) the dynamical approach outlined above (with
free nucleon electromagnetic form factors) is in excellent
agreement with experiment in both the longitudinal and
transverse channels; (ii) as illustrated by the di↵erence
between the plane-wave-impulse-approximation (PWIA)
and GFMC one-body-current predictions (curves labeled
PWIA and GFMC-O

1b), correlations and interaction ef-
fects in the final states redistribute strength from the
quasi-elastic peak to the threshold and high-energy trans-
fer regions; and (iii) while the contributions from two-
body charge operators tend to slightly reduce RL(q,!)
in the threshold region, those from two-body currents
generate a large excess of strength in RT (q,!) over
the whole !-spectrum (curves labeled GFMC-O

1b and
GFMC-O

1b+2b), thus o↵setting the quenching noted in
(ii) in the quasi-elastic peak.

As a result of the present study, a consistent picture
of the electromagnetic response of nuclei emerges, which
is at variance with the conventional one of quasi-elastic
scattering as being dominated by single-nucleon knock-
out. This fact also has implications for the nuclear weak
response probed in inclusive neutrino scattering induced
by charge-changing and neutral current processes. In
particular, the energy dependence of the cross section
is quite important in extracting neutrino oscillation pa-
rameters. An earlier study of the sum rules associated
with the weak transverse and vector-axial interference re-
sponse functions in 12C found [27] a large enhancement
due to two-body currents in both the vector and axial
components of the neutral current. Only neutral weak
processes have been considered so far, but one would
expect these conclusions to remain valid in the case of
charge-changing ones. In this connection, it is important
to realize that neutrino and anti-neutrino cross sections
only di↵er in the sign of this vector-axial interference re-

FIG. 1. (Color online) Electromagnetic longitudinal response
functions of 12C for q in the range (300–570) MeV. Exper-
imental data are from Refs. [9, 10]. See text for further
explanations.

sponse, and that this di↵erence is crucial for inferring the
charge-conjugation and parity violating phase, one of the
fundamental parameters of neutrino physics, to be mea-
sured at DUNE. The rest of this paper deals succinctly
with the most salient aspects of the present calculations.
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where |0i and |fi represent the nuclear initial and final
states of energies E

0

and Ef , and jL(q,!) and jT (q,!)
are the electromagnetic charge and current operators, re-
spectively. A direct calculation of R↵(q,!) is impractical,
since it would require evaluating each individual transi-
tion amplitude |0i �! |fi induced by the charge and cur-
rent operators. To circumvent this di�culty, the use of
integral transform techniques has proven to be quite help-
ful. One such approach is based on the Laplace transform
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to self-consistently account for nucleon and nuclear struc-
ture [24, 25], leads to a reduction of the proton elec-
tric form factor, and, as a consequence, to a significant
quenching of the longitudinal response function of nu-
clear matter and associated Coulomb sum rule [18]. Such
a model does not explain the large enhancement of the
transverse response or the momentum-transfer depen-
dence in the quenching of the longitudinal one. It should
also be noted that medium modifications are not an in-
evitable consequence of the quark substructure of the nu-
cleon. For example, a study of the two-nucleon problem
in a flux-tube model of six quarks interacting via single
gluon and pion exchanges [26] indicates that the nucle-
ons retain their individual identities down to very short
separations, with little distortion of their substructures.

Figures 1–2, showing a comparison between the exper-
imental and theoretical RL(q,!) and RT (q,!) for mo-
mentum transfer values in the range 300–570 MeV/c,
immediately lead to the main conclusions of the present
work: (i) the dynamical approach outlined above (with
free nucleon electromagnetic form factors) is in excellent
agreement with experiment in both the longitudinal and
transverse channels; (ii) as illustrated by the di↵erence
between the plane-wave-impulse-approximation (PWIA)
and GFMC one-body-current predictions (curves labeled
PWIA and GFMC-O

1b), correlations and interaction ef-
fects in the final states redistribute strength from the
quasi-elastic peak to the threshold and high-energy trans-
fer regions; and (iii) while the contributions from two-
body charge operators tend to slightly reduce RL(q,!)
in the threshold region, those from two-body currents
generate a large excess of strength in RT (q,!) over
the whole !-spectrum (curves labeled GFMC-O

1b and
GFMC-O

1b+2b), thus o↵setting the quenching noted in
(ii) in the quasi-elastic peak.

As a result of the present study, a consistent picture
of the electromagnetic response of nuclei emerges, which
is at variance with the conventional one of quasi-elastic
scattering as being dominated by single-nucleon knock-
out. This fact also has implications for the nuclear weak
response probed in inclusive neutrino scattering induced
by charge-changing and neutral current processes. In
particular, the energy dependence of the cross section
is quite important in extracting neutrino oscillation pa-
rameters. An earlier study of the sum rules associated
with the weak transverse and vector-axial interference re-
sponse functions in 12C found [27] a large enhancement
due to two-body currents in both the vector and axial
components of the neutral current. Only neutral weak
processes have been considered so far, but one would
expect these conclusions to remain valid in the case of
charge-changing ones. In this connection, it is important
to realize that neutrino and anti-neutrino cross sections
only di↵er in the sign of this vector-axial interference re-

FIG. 1. (Color online) Electromagnetic longitudinal response
functions of 12C for q in the range (300–570) MeV. Exper-
imental data are from Refs. [9, 10]. See text for further
explanations.

sponse, and that this di↵erence is crucial for inferring the
charge-conjugation and parity violating phase, one of the
fundamental parameters of neutrino physics, to be mea-
sured at DUNE. The rest of this paper deals succinctly
with the most salient aspects of the present calculations.
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where |0i and |fi represent the nuclear initial and final
states of energies E
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and Ef , and jL(q,!) and jT (q,!)
are the electromagnetic charge and current operators, re-
spectively. A direct calculation of R↵(q,!) is impractical,
since it would require evaluating each individual transi-
tion amplitude |0i �! |fi induced by the charge and cur-
rent operators. To circumvent this di�culty, the use of
integral transform techniques has proven to be quite help-
ful. One such approach is based on the Laplace transform
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to self-consistently account for nucleon and nuclear struc-
ture [24, 25], leads to a reduction of the proton elec-
tric form factor, and, as a consequence, to a significant
quenching of the longitudinal response function of nu-
clear matter and associated Coulomb sum rule [18]. Such
a model does not explain the large enhancement of the
transverse response or the momentum-transfer depen-
dence in the quenching of the longitudinal one. It should
also be noted that medium modifications are not an in-
evitable consequence of the quark substructure of the nu-
cleon. For example, a study of the two-nucleon problem
in a flux-tube model of six quarks interacting via single
gluon and pion exchanges [26] indicates that the nucle-
ons retain their individual identities down to very short
separations, with little distortion of their substructures.

Figures 1–2, showing a comparison between the exper-
imental and theoretical RL(q,!) and RT (q,!) for mo-
mentum transfer values in the range 300–570 MeV/c,
immediately lead to the main conclusions of the present
work: (i) the dynamical approach outlined above (with
free nucleon electromagnetic form factors) is in excellent
agreement with experiment in both the longitudinal and
transverse channels; (ii) as illustrated by the di↵erence
between the plane-wave-impulse-approximation (PWIA)
and GFMC one-body-current predictions (curves labeled
PWIA and GFMC-O

1b), correlations and interaction ef-
fects in the final states redistribute strength from the
quasi-elastic peak to the threshold and high-energy trans-
fer regions; and (iii) while the contributions from two-
body charge operators tend to slightly reduce RL(q,!)
in the threshold region, those from two-body currents
generate a large excess of strength in RT (q,!) over
the whole !-spectrum (curves labeled GFMC-O

1b and
GFMC-O

1b+2b), thus o↵setting the quenching noted in
(ii) in the quasi-elastic peak.

As a result of the present study, a consistent picture
of the electromagnetic response of nuclei emerges, which
is at variance with the conventional one of quasi-elastic
scattering as being dominated by single-nucleon knock-
out. This fact also has implications for the nuclear weak
response probed in inclusive neutrino scattering induced
by charge-changing and neutral current processes. In
particular, the energy dependence of the cross section
is quite important in extracting neutrino oscillation pa-
rameters. An earlier study of the sum rules associated
with the weak transverse and vector-axial interference re-
sponse functions in 12C found [27] a large enhancement
due to two-body currents in both the vector and axial
components of the neutral current. Only neutral weak
processes have been considered so far, but one would
expect these conclusions to remain valid in the case of
charge-changing ones. In this connection, it is important
to realize that neutrino and anti-neutrino cross sections
only di↵er in the sign of this vector-axial interference re-

FIG. 1. (Color online) Electromagnetic longitudinal response
functions of 12C for q in the range (300–570) MeV. Exper-
imental data are from Refs. [9, 10]. See text for further
explanations.

sponse, and that this di↵erence is crucial for inferring the
charge-conjugation and parity violating phase, one of the
fundamental parameters of neutrino physics, to be mea-
sured at DUNE. The rest of this paper deals succinctly
with the most salient aspects of the present calculations.

The longitudinal and transverse response functions are
defined as
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where |0i and |fi represent the nuclear initial and final
states of energies E

0

and Ef , and jL(q,!) and jT (q,!)
are the electromagnetic charge and current operators, re-
spectively. A direct calculation of R↵(q,!) is impractical,
since it would require evaluating each individual transi-
tion amplitude |0i �! |fi induced by the charge and cur-
rent operators. To circumvent this di�culty, the use of
integral transform techniques has proven to be quite help-
ful. One such approach is based on the Laplace transform
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FIG. 2. (Color online) Same as Fig. 1 but for the electromag-
netic transverse response functions. Since pion production
mechanisms are not included, the present theory underesti-
mates the (transverse) strength in the � peak region, see in
particular the q=570 MeV/c case.

of R↵(q,!)—so called Euclidean response [11]—which we
define as

E↵(q, ⌧) =

Z 1

!+
el

d! e�!⌧ R↵(q,!)

[Gp
E(q,!)]

2

, (2)

where Gp
E(q,!) is the (free) proton electric form factor

and the integration excludes the contribution due to elas-
tic scattering (!

el

is the energy of the recoiling ground
state). We elaborate this issue further below; for now
it su�ces to note that, in the specific case of 12C, the
ground state has quantum numbers J⇡ =0+ and there-
fore the elastic contribution vanishes in the transverse
channel. With the definition given in Eq. (2), the Eu-
clidean response function above can be thought of as be-
ing due to point-like, but strongly interacting, nucleons,
and can simply be expressed as

E↵(q, ⌧)=h0|O†
↵(q)e

�(H�E0)⌧O↵(q)|0i� |F↵(q)|2e�⌧!el ,
(3)

where H is the nuclear Hamiltonian (here, the AV18/IL7
model), F↵(q) = h0|O↵(q)|0i is the elastic form fac-
tor, and in the electromagnetic operators O↵(q) the de-

pendence on the energy transfer ! has been removed
by dividing the current j↵(q,!) by Gp

E(q,!) [15]. The
calculation of this matrix element is then carried out
with GFMC methods [11] similar to those used in pro-
jecting out the exact ground state of H from a trial
state [28]. It proceeds in two steps. First, an un-
constrained imaginary-time propagation of the state |0i
is performed and saved. Next, the states O↵(q)|0i
are evolved in imaginary time following the path pre-
viously saved. During this latter imaginary-time evolu-
tion, scalar products of exp [�(H�E

0

) ⌧i]O↵(q)|0i with
O↵(q)|0i are evaluated on a grid of ⌧i values, and from
these scalar products estimates for E↵(q, ⌧i) are obtained
(a complete discussion of the methods is in Refs. [11, 29]).
Following Ref. [15] (see also extended material submit-

ted in support of that publication), we have exploited
maximum entropy techniques [13, 14] to perform the an-
alytic continuation of the Euclidean response function—
corresponding to the inversion of the Laplace transform
of Eq. (2). However, we have improved on the inver-
sion procedure described in [15] in order to better prop-
agate the statistical errors associated with E↵(q, ⌧) into
R↵(q,!). Specifically, the smallest possible value for pa-
rameter ↵ (see Ref. [15]) has been chosen to perform a
first inversion of the Laplace transform, which is then in-
dependent on the prior. The resulting response function
R(0) is the one whose Laplace transform E(0) is the clos-
est to the original average GFMC Euclidean response.
Then, N = 100 Euclidean response functions are sam-
pled from a multivariate gaussian distribution, with mean
value E(0) and covariance estimated from the original set
of GFMC Euclidean responses. The corresponding re-
sponse functions, obtained using the so called “historic
maximum entropy” technique, are used to estimate the
mean value and the variance of the final inverted response
function.

q (MeV/c) 2+ 0+ 4+

300 0.1286 0.0311 0.0060
380 0.0745 0.0051 0.0075
570 0.0064 0.0046 0.0037

TABLE I. Measured longitudinal transition form factors, de-
fined as hf |OL(q)|0i/Z, to the f =2+, 0+ (Hoyle), and 4+
states in 12C. Experimental data are from Refs. [30–32], and
have been divided by the proton electric form factorGp

E(q,!f )
with !f = Ef � E0.

