L'I.S. FBS dell'INFN: stato dei progetti in corso e prospettive future

M. Viviani

INFN, Sezione di Pisa & Department of Physics, University of Pisa Pisa (Italy)

TNPI2017 - XVI Conference on Theoretical Nuclear Physics in Italy

- Summary of research projects
- PD: Algebraic approach to medium-light nuclei
- PI+LE: NN and 3N interaction with Δ d.o.f.
- 5 TIFPA: Lorentz Integral Transform method

TIFPA: study of hypernuclei (talk by Ferrari-Ruffino)

Conclusions

- Summary of research projects
- PD: Algebraic approach to medium-light nuclei
- 4 PI+LE: NN and 3N interaction with △ d.o.f.
- 5 TIFPA: Lorentz Integral Transform method
- 6 TIFPA: study of hypernuclei (talk by Ferrari-Ruffino)

Conclusions

< 6 b

I.S. Few-Body Systems

Aims

- Development of accurate methods to study the bound and continuum states of few-body systems using realistic interactions
- Development of more and more accurate nuclear potentials and electroweak currents
- Study of the properties of light and medium-light nuclear systems in radioactive ion beams
- Study of strange nuclear systems (hypernuclei), also in systems with A>4
- Perform accurate calculations of reactions of astrophysical interest
- Study of universal properties and of Efimov physics in atomic and nuclear few-body systems
- Study of fundamental symmetries in few-nucleon systems

https://web.infn.it/CSN4/IS/Linea3/FBS/

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

I.S. Few-Body Systems

Composizione dell'I.S. FBS

- Lecce: L. Girlanda
- Padova: L. Canton
- Pisa:
 - A. Kievsky, L.E. Marcucci, MV, J. Dohet-Eraly (Post-doc)
 - A. Gnech PhD Student, GSSI, L'Aquila (Italy)
 - E. Filandri, A. Nannini (L.M., Pisa Un.)

Trento:

- W. Leidemann, G. Orlandini
- F. Ferrari-Ruffino (ex Ph.D student, Trento Un.)
- P. Andreatta (L.M., Trento Un.)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- 2 Summary of research projects
 - PD: Algebraic approach to medium-light nuclei
 - 4 PI+LE: NN and 3N interaction with Δ d.o.f.
 - 5 TIFPA: Lorentz Integral Transform method
 - 6 TIFPA: study of hypernuclei (talk by Ferrari-Ruffino)

Conclusions

< 6 b

Summary of research projects

Lecce

- Construction of NN & 3N interactions, electroweak currents, dark-matter nucleon interaction, . . . starting from effective field theory
- Subleading (N4LO) three-nucleon contact interaction
- Luca's talk on Tuesday \rightarrow section 4

Padova

- Study of medium-light exotic nuclei
- cluster models algebraic approaches
- \rightarrow section 3

Pisa

- 3N & 4N bound and scattering states
- Construction of NN and 3N interactions (→ section 4)

Pisa (cont.)

- Subleading (N4LO) three-nucleon contact interaction (Luca's talk on Tuesday)
- Efimov Physics (see Alejandro's talk)
- Extension to A = 5,6 (see Jeremy's talk)
- Reactions of astrophysical interest & muon capture (see Laura's talk)
- Parity and time-reversal violation (see Alex's talk)

Trento

 ■ Reactions of few-nucleon systems using the Lorentz-integral transform method (→ section 5)

イロン イ理 とくさい くさい しき

 Study of hypernuclear systems (see Ferrari-Ruffino's talk → Section 6)

M. Viviani (INFN-Pisa)

- Summary of research projects
 - PD: Algebraic approach to medium-light nuclei
- 4 PI+LE: NN and 3N interaction with Δ d.o.f.
- 5 TIFPA: Lorentz Integral Transform method
- 6 TIFPA: study of hypernuclei (talk by Ferrari-Ruffino)

Conclusions

< A

Multichannel algebraic scattering (MCAS) method

Spectrum of unbound nucleus ¹⁵F

- ¹⁵F decays emitting a proton
- [Phys. Rev. Lett. 96, 072502 (2006)] prediction of narrow resonances $\Gamma = 0.005 \text{ MeV}$
- Experimentally verified by Mukha et al., [Phys. Rev. C 77, 061303(R) (2008)]

MCAS

- ¹⁵F as a $p + {}^{14}$ O system
- Inclusion in the calculation many excited states of ¹⁴O
- Solution of the coupled channel two-body equations with Sturmians

 $G_0(E)V_c|\Phi_{ci}
angle=-\eta_{ci}|\Phi_{ci}
angle$

FIG. 1: The low excitation spectra of the mass-14 mirror nuclei, ¹⁴C and ¹⁴O, used in MCAS calculations. The spinparities of the states are listed in the middle of the diagram.