We now proceed to address the issue alluded to earlier.
The low-lying spectrum of 12C consists of J⇡ =2+, 0+

(Hoyle), and 4+ states with excitation energies E?
f � E

0

experimentally known to be, respectively, 4.44, 7.65, and
14.08 in MeV units [33]. The contributions of these states
to the quasi-elastic longitudinal and transverse response
functions extracted from inclusive (e, e0) cross section
measurements are not included. Therefore, before com-

q=300 MeV
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to self-consistently account for nucleon and nuclear struc-
ture [24, 25], leads to a reduction of the proton elec-
tric form factor, and, as a consequence, to a significant
quenching of the longitudinal response function of nu-
clear matter and associated Coulomb sum rule [18]. Such
a model does not explain the large enhancement of the
transverse response or the momentum-transfer depen-
dence in the quenching of the longitudinal one. It should
also be noted that medium modifications are not an in-
evitable consequence of the quark substructure of the nu-
cleon. For example, a study of the two-nucleon problem
in a flux-tube model of six quarks interacting via single
gluon and pion exchanges [26] indicates that the nucle-
ons retain their individual identities down to very short
separations, with little distortion of their substructures.

Figures 1–2, showing a comparison between the exper-
imental and theoretical RL(q,!) and RT (q,!) for mo-
mentum transfer values in the range 300–570 MeV/c,
immediately lead to the main conclusions of the present
work: (i) the dynamical approach outlined above (with
free nucleon electromagnetic form factors) is in excellent
agreement with experiment in both the longitudinal and
transverse channels; (ii) as illustrated by the di↵erence
between the plane-wave-impulse-approximation (PWIA)
and GFMC one-body-current predictions (curves labeled
PWIA and GFMC-O

1b), correlations and interaction ef-
fects in the final states redistribute strength from the
quasi-elastic peak to the threshold and high-energy trans-
fer regions; and (iii) while the contributions from two-
body charge operators tend to slightly reduce RL(q,!)
in the threshold region, those from two-body currents
generate a large excess of strength in RT (q,!) over
the whole !-spectrum (curves labeled GFMC-O

1b and
GFMC-O

1b+2b), thus o↵setting the quenching noted in
(ii) in the quasi-elastic peak.

As a result of the present study, a consistent picture
of the electromagnetic response of nuclei emerges, which
is at variance with the conventional one of quasi-elastic
scattering as being dominated by single-nucleon knock-
out. This fact also has implications for the nuclear weak
response probed in inclusive neutrino scattering induced
by charge-changing and neutral current processes. In
particular, the energy dependence of the cross section
is quite important in extracting neutrino oscillation pa-
rameters. An earlier study of the sum rules associated
with the weak transverse and vector-axial interference re-
sponse functions in 12C found [27] a large enhancement
due to two-body currents in both the vector and axial
components of the neutral current. Only neutral weak
processes have been considered so far, but one would
expect these conclusions to remain valid in the case of
charge-changing ones. In this connection, it is important
to realize that neutrino and anti-neutrino cross sections
only di↵er in the sign of this vector-axial interference re-

FIG. 1. (Color online) Electromagnetic longitudinal response
functions of 12C for q in the range (300–570) MeV. Exper-
imental data are from Refs. [9, 10]. See text for further
explanations.

sponse, and that this di↵erence is crucial for inferring the
charge-conjugation and parity violating phase, one of the
fundamental parameters of neutrino physics, to be mea-
sured at DUNE. The rest of this paper deals succinctly
with the most salient aspects of the present calculations.
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states of energies E
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and Ef , and jL(q,!) and jT (q,!)
are the electromagnetic charge and current operators, re-
spectively. A direct calculation of R↵(q,!) is impractical,
since it would require evaluating each individual transi-
tion amplitude |0i �! |fi induced by the charge and cur-
rent operators. To circumvent this di�culty, the use of
integral transform techniques has proven to be quite help-
ful. One such approach is based on the Laplace transform
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to self-consistently account for nucleon and nuclear struc-
ture [24, 25], leads to a reduction of the proton elec-
tric form factor, and, as a consequence, to a significant
quenching of the longitudinal response function of nu-
clear matter and associated Coulomb sum rule [18]. Such
a model does not explain the large enhancement of the
transverse response or the momentum-transfer depen-
dence in the quenching of the longitudinal one. It should
also be noted that medium modifications are not an in-
evitable consequence of the quark substructure of the nu-
cleon. For example, a study of the two-nucleon problem
in a flux-tube model of six quarks interacting via single
gluon and pion exchanges [26] indicates that the nucle-
ons retain their individual identities down to very short
separations, with little distortion of their substructures.

Figures 1–2, showing a comparison between the exper-
imental and theoretical RL(q,!) and RT (q,!) for mo-
mentum transfer values in the range 300–570 MeV/c,
immediately lead to the main conclusions of the present
work: (i) the dynamical approach outlined above (with
free nucleon electromagnetic form factors) is in excellent
agreement with experiment in both the longitudinal and
transverse channels; (ii) as illustrated by the di↵erence
between the plane-wave-impulse-approximation (PWIA)
and GFMC one-body-current predictions (curves labeled
PWIA and GFMC-O

1b), correlations and interaction ef-
fects in the final states redistribute strength from the
quasi-elastic peak to the threshold and high-energy trans-
fer regions; and (iii) while the contributions from two-
body charge operators tend to slightly reduce RL(q,!)
in the threshold region, those from two-body currents
generate a large excess of strength in RT (q,!) over
the whole !-spectrum (curves labeled GFMC-O

1b and
GFMC-O

1b+2b), thus o↵setting the quenching noted in
(ii) in the quasi-elastic peak.

As a result of the present study, a consistent picture
of the electromagnetic response of nuclei emerges, which
is at variance with the conventional one of quasi-elastic
scattering as being dominated by single-nucleon knock-
out. This fact also has implications for the nuclear weak
response probed in inclusive neutrino scattering induced
by charge-changing and neutral current processes. In
particular, the energy dependence of the cross section
is quite important in extracting neutrino oscillation pa-
rameters. An earlier study of the sum rules associated
with the weak transverse and vector-axial interference re-
sponse functions in 12C found [27] a large enhancement
due to two-body currents in both the vector and axial
components of the neutral current. Only neutral weak
processes have been considered so far, but one would
expect these conclusions to remain valid in the case of
charge-changing ones. In this connection, it is important
to realize that neutrino and anti-neutrino cross sections
only di↵er in the sign of this vector-axial interference re-

FIG. 1. (Color online) Electromagnetic longitudinal response
functions of 12C for q in the range (300–570) MeV. Exper-
imental data are from Refs. [9, 10]. See text for further
explanations.

sponse, and that this di↵erence is crucial for inferring the
charge-conjugation and parity violating phase, one of the
fundamental parameters of neutrino physics, to be mea-
sured at DUNE. The rest of this paper deals succinctly
with the most salient aspects of the present calculations.

The longitudinal and transverse response functions are
defined as

R↵(q,!) =
X

f

hf |j↵(q,!)|0ihf |j↵(q,!)|0i⇤

⇥ �(Ef � ! � E
0

) , ↵ = L, T (1)

where |0i and |fi represent the nuclear initial and final
states of energies E

0

and Ef , and jL(q,!) and jT (q,!)
are the electromagnetic charge and current operators, re-
spectively. A direct calculation of R↵(q,!) is impractical,
since it would require evaluating each individual transi-
tion amplitude |0i �! |fi induced by the charge and cur-
rent operators. To circumvent this di�culty, the use of
integral transform techniques has proven to be quite help-
ful. One such approach is based on the Laplace transform
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FIG. 2. (Color online) Same as Fig. 1 but for the electromag-
netic transverse response functions. Since pion production
mechanisms are not included, the present theory underesti-
mates the (transverse) strength in the � peak region, see in
particular the q=570 MeV/c case.

of R↵(q,!)—so called Euclidean response [11]—which we
define as

E↵(q, ⌧) =

Z 1

!+
el

d! e�!⌧ R↵(q,!)

[Gp
E(q,!)]

2

, (2)

where Gp
E(q,!) is the (free) proton electric form factor

and the integration excludes the contribution due to elas-
tic scattering (!

el

is the energy of the recoiling ground
state). We elaborate this issue further below; for now
it su�ces to note that, in the specific case of 12C, the
ground state has quantum numbers J⇡ =0+ and there-
fore the elastic contribution vanishes in the transverse
channel. With the definition given in Eq. (2), the Eu-
clidean response function above can be thought of as be-
ing due to point-like, but strongly interacting, nucleons,
and can simply be expressed as

E↵(q, ⌧)=h0|O†
↵(q)e

�(H�E0)⌧O↵(q)|0i� |F↵(q)|2e�⌧!el ,
(3)

where H is the nuclear Hamiltonian (here, the AV18/IL7
model), F↵(q) = h0|O↵(q)|0i is the elastic form fac-
tor, and in the electromagnetic operators O↵(q) the de-

pendence on the energy transfer ! has been removed
by dividing the current j↵(q,!) by Gp

E(q,!) [15]. The
calculation of this matrix element is then carried out
with GFMC methods [11] similar to those used in pro-
jecting out the exact ground state of H from a trial
state [28]. It proceeds in two steps. First, an un-
constrained imaginary-time propagation of the state |0i
is performed and saved. Next, the states O↵(q)|0i
are evolved in imaginary time following the path pre-
viously saved. During this latter imaginary-time evolu-
tion, scalar products of exp [�(H�E

0

) ⌧i]O↵(q)|0i with
O↵(q)|0i are evaluated on a grid of ⌧i values, and from
these scalar products estimates for E↵(q, ⌧i) are obtained
(a complete discussion of the methods is in Refs. [11, 29]).
Following Ref. [15] (see also extended material submit-

ted in support of that publication), we have exploited
maximum entropy techniques [13, 14] to perform the an-
alytic continuation of the Euclidean response function—
corresponding to the inversion of the Laplace transform
of Eq. (2). However, we have improved on the inver-
sion procedure described in [15] in order to better prop-
agate the statistical errors associated with E↵(q, ⌧) into
R↵(q,!). Specifically, the smallest possible value for pa-
rameter ↵ (see Ref. [15]) has been chosen to perform a
first inversion of the Laplace transform, which is then in-
dependent on the prior. The resulting response function
R(0) is the one whose Laplace transform E(0) is the clos-
est to the original average GFMC Euclidean response.
Then, N = 100 Euclidean response functions are sam-
pled from a multivariate gaussian distribution, with mean
value E(0) and covariance estimated from the original set
of GFMC Euclidean responses. The corresponding re-
sponse functions, obtained using the so called “historic
maximum entropy” technique, are used to estimate the
mean value and the variance of the final inverted response
function.

q (MeV/c) 2+ 0+ 4+

300 0.1286 0.0311 0.0060
380 0.0745 0.0051 0.0075
570 0.0064 0.0046 0.0037

TABLE I. Measured longitudinal transition form factors, de-
fined as hf |OL(q)|0i/Z, to the f =2+, 0+ (Hoyle), and 4+
states in 12C. Experimental data are from Refs. [30–32], and
have been divided by the proton electric form factorGp

E(q,!f )
with !f = Ef � E0.