Energy levels of ¹⁵F

P. R. Fraser, K. Amos, L. Canton, S. Karataglidis, D. van der Knijff, and J. P. Svenne Australia-South Africa-Italy-Canada Collaboration – [ArXiv:1709.03051]

M. Viviani (INFN-Pisa)

FBS: progetti e prospettive

TNPI17, October 5, 2017 10 / 30

э

Study of $d + {}^{4}$ He scattering

P. R. Fraser, K. Massen-Hane, A. S. Kadyrov, K. Amos, I. Bray, and L. Canton Australia-South Africa-Italy Collaboration – [Phys. Rev. C 96, 014619 (2017)]

- Summary of research projects
- PD: Algebraic approach to medium-light nuclei
- 4 PI+LE: NN and 3N interaction with Δ d.o.f.
- 5 TIFPA: Lorentz Integral Transform method
- TIFPA: study of hypernuclei (talk by Ferrari-Ruffino)

Conclusions

< 6 k

NN and 3*N* interaction from χ EFT with Δ d.o.f.

JLab+Argonne+Lecce+Pisa Collaboration

- χEFT framework with inclusion of Δ d.o.f.
- Local version that can be used with GFMC
- Non-local terms "eliminated" via Fierz transformations

•
$$\mathbf{k} = \mathbf{p}' - \mathbf{p}$$

• $\mathbf{K} = (\mathbf{p}' + \mathbf{p})/2$
 $\mathcal{K}^m \longrightarrow -\frac{1 + \tau_1 \cdot \tau_2}{2} \frac{1 + \sigma_1 \cdot \sigma_2}{2} \frac{k^m}{2^m}$

Chiral 3N Force

FBS: progetti e prospettive

Fit of NN data

M. Piarulli, L. Girlanda, R. Schiavilla, A. Kievsky, A. Lovato, L.E. Marcucci , S.C. Pieper, MV , and R.B. Wiringa – [PRC 94, 054007 (2016)]

Different versions

name	order	R_L	R _S	E _{max}	χ^2 /datum
	LO	1.0	0.7	125 MeV	59.88
	NLO	1.0	0.7	125 MeV	2.18
	N2LO	1.0	0.7	125 MeV	2.32
NV-la	N3LO*	1.0	0.7	125 MeV	1.07
NV–lb	N3LO*	1.2	0.8	125 MeV	1.05
NV-lla	N3LO*	1.0	0.7	250 MeV	1.37
NV–IIb	N3LO*	1.2	0.8	250 MeV	1.37

³H & ⁴He binding energies (no 3NF)

name	order	<i>В</i> (³ Н)	$B(^{4}\text{He})$
NV-la	N3LO*	7.60	23.96
NV–lb	N3LO*	7.82	25.15
NV–IIa	N3LO*	7.87	25.28
NV–IIb	N3LO*	7.95	25.80

æ

- 17

Inclusion of the 3N force

M. Piarulli, A. Baroni, L. Girlanda, A. Kievsky, A. Lovato, E. Lusk, L.E. Marcucci, S.C. Pieper, R. Schiavilla, MV, and R.B. Wiringa – [arXiv:1707.02883]

3NF with two parameters c_D and c_E fitted to the ³H BE & $n - d a_d$ scattering length

p - d scattering at $E_p = 3$ MeV green band = NV-Ia & NV-Ib + 3NF blue band = NV-IIa & NV-IIb + 3NF black dashed line - NV-Ia

M. Viviani (INFN-Pisa)

GFMC calculation of light nuclei

NV-la + 3NF

Nice reproduction of the energy levels – 3N force fitted using only A = 3 data!!! more studies are in progress ($p - {}^{3}$ He, $n - {}^{3}$ He, d - d, ... scattering)

M. Viviani (INFN-Pisa)

 < □ > < □ > < □ > < □ > < □ >
 □ < ○ < ○</td>

 TNPI17, October 5, 2017
 17 / 30

- Summary of research projects
- PD: Algebraic approach to medium-light nuclei
- PI+LE: NN and 3N interaction with Δ d.o.f.
- 5 TIFPA: Lorentz Integral Transform method
- 6
- ΓIFPA: study of hypernuclei (talk by Ferrari-Ruffino)

Conclusions

・ 同 ト ・ ヨ ト ・ ヨ

Lorentz Integral Transform method

V. Efros, W. Leidemann, G. Orlandini, and N. Barnea, [J. Phys. G 34, R459 (2007)]

The LIT method in a nutshell

$$\begin{split} R(E_{\gamma}) &= \int df |\langle f|D_{z}|0\rangle|^{2} \delta(E_{f} - E_{0} - E_{\gamma}) \\ L(\sigma = \sigma_{R} + i\sigma_{I}) &= \int_{E_{thr}}^{\infty} dE_{\gamma} \frac{R(E_{\gamma})}{(E_{\gamma} - \sigma_{R})^{2} + \sigma_{I}^{2}} \\ &= \langle 0|D_{z} \frac{1}{H - E_{0} - \sigma^{*}} \frac{1}{H - E_{0} - \sigma} D_{z}|0\rangle \\ |\tilde{\Psi}(\sigma)\rangle &= \frac{1}{H - E_{0} - \sigma} D_{z}|0\rangle \\ (H - E_{0} - \sigma) |\tilde{\Psi}(\sigma)\rangle &= D_{z}|0\rangle \\ L(\sigma) &= \langle \tilde{\Psi}(\sigma)|\tilde{\Psi}(\sigma)\rangle \end{split}$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Lorentz Integral Transform method (2)