We now proceed to address the issue alluded to earlier.
The low-lying spectrum of 12C consists of J⇡ =2+, 0+

(Hoyle), and 4+ states with excitation energies E?
f � E

0

experimentally known to be, respectively, 4.44, 7.65, and
14.08 in MeV units [33]. The contributions of these states
to the quasi-elastic longitudinal and transverse response
functions extracted from inclusive (e, e0) cross section
measurements are not included. Therefore, before com-

q=380 MeV

2

to self-consistently account for nucleon and nuclear struc-
ture [24, 25], leads to a reduction of the proton elec-
tric form factor, and, as a consequence, to a significant
quenching of the longitudinal response function of nu-
clear matter and associated Coulomb sum rule [18]. Such
a model does not explain the large enhancement of the
transverse response or the momentum-transfer depen-
dence in the quenching of the longitudinal one. It should
also be noted that medium modifications are not an in-
evitable consequence of the quark substructure of the nu-
cleon. For example, a study of the two-nucleon problem
in a flux-tube model of six quarks interacting via single
gluon and pion exchanges [26] indicates that the nucle-
ons retain their individual identities down to very short
separations, with little distortion of their substructures.

Figures 1–2, showing a comparison between the exper-
imental and theoretical RL(q,!) and RT (q,!) for mo-
mentum transfer values in the range 300–570 MeV/c,
immediately lead to the main conclusions of the present
work: (i) the dynamical approach outlined above (with
free nucleon electromagnetic form factors) is in excellent
agreement with experiment in both the longitudinal and
transverse channels; (ii) as illustrated by the di↵erence
between the plane-wave-impulse-approximation (PWIA)
and GFMC one-body-current predictions (curves labeled
PWIA and GFMC-O

1b), correlations and interaction ef-
fects in the final states redistribute strength from the
quasi-elastic peak to the threshold and high-energy trans-
fer regions; and (iii) while the contributions from two-
body charge operators tend to slightly reduce RL(q,!)
in the threshold region, those from two-body currents
generate a large excess of strength in RT (q,!) over
the whole !-spectrum (curves labeled GFMC-O

1b and
GFMC-O

1b+2b), thus o↵setting the quenching noted in
(ii) in the quasi-elastic peak.

As a result of the present study, a consistent picture
of the electromagnetic response of nuclei emerges, which
is at variance with the conventional one of quasi-elastic
scattering as being dominated by single-nucleon knock-
out. This fact also has implications for the nuclear weak
response probed in inclusive neutrino scattering induced
by charge-changing and neutral current processes. In
particular, the energy dependence of the cross section
is quite important in extracting neutrino oscillation pa-
rameters. An earlier study of the sum rules associated
with the weak transverse and vector-axial interference re-
sponse functions in 12C found [27] a large enhancement
due to two-body currents in both the vector and axial
components of the neutral current. Only neutral weak
processes have been considered so far, but one would
expect these conclusions to remain valid in the case of
charge-changing ones. In this connection, it is important
to realize that neutrino and anti-neutrino cross sections
only di↵er in the sign of this vector-axial interference re-

FIG. 1. (Color online) Electromagnetic longitudinal response
functions of 12C for q in the range (300–570) MeV. Exper-
imental data are from Refs. [9, 10]. See text for further
explanations.

sponse, and that this di↵erence is crucial for inferring the
charge-conjugation and parity violating phase, one of the
fundamental parameters of neutrino physics, to be mea-
sured at DUNE. The rest of this paper deals succinctly
with the most salient aspects of the present calculations.

The longitudinal and transverse response functions are
defined as

R↵(q,!) =
X

f

hf |j↵(q,!)|0ihf |j↵(q,!)|0i⇤

⇥ �(Ef � ! � E
0

) , ↵ = L, T (1)

where |0i and |fi represent the nuclear initial and final
states of energies E

0

and Ef , and jL(q,!) and jT (q,!)
are the electromagnetic charge and current operators, re-
spectively. A direct calculation of R↵(q,!) is impractical,
since it would require evaluating each individual transi-
tion amplitude |0i �! |fi induced by the charge and cur-
rent operators. To circumvent this di�culty, the use of
integral transform techniques has proven to be quite help-
ful. One such approach is based on the Laplace transform
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to self-consistently account for nucleon and nuclear struc-
ture [24, 25], leads to a reduction of the proton elec-
tric form factor, and, as a consequence, to a significant
quenching of the longitudinal response function of nu-
clear matter and associated Coulomb sum rule [18]. Such
a model does not explain the large enhancement of the
transverse response or the momentum-transfer depen-
dence in the quenching of the longitudinal one. It should
also be noted that medium modifications are not an in-
evitable consequence of the quark substructure of the nu-
cleon. For example, a study of the two-nucleon problem
in a flux-tube model of six quarks interacting via single
gluon and pion exchanges [26] indicates that the nucle-
ons retain their individual identities down to very short
separations, with little distortion of their substructures.

Figures 1–2, showing a comparison between the exper-
imental and theoretical RL(q,!) and RT (q,!) for mo-
mentum transfer values in the range 300–570 MeV/c,
immediately lead to the main conclusions of the present
work: (i) the dynamical approach outlined above (with
free nucleon electromagnetic form factors) is in excellent
agreement with experiment in both the longitudinal and
transverse channels; (ii) as illustrated by the di↵erence
between the plane-wave-impulse-approximation (PWIA)
and GFMC one-body-current predictions (curves labeled
PWIA and GFMC-O

1b), correlations and interaction ef-
fects in the final states redistribute strength from the
quasi-elastic peak to the threshold and high-energy trans-
fer regions; and (iii) while the contributions from two-
body charge operators tend to slightly reduce RL(q,!)
in the threshold region, those from two-body currents
generate a large excess of strength in RT (q,!) over
the whole !-spectrum (curves labeled GFMC-O

1b and
GFMC-O

1b+2b), thus o↵setting the quenching noted in
(ii) in the quasi-elastic peak.

As a result of the present study, a consistent picture
of the electromagnetic response of nuclei emerges, which
is at variance with the conventional one of quasi-elastic
scattering as being dominated by single-nucleon knock-
out. This fact also has implications for the nuclear weak
response probed in inclusive neutrino scattering induced
by charge-changing and neutral current processes. In
particular, the energy dependence of the cross section
is quite important in extracting neutrino oscillation pa-
rameters. An earlier study of the sum rules associated
with the weak transverse and vector-axial interference re-
sponse functions in 12C found [27] a large enhancement
due to two-body currents in both the vector and axial
components of the neutral current. Only neutral weak
processes have been considered so far, but one would
expect these conclusions to remain valid in the case of
charge-changing ones. In this connection, it is important
to realize that neutrino and anti-neutrino cross sections
only di↵er in the sign of this vector-axial interference re-

FIG. 1. (Color online) Electromagnetic longitudinal response
functions of 12C for q in the range (300–570) MeV. Exper-
imental data are from Refs. [9, 10]. See text for further
explanations.

sponse, and that this di↵erence is crucial for inferring the
charge-conjugation and parity violating phase, one of the
fundamental parameters of neutrino physics, to be mea-
sured at DUNE. The rest of this paper deals succinctly
with the most salient aspects of the present calculations.

The longitudinal and transverse response functions are
defined as

R↵(q,!) =
X

f

hf |j↵(q,!)|0ihf |j↵(q,!)|0i⇤

⇥ �(Ef � ! � E
0

) , ↵ = L, T (1)

where |0i and |fi represent the nuclear initial and final
states of energies E

0

and Ef , and jL(q,!) and jT (q,!)
are the electromagnetic charge and current operators, re-
spectively. A direct calculation of R↵(q,!) is impractical,
since it would require evaluating each individual transi-
tion amplitude |0i �! |fi induced by the charge and cur-
rent operators. To circumvent this di�culty, the use of
integral transform techniques has proven to be quite help-
ful. One such approach is based on the Laplace transform
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to self-consistently account for nucleon and nuclear struc-
ture [24, 25], leads to a reduction of the proton elec-
tric form factor, and, as a consequence, to a significant
quenching of the longitudinal response function of nu-
clear matter and associated Coulomb sum rule [18]. Such
a model does not explain the large enhancement of the
transverse response or the momentum-transfer depen-
dence in the quenching of the longitudinal one. It should
also be noted that medium modifications are not an in-
evitable consequence of the quark substructure of the nu-
cleon. For example, a study of the two-nucleon problem
in a flux-tube model of six quarks interacting via single
gluon and pion exchanges [26] indicates that the nucle-
ons retain their individual identities down to very short
separations, with little distortion of their substructures.

Figures 1–2, showing a comparison between the exper-
imental and theoretical RL(q,!) and RT (q,!) for mo-
mentum transfer values in the range 300–570 MeV/c,
immediately lead to the main conclusions of the present
work: (i) the dynamical approach outlined above (with
free nucleon electromagnetic form factors) is in excellent
agreement with experiment in both the longitudinal and
transverse channels; (ii) as illustrated by the di↵erence
between the plane-wave-impulse-approximation (PWIA)
and GFMC one-body-current predictions (curves labeled
PWIA and GFMC-O

1b), correlations and interaction ef-
fects in the final states redistribute strength from the
quasi-elastic peak to the threshold and high-energy trans-
fer regions; and (iii) while the contributions from two-
body charge operators tend to slightly reduce RL(q,!)
in the threshold region, those from two-body currents
generate a large excess of strength in RT (q,!) over
the whole !-spectrum (curves labeled GFMC-O

1b and
GFMC-O

1b+2b), thus o↵setting the quenching noted in
(ii) in the quasi-elastic peak.

As a result of the present study, a consistent picture
of the electromagnetic response of nuclei emerges, which
is at variance with the conventional one of quasi-elastic
scattering as being dominated by single-nucleon knock-
out. This fact also has implications for the nuclear weak
response probed in inclusive neutrino scattering induced
by charge-changing and neutral current processes. In
particular, the energy dependence of the cross section
is quite important in extracting neutrino oscillation pa-
rameters. An earlier study of the sum rules associated
with the weak transverse and vector-axial interference re-
sponse functions in 12C found [27] a large enhancement
due to two-body currents in both the vector and axial
components of the neutral current. Only neutral weak
processes have been considered so far, but one would
expect these conclusions to remain valid in the case of
charge-changing ones. In this connection, it is important
to realize that neutrino and anti-neutrino cross sections
only di↵er in the sign of this vector-axial interference re-

FIG. 1. (Color online) Electromagnetic longitudinal response
functions of 12C for q in the range (300–570) MeV. Exper-
imental data are from Refs. [9, 10]. See text for further
explanations.

sponse, and that this di↵erence is crucial for inferring the
charge-conjugation and parity violating phase, one of the
fundamental parameters of neutrino physics, to be mea-
sured at DUNE. The rest of this paper deals succinctly
with the most salient aspects of the present calculations.

The longitudinal and transverse response functions are
defined as

R↵(q,!) =
X

f

hf |j↵(q,!)|0ihf |j↵(q,!)|0i⇤

⇥ �(Ef � ! � E
0

) , ↵ = L, T (1)

where |0i and |fi represent the nuclear initial and final
states of energies E

0

and Ef , and jL(q,!) and jT (q,!)
are the electromagnetic charge and current operators, re-
spectively. A direct calculation of R↵(q,!) is impractical,
since it would require evaluating each individual transi-
tion amplitude |0i �! |fi induced by the charge and cur-
rent operators. To circumvent this di�culty, the use of
integral transform techniques has proven to be quite help-
ful. One such approach is based on the Laplace transform
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FIG. 2. (Color online) Same as Fig. 1 but for the electromag-
netic transverse response functions. Since pion production
mechanisms are not included, the present theory underesti-
mates the (transverse) strength in the � peak region, see in
particular the q=570 MeV/c case.

of R↵(q,!)—so called Euclidean response [11]—which we
define as

E↵(q, ⌧) =

Z 1

!+
el

d! e�!⌧ R↵(q,!)

[Gp
E(q,!)]

2

, (2)

where Gp
E(q,!) is the (free) proton electric form factor

and the integration excludes the contribution due to elas-
tic scattering (!

el

is the energy of the recoiling ground
state). We elaborate this issue further below; for now
it su�ces to note that, in the specific case of 12C, the
ground state has quantum numbers J⇡ =0+ and there-
fore the elastic contribution vanishes in the transverse
channel. With the definition given in Eq. (2), the Eu-
clidean response function above can be thought of as be-
ing due to point-like, but strongly interacting, nucleons,
and can simply be expressed as

E↵(q, ⌧)=h0|O†
↵(q)e

�(H�E0)⌧O↵(q)|0i� |F↵(q)|2e�⌧!el ,
(3)

where H is the nuclear Hamiltonian (here, the AV18/IL7
model), F↵(q) = h0|O↵(q)|0i is the elastic form fac-
tor, and in the electromagnetic operators O↵(q) the de-

pendence on the energy transfer ! has been removed
by dividing the current j↵(q,!) by Gp

E(q,!) [15]. The
calculation of this matrix element is then carried out
with GFMC methods [11] similar to those used in pro-
jecting out the exact ground state of H from a trial
state [28]. It proceeds in two steps. First, an un-
constrained imaginary-time propagation of the state |0i
is performed and saved. Next, the states O↵(q)|0i
are evolved in imaginary time following the path pre-
viously saved. During this latter imaginary-time evolu-
tion, scalar products of exp [�(H�E

0

) ⌧i]O↵(q)|0i with
O↵(q)|0i are evaluated on a grid of ⌧i values, and from
these scalar products estimates for E↵(q, ⌧i) are obtained
(a complete discussion of the methods is in Refs. [11, 29]).
Following Ref. [15] (see also extended material submit-

ted in support of that publication), we have exploited
maximum entropy techniques [13, 14] to perform the an-
alytic continuation of the Euclidean response function—
corresponding to the inversion of the Laplace transform
of Eq. (2). However, we have improved on the inver-
sion procedure described in [15] in order to better prop-
agate the statistical errors associated with E↵(q, ⌧) into
R↵(q,!). Specifically, the smallest possible value for pa-
rameter ↵ (see Ref. [15]) has been chosen to perform a
first inversion of the Laplace transform, which is then in-
dependent on the prior. The resulting response function
R(0) is the one whose Laplace transform E(0) is the clos-
est to the original average GFMC Euclidean response.
Then, N = 100 Euclidean response functions are sam-
pled from a multivariate gaussian distribution, with mean
value E(0) and covariance estimated from the original set
of GFMC Euclidean responses. The corresponding re-
sponse functions, obtained using the so called “historic
maximum entropy” technique, are used to estimate the
mean value and the variance of the final inverted response
function.

q (MeV/c) 2+ 0+ 4+

300 0.1286 0.0311 0.0060
380 0.0745 0.0051 0.0075
570 0.0064 0.0046 0.0037

TABLE I. Measured longitudinal transition form factors, de-
fined as hf |OL(q)|0i/Z, to the f =2+, 0+ (Hoyle), and 4+
states in 12C. Experimental data are from Refs. [30–32], and
have been divided by the proton electric form factorGp

E(q,!f )
with !f = Ef � E0.

We now proceed to address the issue alluded to earlier.
The low-lying spectrum of 12C consists of J⇡ =2+, 0+

(Hoyle), and 4+ states with excitation energies E?
f � E

0

experimentally known to be, respectively, 4.44, 7.65, and
14.08 in MeV units [33]. The contributions of these states
to the quasi-elastic longitudinal and transverse response
functions extracted from inclusive (e, e0) cross section
measurements are not included. Therefore, before com-
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to self-consistently account for nucleon and nuclear struc-
ture [24, 25], leads to a reduction of the proton elec-
tric form factor, and, as a consequence, to a significant
quenching of the longitudinal response function of nu-
clear matter and associated Coulomb sum rule [18]. Such
a model does not explain the large enhancement of the
transverse response or the momentum-transfer depen-
dence in the quenching of the longitudinal one. It should
also be noted that medium modifications are not an in-
evitable consequence of the quark substructure of the nu-
cleon. For example, a study of the two-nucleon problem
in a flux-tube model of six quarks interacting via single
gluon and pion exchanges [26] indicates that the nucle-
ons retain their individual identities down to very short
separations, with little distortion of their substructures.

Figures 1–2, showing a comparison between the exper-
imental and theoretical RL(q,!) and RT (q,!) for mo-
mentum transfer values in the range 300–570 MeV/c,
immediately lead to the main conclusions of the present
work: (i) the dynamical approach outlined above (with
free nucleon electromagnetic form factors) is in excellent
agreement with experiment in both the longitudinal and
transverse channels; (ii) as illustrated by the di↵erence
between the plane-wave-impulse-approximation (PWIA)
and GFMC one-body-current predictions (curves labeled
PWIA and GFMC-O

1b), correlations and interaction ef-
fects in the final states redistribute strength from the
quasi-elastic peak to the threshold and high-energy trans-
fer regions; and (iii) while the contributions from two-
body charge operators tend to slightly reduce RL(q,!)
in the threshold region, those from two-body currents
generate a large excess of strength in RT (q,!) over
the whole !-spectrum (curves labeled GFMC-O

1b and
GFMC-O

1b+2b), thus o↵setting the quenching noted in
(ii) in the quasi-elastic peak.

As a result of the present study, a consistent picture
of the electromagnetic response of nuclei emerges, which
is at variance with the conventional one of quasi-elastic
scattering as being dominated by single-nucleon knock-
out. This fact also has implications for the nuclear weak
response probed in inclusive neutrino scattering induced
by charge-changing and neutral current processes. In
particular, the energy dependence of the cross section
is quite important in extracting neutrino oscillation pa-
rameters. An earlier study of the sum rules associated
with the weak transverse and vector-axial interference re-
sponse functions in 12C found [27] a large enhancement
due to two-body currents in both the vector and axial
components of the neutral current. Only neutral weak
processes have been considered so far, but one would
expect these conclusions to remain valid in the case of
charge-changing ones. In this connection, it is important
to realize that neutrino and anti-neutrino cross sections
only di↵er in the sign of this vector-axial interference re-

FIG. 1. (Color online) Electromagnetic longitudinal response
functions of 12C for q in the range (300–570) MeV. Exper-
imental data are from Refs. [9, 10]. See text for further
explanations.

sponse, and that this di↵erence is crucial for inferring the
charge-conjugation and parity violating phase, one of the
fundamental parameters of neutrino physics, to be mea-
sured at DUNE. The rest of this paper deals succinctly
with the most salient aspects of the present calculations.

The longitudinal and transverse response functions are
defined as

R↵(q,!) =
X

f

hf |j↵(q,!)|0ihf |j↵(q,!)|0i⇤

⇥ �(Ef � ! � E
0

) , ↵ = L, T (1)

where |0i and |fi represent the nuclear initial and final
states of energies E

0

and Ef , and jL(q,!) and jT (q,!)
are the electromagnetic charge and current operators, re-
spectively. A direct calculation of R↵(q,!) is impractical,
since it would require evaluating each individual transi-
tion amplitude |0i �! |fi induced by the charge and cur-
rent operators. To circumvent this di�culty, the use of
integral transform techniques has proven to be quite help-
ful. One such approach is based on the Laplace transform
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quasi-elastic peak. In the 00, 0z, zz, and xx response
functions the vector (V NC) and axial (ANC) compo-
nents of the weak neutral current, jNC

↵ = jV NC
↵ + jANC

↵ ,
do not interfere; in these cases, R↵� =RV NC

↵� +RANC
↵� and

the separated RV NC
xx and RANC

xx are illustrated in Fig. 2.
By contrast, the xy response function arises solely on ac-
count of this interference. The ANC contribution to R↵�

is typically much larger than the V NC one (for example,
RANC

xx ' 3⇥RV NC
xx ). Furthermore, one expects in 12C the

00 and xx V NC response functions to be proportional to
the longitudinal and transverse electromagnetic response
functions RL and RT via RV NC

00/xx ' RL/T /4, since the

isoscalar and isovector pieces in jV NC are related to the
corresponding ones in the electromagnetic current jEM

by the factors, respectively, �2 sin2✓W and (1�2 sin2✓W )
(sin2✓W ' 0.23), and the matrix elements of these pieces
add up incoherently in the response of an isoscalar target
such as 12C. Lastly, we note that two-body terms in the
ANC increase the one-body RANC

xx response by about
20% in the quasi-elastic region. This increase is much
larger than the ' 2–4% that is obtained in the case of
Gamow-Teller rates between low-lying states near thresh-
old, induced by the axial component of the weak charged
current [24].

In Fig. 3 we show the ⌫ and ⌫ di↵erential cross sec-
tions for a fixed value of the three-momentum transfer as
function of the energy transfer for a number of scattering
angles. In terms of these variables, the initial energy E
of the neutrino, shown in the insets of Fig. 3, is given by

E =
!

2

"
1 +

s

1 +
Q2

!2 sin2(✓/2)

#
, (4)

and its final energy E0 =E � !. Because of the can-
cellation in Eq. (1) between the dominant contributions
proportional to the Rxx and Rxy response functions, the
⌫ cross section decreases rapidly relative to the ⌫ cross
section as the scattering angle changes from the for-
ward to the backward hemisphere. For this same rea-
son, two-body current contributions are smaller for the
⌫ than for the ⌫ cross section, in fact becoming negligi-
ble for the ⌫ backward-angle cross section. As the angle
changes from the forward to the backward hemisphere,
the ⌫ cross section drops by almost an order of mag-
nitude, and in the limit ✓= 180� is just proportional
to Rxx(q,!) � Rxy(q,!). In terms of initial and final
neutrino energies E and E0—the kinematical variables
most relevant for the analysis of accelerator neutrino

FIG. 3. (Color online) Weak neutral ⌫ (black curves) and
⌫ (red curves) di↵erential cross sections in 12C at q=570
MeV/c, obtained with with one- and one- and two-body terms
in the NC. The final neutrino angle is indicated in each panel
and the initial neutrino energy is shown in the inset.

experiments—we note that E ranges from 1–2 GeV at
✓=15� to 0.3–0.5 GeV at ✓=120�, and so the present
results computed at fixed q=570 MeV/c as function of
! span a broad kinematical range in terms of the vari-
ables E and E0.

This research is supported by the U.S. Depart-
ment of Energy, O�ce of Science, O�ce of Nu-
clear Physics, under contracts DE-AC02-06CH11357

AL et al. in preparation

4

course, these considerations remain valid for the elastic
contributions alluded to earlier in Eq. (3).

Figure 1 shows that contributions from two-body terms
in the NC significantly increase (in magnitude) the re-
sponse functions obtained in impulse approximation (i.e.,
with one-body currents) over the whole quasi-elastic re-
gion, but for R00 on the low ! side. This enhancement
is mostly due to constructive interference between the
one- and two-body current matrix elements, and is con-
sistent with that expected on the basis of sum-rule analy-
ses [18]. Counter to the electromagnetic case [17], we find
that two-body terms in the weak neutral charge produce
substantial excess strength in R00 and R0z beyond the
quasi-elastic peak. In the 00, 0z, zz, and xx response
functions the vector (V NC) and axial (ANC) compo-
nents of the weak neutral current, jNC

↵ = jV NC
↵ + jANC

↵ ,
do not interfere; in these cases, R↵� =RV NC

↵� +RANC
↵� and

the separated RV NC
xx and RANC

xx are illustrated in Fig. 2.
By contrast, the xy response function arises solely on ac-
count of this interference. The ANC contribution to R↵�

is typically much larger than the V NC one (for example,
RANC

xx ' 3⇥RV NC
xx ). Furthermore, one expects in 12C the

00 and xx V NC response functions to be proportional to
the longitudinal and transverse electromagnetic response
functions RL and RT via RV NC

00/xx ' RL/T /4, since the

isoscalar and isovector pieces in jV NC are related to the
corresponding ones in the electromagnetic current jEM

by the factors, respectively, �2 sin2✓W and (1�2 sin2✓W )
(sin2✓W ' 0.23), and the matrix elements of these pieces
add up incoherently in the response of an isoscalar target
such as 12C. Lastly, we note that two-body terms in the
ANC increase the one-body RANC

xx response by about
20% in the quasi-elastic region. This increase is much
larger than the ' 2–4% that is obtained in the case of
Gamow-Teller rates between low-lying states near thresh-
old, induced by the axial component of the weak charged
current [24].

In Fig. 3 we show the ⌫ and ⌫ di↵erential cross sec-
tions for a fixed value of the three-momentum transfer as
function of the energy transfer for a number of scattering
angles. In terms of these variables, the initial energy E
of the neutrino, shown in the insets of Fig. 3, is given by

E =
!

2

"
1 +

s

1 +
Q2

!2 sin2(✓/2)

#
, (4)

and its final energy E0 =E � !. Because of the can-
cellation in Eq. (1) between the dominant contributions
proportional to the Rxx and Rxy response functions, the
⌫ cross section decreases rapidly relative to the ⌫ cross
section as the scattering angle changes from the for-
ward to the backward hemisphere. For this same rea-
son, two-body current contributions are smaller for the

FIG. 3. (Color online) Weak neutral ⌫ (black curves) and
⌫ (red curves) di↵erential cross sections in 12C at q=570
MeV/c, obtained with with one- and one- and two-body terms
in the NC. The final neutrino angle is indicated in each panel
and the initial neutrino energy is shown in the inset.

⌫ than for the ⌫ cross section, in fact becoming negligi-
ble for the ⌫ backward-angle cross section. As the angle
changes from the forward to the backward hemisphere,
the ⌫ cross section drops by almost an order of mag-
nitude, and in the limit ✓= 180� is just proportional
to Rxx(q,!) � Rxy(q,!). In terms of initial and final
neutrino energies E and E0—the kinematical variables
most relevant for the analysis of accelerator neutrino

4

course, these considerations remain valid for the elastic
contributions alluded to earlier in Eq. (3).

Figure 1 shows that contributions from two-body terms
in the NC significantly increase (in magnitude) the re-
sponse functions obtained in impulse approximation (i.e.,
with one-body currents) over the whole quasi-elastic re-
gion, but for R00 on the low ! side. This enhancement
is mostly due to constructive interference between the
one- and two-body current matrix elements, and is con-
sistent with that expected on the basis of sum-rule analy-
ses [18]. Counter to the electromagnetic case [17], we find
that two-body terms in the weak neutral charge produce
substantial excess strength in R00 and R0z beyond the
quasi-elastic peak. In the 00, 0z, zz, and xx response
functions the vector (V NC) and axial (ANC) compo-
nents of the weak neutral current, jNC

↵ = jV NC
↵ + jANC

↵ ,
do not interfere; in these cases, R↵� =RV NC

↵� +RANC
↵� and

the separated RV NC
xx and RANC

xx are illustrated in Fig. 2.
By contrast, the xy response function arises solely on ac-
count of this interference. The ANC contribution to R↵�

is typically much larger than the V NC one (for example,
RANC

xx ' 3⇥RV NC
xx ). Furthermore, one expects in 12C the

00 and xx V NC response functions to be proportional to
the longitudinal and transverse electromagnetic response
functions RL and RT via RV NC

00/xx ' RL/T /4, since the

isoscalar and isovector pieces in jV NC are related to the
corresponding ones in the electromagnetic current jEM

by the factors, respectively, �2 sin2✓W and (1�2 sin2✓W )
(sin2✓W ' 0.23), and the matrix elements of these pieces
add up incoherently in the response of an isoscalar target
such as 12C. Lastly, we note that two-body terms in the
ANC increase the one-body RANC

xx response by about
20% in the quasi-elastic region. This increase is much
larger than the ' 2–4% that is obtained in the case of
Gamow-Teller rates between low-lying states near thresh-
old, induced by the axial component of the weak charged
current [24].

In Fig. 3 we show the ⌫ and ⌫ di↵erential cross sec-
tions for a fixed value of the three-momentum transfer as
function of the energy transfer for a number of scattering
angles. In terms of these variables, the initial energy E
of the neutrino, shown in the insets of Fig. 3, is given by

E =
!

2

"
1 +

s

1 +
Q2

!2 sin2(✓/2)

#
, (4)

and its final energy E0 =E � !. Because of the can-
cellation in Eq. (1) between the dominant contributions
proportional to the Rxx and Rxy response functions, the
⌫ cross section decreases rapidly relative to the ⌫ cross
section as the scattering angle changes from the for-
ward to the backward hemisphere. For this same rea-
son, two-body current contributions are smaller for the

FIG. 3. (Color online) Weak neutral ⌫ (black curves) and
⌫ (red curves) di↵erential cross sections in 12C at q=570
MeV/c, obtained with with one- and one- and two-body terms
in the NC. The final neutrino angle is indicated in each panel
and the initial neutrino energy is shown in the inset.

⌫ than for the ⌫ cross section, in fact becoming negligi-
ble for the ⌫ backward-angle cross section. As the angle
changes from the forward to the backward hemisphere,
the ⌫ cross section drops by almost an order of mag-
nitude, and in the limit ✓= 180� is just proportional
to Rxx(q,!) � Rxy(q,!). In terms of initial and final
neutrino energies E and E0—the kinematical variables
most relevant for the analysis of accelerator neutrino



• Because of the cancellations between the dominant contributions proportional to the Rxx and 
Rxy response functions, the anti-neutrino cross section decreases rapidly relative to the neutrino 
cross section as the scattering angle changes from the forward to the backward hemisphere

4

one- and two-body current matrix elements, and is con-
sistent with that expected on the basis of sum-rule analy-
ses [18]. Counter to the electromagnetic case [17], we find
that two-body terms in the weak neutral charge produce
substantial excess strength in R00 and R0z beyond the
quasi-elastic peak. In the 00, 0z, zz, and xx response
functions the vector (V NC) and axial (ANC) compo-
nents of the weak neutral current, jNC

↵ = jV NC
↵ + jANC

↵ ,
do not interfere; in these cases, R↵� =RV NC

↵� +RANC
↵� and

the separated RV NC
xx and RANC

xx are illustrated in Fig. 2.
By contrast, the xy response function arises solely on ac-
count of this interference. The ANC contribution to R↵�

is typically much larger than the V NC one (for example,
RANC

xx ' 3⇥RV NC
xx ). Furthermore, one expects in 12C the

00 and xx V NC response functions to be proportional to
the longitudinal and transverse electromagnetic response
functions RL and RT via RV NC

00/xx ' RL/T /4, since the

isoscalar and isovector pieces in jV NC are related to the
corresponding ones in the electromagnetic current jEM

by the factors, respectively, �2 sin2✓W and (1�2 sin2✓W )
(sin2✓W ' 0.23), and the matrix elements of these pieces
add up incoherently in the response of an isoscalar target
such as 12C. Lastly, we note that two-body terms in the
ANC increase the one-body RANC

xx response by about
20% in the quasi-elastic region. This increase is much
larger than the ' 2–4% that is obtained in the case of
Gamow-Teller rates between low-lying states near thresh-
old, induced by the axial component of the weak charged
current [24].

In Fig. 3 we show the ⌫ and ⌫ di↵erential cross sec-
tions for a fixed value of the three-momentum transfer as
function of the energy transfer for a number of scattering
angles. In terms of these variables, the initial energy E
of the neutrino, shown in the insets of Fig. 3, is given by

E =
!

2

"
1 +

s

1 +
Q2

!2 sin2(✓/2)

#
, (4)

and its final energy E0 =E � !. Because of the can-
cellation in Eq. (1) between the dominant contributions
proportional to the Rxx and Rxy response functions, the
⌫ cross section decreases rapidly relative to the ⌫ cross
section as the scattering angle changes from the for-
ward to the backward hemisphere. For this same rea-
son, two-body current contributions are smaller for the
⌫ than for the ⌫ cross section, in fact becoming negligi-
ble for the ⌫ backward-angle cross section. As the angle
changes from the forward to the backward hemisphere,
the ⌫ cross section drops by almost an order of mag-
nitude, and in the limit ✓= 180� is just proportional
to Rxx(q,!) � Rxy(q,!). In terms of initial and final
neutrino energies E and E0—the kinematical variables
most relevant for the analysis of accelerator neutrino

FIG. 3. (Color online) Weak neutral ⌫ (black curves) and
⌫ (red curves) di↵erential cross sections in 12C at q=570
MeV/c, obtained with with one- and one- and two-body terms
in the NC. The final neutrino angle is indicated in each panel
and the initial neutrino energy is shown in the inset.

experiments—we note that E ranges from 1–2 GeV at
✓=15� to 0.3–0.5 GeV at ✓=120�, and so the present
results computed at fixed q=570 MeV/c as function of
! span a broad kinematical range in terms of the vari-
ables E and E0.

This research is supported by the U.S. Depart-
ment of Energy, O�ce of Science, O�ce of Nu-
clear Physics, under contracts DE-AC02-06CH11357

AL et al. in preparation

12C neutral-current cross-section 

4

course, these considerations remain valid for the elastic
contributions alluded to earlier in Eq. (3).

Figure 1 shows that contributions from two-body terms
in the NC significantly increase (in magnitude) the re-
sponse functions obtained in impulse approximation (i.e.,
with one-body currents) over the whole quasi-elastic re-
gion, but for R00 on the low ! side. This enhancement
is mostly due to constructive interference between the
one- and two-body current matrix elements, and is con-
sistent with that expected on the basis of sum-rule analy-
ses [18]. Counter to the electromagnetic case [17], we find
that two-body terms in the weak neutral charge produce
substantial excess strength in R00 and R0z beyond the
quasi-elastic peak. In the 00, 0z, zz, and xx response
functions the vector (V NC) and axial (ANC) compo-
nents of the weak neutral current, jNC

↵ = jV NC
↵ + jANC

↵ ,
do not interfere; in these cases, R↵� =RV NC

↵� +RANC
↵� and

the separated RV NC
xx and RANC

xx are illustrated in Fig. 2.
By contrast, the xy response function arises solely on ac-
count of this interference. The ANC contribution to R↵�

is typically much larger than the V NC one (for example,
RANC

xx ' 3⇥RV NC
xx ). Furthermore, one expects in 12C the

00 and xx V NC response functions to be proportional to
the longitudinal and transverse electromagnetic response
functions RL and RT via RV NC

00/xx ' RL/T /4, since the

isoscalar and isovector pieces in jV NC are related to the
corresponding ones in the electromagnetic current jEM

by the factors, respectively, �2 sin2✓W and (1�2 sin2✓W )
(sin2✓W ' 0.23), and the matrix elements of these pieces
add up incoherently in the response of an isoscalar target
such as 12C. Lastly, we note that two-body terms in the
ANC increase the one-body RANC

xx response by about
20% in the quasi-elastic region. This increase is much
larger than the ' 2–4% that is obtained in the case of
Gamow-Teller rates between low-lying states near thresh-
old, induced by the axial component of the weak charged
current [24].

In Fig. 3 we show the ⌫ and ⌫ di↵erential cross sec-
tions for a fixed value of the three-momentum transfer as
function of the energy transfer for a number of scattering
angles. In terms of these variables, the initial energy E
of the neutrino, shown in the insets of Fig. 3, is given by

E =
!

2

"
1 +

s

1 +
Q2

!2 sin2(✓/2)

#
, (4)

and its final energy E0 =E � !. Because of the can-
cellation in Eq. (1) between the dominant contributions
proportional to the Rxx and Rxy response functions, the
⌫ cross section decreases rapidly relative to the ⌫ cross
section as the scattering angle changes from the for-
ward to the backward hemisphere. For this same rea-
son, two-body current contributions are smaller for the

FIG. 3. (Color online) Weak neutral ⌫ (black curves) and
⌫ (red curves) di↵erential cross sections in 12C at q=570
MeV/c, obtained with with one- and one- and two-body terms
in the NC. The final neutrino angle is indicated in each panel
and the initial neutrino energy is shown in the inset.

⌫ than for the ⌫ cross section, in fact becoming negligi-
ble for the ⌫ backward-angle cross section. As the angle
changes from the forward to the backward hemisphere,
the ⌫ cross section drops by almost an order of mag-
nitude, and in the limit ✓= 180� is just proportional
to Rxx(q,!) � Rxy(q,!). In terms of initial and final
neutrino energies E and E0—the kinematical variables
most relevant for the analysis of accelerator neutrino

4

course, these considerations remain valid for the elastic
contributions alluded to earlier in Eq. (3).

Figure 1 shows that contributions from two-body terms
in the NC significantly increase (in magnitude) the re-
sponse functions obtained in impulse approximation (i.e.,
with one-body currents) over the whole quasi-elastic re-
gion, but for R00 on the low ! side. This enhancement
is mostly due to constructive interference between the
one- and two-body current matrix elements, and is con-
sistent with that expected on the basis of sum-rule analy-
ses [18]. Counter to the electromagnetic case [17], we find
that two-body terms in the weak neutral charge produce
substantial excess strength in R00 and R0z beyond the
quasi-elastic peak. In the 00, 0z, zz, and xx response
functions the vector (V NC) and axial (ANC) compo-
nents of the weak neutral current, jNC

↵ = jV NC
↵ + jANC

↵ ,
do not interfere; in these cases, R↵� =RV NC

↵� +RANC
↵� and

the separated RV NC
xx and RANC

xx are illustrated in Fig. 2.
By contrast, the xy response function arises solely on ac-
count of this interference. The ANC contribution to R↵�

is typically much larger than the V NC one (for example,
RANC

xx ' 3⇥RV NC
xx ). Furthermore, one expects in 12C the

00 and xx V NC response functions to be proportional to
the longitudinal and transverse electromagnetic response
functions RL and RT via RV NC

00/xx ' RL/T /4, since the

isoscalar and isovector pieces in jV NC are related to the
corresponding ones in the electromagnetic current jEM

by the factors, respectively, �2 sin2✓W and (1�2 sin2✓W )
(sin2✓W ' 0.23), and the matrix elements of these pieces
add up incoherently in the response of an isoscalar target
such as 12C. Lastly, we note that two-body terms in the
ANC increase the one-body RANC

xx response by about
20% in the quasi-elastic region. This increase is much
larger than the ' 2–4% that is obtained in the case of
Gamow-Teller rates between low-lying states near thresh-
old, induced by the axial component of the weak charged
current [24].

In Fig. 3 we show the ⌫ and ⌫ di↵erential cross sec-
tions for a fixed value of the three-momentum transfer as
function of the energy transfer for a number of scattering
angles. In terms of these variables, the initial energy E
of the neutrino, shown in the insets of Fig. 3, is given by

E =
!

2

"
1 +

s

1 +
Q2

!2 sin2(✓/2)

#
, (4)

and its final energy E0 =E � !. Because of the can-
cellation in Eq. (1) between the dominant contributions
proportional to the Rxx and Rxy response functions, the
⌫ cross section decreases rapidly relative to the ⌫ cross
section as the scattering angle changes from the for-
ward to the backward hemisphere. For this same rea-
son, two-body current contributions are smaller for the

FIG. 3. (Color online) Weak neutral ⌫ (black curves) and
⌫ (red curves) di↵erential cross sections in 12C at q=570
MeV/c, obtained with with one- and one- and two-body terms
in the NC. The final neutrino angle is indicated in each panel
and the initial neutrino energy is shown in the inset.

⌫ than for the ⌫ cross section, in fact becoming negligi-
ble for the ⌫ backward-angle cross section. As the angle
changes from the forward to the backward hemisphere,
the ⌫ cross section drops by almost an order of mag-
nitude, and in the limit ✓= 180� is just proportional
to Rxx(q,!) � Rxy(q,!). In terms of initial and final
neutrino energies E and E0—the kinematical variables
most relevant for the analysis of accelerator neutrino



• For this same reason, two-body current contributions are smaller for the antineutrino than for 
the neutrino cross section, in fact becoming negligible for the antineutrino backward-angle

4

one- and two-body current matrix elements, and is con-
sistent with that expected on the basis of sum-rule analy-
ses [18]. Counter to the electromagnetic case [17], we find
that two-body terms in the weak neutral charge produce
substantial excess strength in R00 and R0z beyond the
quasi-elastic peak. In the 00, 0z, zz, and xx response
functions the vector (V NC) and axial (ANC) compo-
nents of the weak neutral current, jNC

↵ = jV NC
↵ + jANC

↵ ,
do not interfere; in these cases, R↵� =RV NC

↵� +RANC
↵� and

the separated RV NC
xx and RANC

xx are illustrated in Fig. 2.
By contrast, the xy response function arises solely on ac-
count of this interference. The ANC contribution to R↵�

is typically much larger than the V NC one (for example,
RANC

xx ' 3⇥RV NC
xx ). Furthermore, one expects in 12C the

00 and xx V NC response functions to be proportional to
the longitudinal and transverse electromagnetic response
functions RL and RT via RV NC

00/xx ' RL/T /4, since the

isoscalar and isovector pieces in jV NC are related to the
corresponding ones in the electromagnetic current jEM

by the factors, respectively, �2 sin2✓W and (1�2 sin2✓W )
(sin2✓W ' 0.23), and the matrix elements of these pieces
add up incoherently in the response of an isoscalar target
such as 12C. Lastly, we note that two-body terms in the
ANC increase the one-body RANC

xx response by about
20% in the quasi-elastic region. This increase is much
larger than the ' 2–4% that is obtained in the case of
Gamow-Teller rates between low-lying states near thresh-
old, induced by the axial component of the weak charged
current [24].

In Fig. 3 we show the ⌫ and ⌫ di↵erential cross sec-
tions for a fixed value of the three-momentum transfer as
function of the energy transfer for a number of scattering
angles. In terms of these variables, the initial energy E
of the neutrino, shown in the insets of Fig. 3, is given by

E =
!

2

"
1 +

s

1 +
Q2

!2 sin2(✓/2)

#
, (4)

and its final energy E0 =E � !. Because of the can-
cellation in Eq. (1) between the dominant contributions
proportional to the Rxx and Rxy response functions, the
⌫ cross section decreases rapidly relative to the ⌫ cross
section as the scattering angle changes from the for-
ward to the backward hemisphere. For this same rea-
son, two-body current contributions are smaller for the
⌫ than for the ⌫ cross section, in fact becoming negligi-
ble for the ⌫ backward-angle cross section. As the angle
changes from the forward to the backward hemisphere,
the ⌫ cross section drops by almost an order of mag-
nitude, and in the limit ✓= 180� is just proportional
to Rxx(q,!) � Rxy(q,!). In terms of initial and final
neutrino energies E and E0—the kinematical variables
most relevant for the analysis of accelerator neutrino

FIG. 3. (Color online) Weak neutral ⌫ (black curves) and
⌫ (red curves) di↵erential cross sections in 12C at q=570
MeV/c, obtained with with one- and one- and two-body terms
in the NC. The final neutrino angle is indicated in each panel
and the initial neutrino energy is shown in the inset.

experiments—we note that E ranges from 1–2 GeV at
✓=15� to 0.3–0.5 GeV at ✓=120�, and so the present
results computed at fixed q=570 MeV/c as function of
! span a broad kinematical range in terms of the vari-
ables E and E0.

This research is supported by the U.S. Depart-
ment of Energy, O�ce of Science, O�ce of Nu-
clear Physics, under contracts DE-AC02-06CH11357

AL et al. in preparation

12C neutral-current cross-section 

4

course, these considerations remain valid for the elastic
contributions alluded to earlier in Eq. (3).

Figure 1 shows that contributions from two-body terms
in the NC significantly increase (in magnitude) the re-
sponse functions obtained in impulse approximation (i.e.,
with one-body currents) over the whole quasi-elastic re-
gion, but for R00 on the low ! side. This enhancement
is mostly due to constructive interference between the
one- and two-body current matrix elements, and is con-
sistent with that expected on the basis of sum-rule analy-
ses [18]. Counter to the electromagnetic case [17], we find
that two-body terms in the weak neutral charge produce
substantial excess strength in R00 and R0z beyond the
quasi-elastic peak. In the 00, 0z, zz, and xx response
functions the vector (V NC) and axial (ANC) compo-
nents of the weak neutral current, jNC

↵ = jV NC
↵ + jANC

↵ ,
do not interfere; in these cases, R↵� =RV NC

↵� +RANC
↵� and

the separated RV NC
xx and RANC

xx are illustrated in Fig. 2.
By contrast, the xy response function arises solely on ac-
count of this interference. The ANC contribution to R↵�

is typically much larger than the V NC one (for example,
RANC

xx ' 3⇥RV NC
xx ). Furthermore, one expects in 12C the

00 and xx V NC response functions to be proportional to
the longitudinal and transverse electromagnetic response
functions RL and RT via RV NC

00/xx ' RL/T /4, since the

isoscalar and isovector pieces in jV NC are related to the
corresponding ones in the electromagnetic current jEM

by the factors, respectively, �2 sin2✓W and (1�2 sin2✓W )
(sin2✓W ' 0.23), and the matrix elements of these pieces
add up incoherently in the response of an isoscalar target
such as 12C. Lastly, we note that two-body terms in the
ANC increase the one-body RANC

xx response by about
20% in the quasi-elastic region. This increase is much
larger than the ' 2–4% that is obtained in the case of
Gamow-Teller rates between low-lying states near thresh-
old, induced by the axial component of the weak charged
current [24].

In Fig. 3 we show the ⌫ and ⌫ di↵erential cross sec-
tions for a fixed value of the three-momentum transfer as
function of the energy transfer for a number of scattering
angles. In terms of these variables, the initial energy E
of the neutrino, shown in the insets of Fig. 3, is given by

E =
!

2

"
1 +

s

1 +
Q2

!2 sin2(✓/2)

#
, (4)

and its final energy E0 =E � !. Because of the can-
cellation in Eq. (1) between the dominant contributions
proportional to the Rxx and Rxy response functions, the
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experiments—we note that E ranges from 1–2 GeV at
✓=15� to 0.3–0.5 GeV at ✓=120�, and so the present
results computed at fixed q=570 MeV/c as function of
! span a broad kinematical range in terms of the vari-
ables E and E0.

This research is supported by the U.S. Depart-
ment of Energy, O�ce of Science, O�ce of Nu-
clear Physics, under contracts DE-AC02-06CH11357



Scaling properties of the GFMC responses 
• The experimental longitudinal response 
functions of 4He and 12C exhibit scaling 
of the first kind
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tic and the low lying excited states—J⇡ = 2+, 0+2 ,
and 4+—contributions. In order to compare experi-
ments —which refer only to the inclusive quasi-elastic
response—with GFMC calculations, these contributions
have been explicitly subtracted from the Euclidean re-
sponse functions, before performing the inversion. In
principle, GFMC calculations of the excitation energies
and of the transition form factors of these states should
be performed. This would require the explicit construc-
tion of the wave functions associated to these states and
the calculation of the corresponding form factors, which
involves nontrivial di�culties. For this reason, the ex-
perimental energies and form factors have been used in
Ref. [16]. However, this approximate procedure brings
about residual e↵ects in the response functions. Because
of the fast drop of the form factors with increasing mo-
mentum transfer, in Ref. [16] it is argued that these cor-
rections are expected to be significant in the longitudinal
channel at |q| = 300 MeV, and |q| = 380 MeV, but
much smaller at |q| = 570 MeV. On the other hand, in
the transverse channel such contributions are expected
to be always negligible [25, 26].

The scaling functions displayed in the upper panels ex-
hibit a clearly asymmetric shape, with a tail extending in
the region  nr > 0, as opposed to the GRFG model pre-
dictions. The di↵erence in magnitude between the lon-
gitudinal and transverse GFMC scaling functions, which
becomes less evident for larger values of |q|, is likely to
be ascribed to the residual e↵ects of the low lying excited
state contributions discussed above. For the aforemen-
tioned reason, in the lower panels, the agreement be-
tween the longitudinal GFMC scaling function and the
experimental data improves with increasing momentum
transfer.

The di↵erent behavior of the transverse scaling func-
tions displayed in the upper and lower panels deserves
some comments. In the lower panels, the red curves
present a large non vanishing tail for  > 1, although
those are expected to approach zero, as shown in the
upper panels. This discrepancy can be best understood
considering the results of Fig. 1. The relativistic and non
relativistic expressions of the transverse prefactors used
to extract the scaling functions are sizably di↵erent in the
kinematic setups considered. In particular, for |q| = 570
MeV, these are very similar for �1.5    0 where their
ratio is almost 1, while in the region  � 0 their trend
is significantly di↵erent and Gnr

T /GT increases for larger
values of  . Relativistic corrections have opposite e↵ects
in GL and GT . This further contributes to the break-
ing of zeroth kind scaling shown in the lower panels of
Figs. 2, 3 and 4.

Figure 5 shows the experimental scaling functions of
12C extracted from the experimental data of Ref. [23]
for |q| = 300, 380, and 570 MeV. Although scaling is
expected to occur in the limit of large momentum trans-
fer, within the error bars of the di↵erent data points, the
longitudinal response functions scale to a universal curve
over the entire quasi-elastic peak, even in the region of

FIG. 5. (color online) Experimental scaling functions of
12C obtained from the longitudinal responses for |q| =
300, 380, 570 MeV [23].

FIG. 6. (color online) Longitudinal scaling functions of 12C
obtained from GFMC calculations for |q| = 300, 380, 570
MeV as a function of  nr.

moderate |q|.
In Figs. 6 and 7 the longitudinal and transverse GFMC

scaling functions are shown as a function of  nr for
|q| = 300, 380, and 570 MeV. In the transverse channel,
the di↵erence between the three curves in the  nr < 0
region suggests that, for |q| = 300, 380 MeV, the require-
ment � = �nr

2 [see Eq. (36)]—which is necessary to intro-
duce the scaling variable—is not satisfied for all the val-
ues of !. Indeed, the scaling violation in the low-energy
transfer region is clearly visible. In the longitudinal case,
although theoretical results seem to indicate that first-
kind scaling occurs, the interpretation of the di↵erences
between the three curves is obscured by the residual ef-
fect of the low-lying transitions discussed above.
To better elucidate the scaling properties of the GFMC

calculations, it is worth to analyze the 4He nucleus, whose
longitudinal response functions are not a↵ected by low-
lying transitions. In Fig. 8, the scaling functions obtained
from the experimental data of the longitudinal responses
of 4He at |q| = 300, 400, 500 , 600, and 700 MeV are
shown. Choosing the Fermi momentum equal to 180
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FIG. 7. (color online) Transverse scaling functions of 12C
obtained from GFMC calculations for |q| = 300, 380, 570
MeV as a function of  nr.

FIG. 8. (color online) Experimental scaling functions ob-
tained from the longitudinal responses of 4He for |q| =300,
400, 500, 600 and 700 MeV [18]. The value of the Fermi
momentum of 4He has been set to 180 MeV. The black dots
correspond to the scaling function obtained from the experi-
mental longitudinal response of 12C at |q| = 570 MeV [23].

MeV, we observe that the points corresponding to dif-
ferent values of the momentum transfer tend to lay on
top of each other, and the agreement with the 12C data
at |q| = 570 MeV is also remarkable.

In Figs. 9-13 we show the longitudinal (solid
blue) and transverse (dashed red) scaling functions ex-
tracted from the GFMC calculations of 4He at |q| =
300, 400 , 500 , 600, and 700 MeV. In the upper and
lower panels the same scheme followed to present the
12C scaling functions has been adopted. In the longi-
tudinal channel, theoretical calculations and experimen-
tal data reported in the lower panels present are in very
nice agreement in all the kinematic setups. Finding this
agreement up to |q| = 700 MeV may appear surpris-
ing since the GFMC is a non relativistic approach. This
can be understood because all the relativistic corrections
coming from both the Dirac-spinors and the currents are
kept up to O[1/m2]. However, this is not the case in
the transverse channel where relativistic corrections are

FIG. 9. (color online) Longitudinal (solid blue) and transverse
(dashed red) scaling functions obtained from the GFMC cal-
culation of the longitudinal and transverse responses of 4He
at |q| = 300 MeV. Upper panel: the responses have been
divided by the non relativistic prefactors and the resulting
curves are plotted as a function of  nr. Lower panel: the
standard definition of the prefactors given in Eq.(30) has been
used to get both the theoretical curves and the experimental
points obtained from the data of Ref. [18] .

subleading and have been neglected. Moreover, the dif-
ferences in magnitude of the transverse scaling functions,
following the discussion carried out for 12C, are mainly
related to the relativistic e↵ects in the prefactors.

The upper panels of Figs. 9-13 clearly show that in the
4He case the scaling of the zeroth-kind is manifest when
the e↵ects of nuclear dynamics are singled out by using
the non relativistic expressions for the prefactors. The
absence of low-lying transition contributions makes the
scaling of the first kind apparent.

Whilst in the 12C case the di↵erent quasielastic peak
positions in the longitudinal and transverse responses are
mostly due to the residual e↵ect of the low-lying tran-
sitions, 4He enables us to further elucidate the role of
nuclear dynamics. Although the peak positions coincide
in the impulse approximation, this is not necessary true
when nuclear dynamics is fully taken into account. This
is most likely due to the charge exchange and tensor com-
ponents of the nuclear interaction. They are accounted
for in the GFMC calculations, both in the initial and in
the final states. As shown in Ref. [27], these features of

fL,T ( ) = kF ⇥ RL,T

GL,T

• In both cases the scaling function is 
very different from the one of the global 
Fermi gas model

• The scaling functions exhibit a clearly 
asymmetric shape, with a tail extending 
in the region ψ > 0

• By properly choosing kF, scaling of the 
second kind between 4He and 12C also 
occurs 



Scaling properties of the GFMC responses 

• We studied the GFMC non-relativistic 
scaling functions of 4He and 12C
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FIG. 14. (color online) Longitudinal scaling functions ob-
tained from GFMC calculations of the longitudinal response
of 4He for |q| = 400, 500, 600, 700 MeV and of 12C at
|q| = 570 MeV.

FIG. 15. (color online) Transverse scaling functions obtained
from GFMC calculations of the transverse response of 4He for
|q| = 400, 500, 600, 700 MeV and of 12C at |q| = 570 MeV.

the nuclear interactions bring about di↵erences between
the nucleon and the proton Euclidean responses as well
as the spin-longitudinal and transverse ones.

The curves of Figs 14 and 15, where we compare
the longitudinal and transverse scaling functions of 4He
for di↵erent values of the momentum transfer, exhibit
a satisfactory scaling behavior. The 4He results for
|q| = 600 , 700 MeV are almost coincident and in good
agreement with the longitudinal scaling function of 12C
computed at |q| = 570 MeV.

Figures 14 and 15 prove that the asymmetric shape of
the scaling function does not depend upon the momen-
tum transfer. Consequently, it is not likely to be ascribed
to collective excitation modes, that can be accounted for
within the random phase approximation.

This analysis, carried out for a variety of kinematics
suggests that scaling occurs in the GFMC calculations
of the longitudinal and transverse response functions of
both 4He and 12C nuclei. Comparing the definition of the
longitudinal response function and the one of the corre-

FIG. 16. (color online) The longitudinal (solid blue) and
transverse (dashed red) scaling functions obtained within the
GFMC approach compared with the scaling function obtain
from the proton response function (dot dashed black). Up-
per panel: 4He at |q| = 500 MeV. Lower panel: 12C at
|q| = 570 MeV.

FIG. 17. (color online) Scaling function obtained from GFMC
calculations of the proton response function of 4He for |q| =
400, 500, 600, 700 MeV .

sponding prefactor, see Eq. (9) and (43), while neglecting
the spin-orbit contribution, one is lead to conclude that
the scaling function corresponds to

fp(n) = pF ⇥ 2 Rp(n)

N (45)

where Rp(n) is the proton (neutron)-response function,
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the scaling function corresponds to
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where Rp(n) is the proton (neutron)-response function,

• The results are consistent with 
scaling of zeroth, first and second 
kinds 

• Despite the non relativistic nature of 
the calculation, all the scaling functions 
are strongly asymmetric, with a tail 
extending to the large ψ region. 

N. Rocco et al. PRC 96, 015504 (2017)

fL,T ( 
nr) = kF ⇥ RL,T

Gnr
L,T



Scaling properties of the GFMC responses 
• We identified the longitudinal scaling function with the proton-density response

Rp(n) ⌘
X

f

h0|%†p(n)(q)|fihf |%p(n)(q)|0i �(E0 + ! � Ef )
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Nuclear dynamics surprises 
• Beyond impulse approximation effects are important. Particularly enlightening is the comparison 
between the nucleon and proton responses

RN,p ⌘
X

f

h0|⇢†N,p(q)|fihf |⇢N,p(q)|0i�(E0 + ! � Ef )

⇢p(q) =
X

i

eiqri
1 + ⌧i,z

2
⇢N (q) =

X

i

eiqri = ⇢n + ⇢p

Figure 3: Nucleon and proton response functions of 4He at |q| = 600 MeV computed in the GFMC
approach.

coincide in the impulse approximation. However, this does not necessarily hold true when
nuclear dynamics beyond the impulse approximation is taken into account. Particularly en-
lightening in this regard is the comparison between the nucleon and proton responses, defined
as

RN,p ⌘
X

f

h0|⇢†N,p(q)|fihf |⇢N,p(q)|0i�(E0 + ! � Ef ) , (2)

where the nucleon and proton transition operators read

⇢N (q) =
X

i

eiqri

⇢p(q) =
X

i

eiqri
1 + ⌧i,z

2
(3)

In the impulse approximation, as correctly pointed out by the referee, RN/2 and Rp coin-
cide. However, the corresponding GFMC results shown in Fig. 3 for 4He at q = 300 MeV
demonstrate the importance of the charge-exchange character of the nucleon-nucleon force,
as first pointed out in Ref. [Carlson, Schiavilla, PRC 49 (1994) R2880]. Motivated by the
comment raised by the referee, we added the above reference and a clarifying discussion to
the paper.

3. Referee: Another misbehaving example is evident in figure 11. In this case the L scaling
function of He4 presents a prominent tail at low energy transfer for q=500 MeV which is not
seen for the other q-values. Is this a failing of the calculation for this momentum transfer or
a vestige of the interpolation procedure to plot the results?

We thank the referee for pointing out this problem of the longitudinal scaling function of
4He at q = 500 MeV. We have indeed made a mistake in the inversion procedure, specifically
in the subtraction of the elastic contribution from the Euclidean responses. This problem
has now been fixed and all the 4He scaling functions have been recomputed. We also found
a small mistake in the longitudinal scaling function of 12C at q = 570 MeV, which has now
been fixed.

4. Referee: It is not true that “the asymmetric shape has never been obtained in the non-
relativistic calculations”, see for instance the paper [M. Martini et al., Phys.Rev. C75 (2007)
034604] for the scaling functions of C12 for the same values of q considered in this work. By
surfing the literature other non-relativistic approaches reproducing the data can be found as
well.

We thank the referee for this remark and for calling our attention to M. Martini et al.,
Phys.Rev. C75 (2007) 034604. In this paper, which we now quote in the Introduction, final

4

Rp ' Rn
• In the impulse approximation 
the nucleon and the proton 
responses coincide 

• GFMC results demonstrate 
the importance of the charge-
exchange character of the 
nucleon-nucleon force 



Relativistic effects in a correlated system 
• Non relativistic approaches are limited to moderate momentum transfers

• In a generic reference frame the longitudinal response reads

Rfr
L =

X

f
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2
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• The response in the LAB frame is given by the Lorentz transform

 where 
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i
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Relativistic effects in a correlated system 
• The 4He  longitudinal response at q=700 MeV strongly depends upon the original reference frame 



Relativistic effects in a correlated system 
• To determine the relativistic corrections, we consider a two-body breakup model

pfr = µ
⇣ pfrN
mN

� pfrX
MX

⌘

P fr
f = pfrN + pfrX

µ =
mNMX

mN +MX

• The relative momentum is derived in a relativistic fashion

!fr = Efr
f � Efr

i

Efr
f =

q
m2

N + [pfr + µ/MXPfr
f ]2 +

q
M2

X + [pfr � µ/mNPfr
f ]2

• And it is used as input in the non relativistic kinetic energy

efrf = (pfr)2/(2µ)

• The energy-conserving delta function reads 

�(Efr
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i � !fr) = �(F (efrf )� !fr) =
⇣@F fr

@efrf

⌘�1
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Relativistic effects in a correlated system 
• The 4He  longitudinal response at q=700 MeV mildly depends upon the original reference frame 



Relativistic effects in a correlated system 



Relativistic effects in a correlated system 



• The two-body currents enhancement is effective in the entire energy transfer domain.

Conclusions 

• 4He and 12C results for the electromagnetic response obtained using Maximum Entropy 
technique are in very good agreement with experimental data.

• Two-body current contributions enhance the longitudinal and transverse axial responses 

• Quantum Monte Carlo is suitable to compute cross-sections, not only responses 

 Disclaimer

• The continuity equation only constraints the longitudinal components of the current

• Two- and three- body forces not fully consistent

• The transverse component and the axial terms are phenomenological (the coupling constant is 
fitted on the tritium beta-decay)

The theoretical error arising from modeling the nuclear 
dynamics cannot be properly assessed 

• Most of the relativistic effects are accounted for 



In chiral-EFT, the symmetries of quantum chromodynamics, in particular its approximate chiral 
symmetry, are employed to systematically constrain classes of Lagrangians describing the 
interactions of baryons with pions and the interactions of these hadrons with electroweak fields 


Chiral EFT 

2N LO

N LO3

NLO

LO

3N force 4N force2N force

)LJXUH ��� 'LDJUDPV WKDW JLYH ULVH WR QXFOHDU IRUFHV LQ &K()7 EDVHG RQ :HLQEHUJ¶V SRZHU FRXQWLQJ�
6ROLG DQG GDVKHG OLQHV GHQRWH QXFOHRQV DQG SLRQV� UHVSHFWLYHO\� 6ROLG GRWHV� ILOOHG FLUFOHV DQG ILOOHG
VTXDUHV DQG FURVVHG VTXDUHV UHIHU WR YHUWLFHV ZLWK ∆i = 0, 1, 2 DQG 4� UHVSHFWLYHO\�

7KH TXDQWLW\ κi ZKLFK HQWHUV WKLV H[SUHVVLRQ LV QRWKLQJ EXW WKH FDQRQLFDO ILHOG GLPHQVLRQ RI D YHUWH[ RI
W\SH i �XS WR WKH DGGLWLRQDO FRQVWDQW −4� DQG JLYHV WKH LQYHUVH PDVV GLPHQVLRQ RI WKH FRUUHVSRQGLQJ
FRXSOLQJ FRQVWDQW� ,Q IDFW� WKLV UHVXOW FDQ EH REWDLQHG LPPHGLDWHO\ E\ FRXQWLQJ LQYHUVH SRZHUV RI WKH
KDUG VFDOH Λχ UDWKHU WKDQ SRZHUV RI WKH VRIW VFDOH Q �ZKLFK LV� RI FRXUVH� FRPSOHWHO\ HTXLYDOHQW��
,QGHHG� VLQFH WKH RQO\ ZD\ IRU WKH KDUG VFDOH WR EH JHQHUDWHG LV WKURXJK WKH SK\VLFV EHKLQG WKH /(&V�
WKH SRZHU ν LV MXVW WKH QHJDWLYH RI WKH RYHUDOO PDVV GLPHQVLRQ RI DOO /(&V� 7KH DGGLWLRQDO IDFWRU −2
LQ (T� ������� LV D FRQYHQWLRQ WR HQVXUH WKDW WKH FRQWULEXWLRQV WR WKH QXFOHDU IRUFH VWDUW DW ν = 0�
, HQFRXUDJH WKH UHDGHU WR YHULI\ WKH HTXLYDOHQFH RI (TV� ������� DQG ������� IRU VSHFLILF GLDJUDPV�
2QH LPPHGLDWHO\ UHDGV RII IURP (T� ������� WKDW LQ RUGHU IRU SHUWXUEDWLRQ WKHRU\ WR ZRUN� WKH HIIHFWLYH
/DJUDQJLDQ PXVW FRQWDLQ QR UHQRUPDOL]DEOH DQG VXSHU�UHQRUPDOL]DEOH LQWHUDFWLRQV ZLWK κi = 0 DQG
κi < 0� UHVSHFWLYHO\� VLQFH RWKHUZLVH DGGLQJ QHZ YHUWLFHV ZRXOG QRW LQFUHDVH RU HYHQ ORZHU WKH FKLUDO
GLPHQVLRQ ν� 7KLV IHDWXUH LV JXDUDQWHHG E\ WKH VSRQWDQHRXVO\ EURNHQ FKLUDO V\PPHWU\ RI 4&' ZKLFK
HQVXUHV WKDW RQO\ QRQ�UHQRUPDOL]DEOH LQWHUDFWLRQV HQWHU WKH HIIHFWLYH /DJUDQJLDQ�

:KLOH (T� ������� GRHV QRW VD\ PXFK DERXW WKH WRSRORJ\ DQG LV� WKHUHIRUH� QRW SDUWLFXODUO\ XVHIXO WR
GHDO ZLWK GLDJUDPV� LW LV YHU\ FRQYHQLHQW IRU DOJHEUDLFDO FDOFXODWLRQV� ,Q IDFW� LW IRUPDOO\ UHGXFHV WKH

��

Chiral EFT 

NN potential NNN potential NNNN potential 

In chiral-EFT, the symmetries of quantum chromodynamics, in particular its approximate chiral 
symmetry, are employed to systematically constrain classes of Lagrangians describing the interactions 
of baryons with pions as well as the interactions of these hadrons with electroweak fields



   -full local chiral potential�
We have complemented the historical “Argonne” approach by considering a local chiral     -full 
potential giving an excellent fit to the NN scattering data that can be readily used in QMC.
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FIG. 1. (Color online) S-wave, P-wave, and D-wave phase shifts for np (in T=0 and 1 states)

and pp, obtained in the Nijmegen [36, 37], Gross and Stadler [52], and Granada [39] PWA’s, are

compared to those of models a, b, and c, indicated by the band. The left (right) panels show phase

shifts up to 125 (200) MeV lab energy.

Gross-Stadler [52] groups. The recent Gross and Stadler’s PWA is limited to np data only.

In Fig. 2, the np (top panels) and pp (lower panel) S-wave, P-wave, and D-wave phase

shifts are displayed for model b up to 125 MeV lab energy order-by-order in the chiral

expansion. Dashed (blue), dash-dotted (green), double-dash-dotted (magenta), and solid

(red) lines represent the results at LO, NLO, N2LO and N3LO, respectively. Of course, the

description of the phase shifts improves substantially, as one progresses from LO to N3LO.
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FIG. 1. (Color online) S-wave, P-wave, and D-wave phase shifts for np (in T=0 and 1 states)

and pp, obtained in the Nijmegen [36, 37], Gross and Stadler [52], and Granada [39] PWA’s, are

compared to those of models a, b, and c, indicated by the band. The left (right) panels show phase

shifts up to 125 (200) MeV lab energy.

Gross-Stadler [52] groups. The recent Gross and Stadler’s PWA is limited to np data only.

In Fig. 2, the np (top panels) and pp (lower panel) S-wave, P-wave, and D-wave phase

shifts are displayed for model b up to 125 MeV lab energy order-by-order in the chiral

expansion. Dashed (blue), dash-dotted (green), double-dash-dotted (magenta), and solid

(red) lines represent the results at LO, NLO, N2LO and N3LO, respectively. Of course, the

description of the phase shifts improves substantially, as one progresses from LO to N3LO.
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• Consistent MEC being constructed 

• Reliable theoretical uncertainty estimation

• Closer connection with QCD

model order ELab (MeV) Npp+np �2/datum

b LO 0–125 2558 59.88

b NLO 0–125 2648 2.18

b N2LO 0–125 2641 2.32

b N3LO 0–125 2665 1.07

a N3LO 0–125 2668 1.05

c N3LO 0–125 2666 1.11

ea N3LO 0–200 3698 1.37

eb N3LO 0–200 3695 1.37

ec N3LO 0–200 3693 1.40

a N3LO 0–200 3690 2.41

b N3LO 0–200 3679 3.76

c N3LO 0–200 3679 4.52

TABLE I: Total �2/datum for model a (ã) with (RL, RS) = (1.2, 0.8) fm, model b (b̃) with (1.0, 0.7)

fm, and model c (c̃) with (0.8, 0.6) fm fitted up to 125 (200) MeV laboratory energy. For model

b, results of the fits up to 125 MeV order by order in the chiral expansion are also given; Npp+np

denotes the total number of pp and np data, including observables and normalizations.

LO and NLO and from N2LO and N3LO. However, the quality of the fit worsens slightly

in going from NLO to N2LO. At N2LO we fixed the chiral LECs, namely c1, c2, c3, c4 and

b3 + b8, from the ⇡N scattering analysis of Ref. [28]. In the range 0–125 MeV, the total

�2/datum at N3LO are 1.05, 1.07, 1.11 for models a, b, and c, respectively; while in the

range 0–200 MeV the total �2/datum at N3LO are 1.37, 1.37, 1.40. The total �2/datum at

N3LO for models a, b, and c when compared (without refitting) to the 0–200 MeV database

are 2.41, 3.76, 4.52, respectively. In both energy ranges, the quality of the fits deteriorates

slightly as the (RL, RS) cuto↵s are reduced from the values (1.2,0.8) fm of model a down to

(0.8,0.6) fm of model c.

The fitted values of the LECs corresponding to models a, b, c and ea, eb, ec are listed in

Tables II and III, respectively. The values for the ⇡N LECs in the OPE and TPE terms of

these models are given in Table I of Ref. [50].
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   -full local chiral potential�
The experimental A≤12 ground- and excited state energies are very well reproduced by the local          

    -full NN+NNN chiral interaction �

M. Piarulli, et al. arXiv:1707.02883 [nucl-th]

FIG. 3. Spectra of A=4–12 nuclei. The energy spectra obtained with the NV2+3-Ia chi-

ral interactions are compared to experimental data. Also shown are results obtained with the

phenomenological AV18+IL7 interactions.
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