The problem of the inversion

Many applications EM response of ⁴He and ⁶Li Electric dipole polarizability of medium nuclei using the coupled cluster Neutrino scattering See also S. Bacca and S. Pastore [J. Phys. G **41**, 123002 (2014)]

M. Viviani (INFN-Pisa)

FBS: progetti e prospettive

TNPI17, October 5, 2017 20 / 30

< A > < > >

Recent application: p - d capture astrophysical factor

S. Deflorian, V. Efros, and W. Leidemann, [Few-Body Syst 58, 3 (2017)]

• Reaction under study
$$p - d \rightarrow {}^{3}\text{He} + \gamma$$

• LIT calculation of the inverse reaction $\gamma + {}^{3}\text{He} \rightarrow p + d$

- $\sigma_{\text{capt}}(k) = 2E_{\gamma}^2 \sigma_{\gamma}(E_{\gamma})/3k^2$
- k relative p d momentum

Benchmark calculation with the MT-I/III interaction

- Summary of research projects
- PD: Algebraic approach to medium-light nuclei
- 4 PI+LE: NN and 3N interaction with △ d.o.f.
- 5 TIFPA: Lorentz Integral Transform method
- TIFPA: study of hypernuclei (talk by Ferrari-Ruffino)

Conclusions

< 6 b

TIFPA: Study of hypernuclei

Aim: selection of antisymmetric states with a non-symmetrized HH basis → M. Gattobigio, A. Kievsky, MV, and P. Barletta [PRA **79**, 032513 (2009)]

 \Rightarrow We add to \hat{H} the **Casimir operator** of the **permutation group** S_N , which selects "by himself" the interesting states:

$$\hat{H}' = \hat{H} + \gamma \hat{C}(A)$$
 ; $\hat{C}(A) = \sum_{i>j} \hat{P}_{ij}$

Its action on the vectors:

$$\begin{split} \hat{C}(A)\Psi_s &= \frac{A(A-1)}{2}\Psi_s = \lambda_s\Psi_s \;; \\ \hat{C}(A)\Psi_m &= \lambda_m\Psi_m \;; \\ \hat{C}(A)\Psi_a &= -\frac{A(A-1)}{2}\Psi_a = \lambda_a\Psi_a \;, \end{split}$$

 \Rightarrow with a proper choice of γ the g.s. energy \mathbf{E}_{A}^{0} becomes the **lowest eigenvalue of H**' (similar procedure for excited states).

Particle Transition Extension

- Transition between species (examples: ΝΛ-ΝΣ, ΝΝ-ΔΔ, ...);
- the masses are state dependent;
- the HH basis is mass dependent: need to define transformation from one set of Jacobi weights ζ to another ζ'.

For a basis with $\zeta' \neq \zeta_{phys} = \zeta$ we follow both ways:

coordinate transformation (present work):

$$H'(\eta_{\zeta'}) = H\left[\eta_{\zeta}(\eta_{\zeta'})\right] = H\left(W_{\zeta\zeta'} \cdot \eta_{\zeta'}\right);$$

basis transformation (in progress):

$$H'(\boldsymbol{\eta}_{\zeta'}) = \mathcal{W}^{\dagger}_{\zeta\zeta'} \cdot H(\boldsymbol{\eta}_{\zeta'}) \cdot \mathcal{W}_{\zeta\zeta'}$$

 \Rightarrow The calculation of the ${\cal W}$ m.e. is in progress (HH real scaling coefficients).

4 **A b b b b b b**

We consider a 3-body system like ${}^{3}_{\Lambda}$ H (with no transitions) and three different Jacobi sets:

 $egin{aligned} &\eta_0 = \eta(m_N,m_N,m_\Lambda)\ ; \ &\eta_1 = \eta(m_N,m_N,m_N)\ ; \ &\eta_2 = \eta(m_\Lambda,m_\Lambda,m_\Lambda)\ , \end{aligned}$

and look how convergence is affected by changing the mass parameters.

- We employ semi-realistic AV4' NN potential combined with Bodmer-Usmani phenomenological AN interaction;
- we have implemented the Lee-Suzuki effective interaction procedure adapted to the case of unphysical mass parameters.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Convergence Tests II

TNPI17, October 5, 2017 2

< 17 ▶

26/30

æ

Interaction	System	NSHH	FY	GEM
AV8'	² H		-2.226(1)	
AV8'+gNSC97f	³Ч	-2.413(3)	-2.415(1)	-2.42(1)
	B∧	0.187(3)	0.189(1)	0.19(1)
AV8'	ЗH	-7.76(0)	-7.76(0)	-7.77(1)
AV8'+gNSC97f	4 ⁴ H	-10.08(2)		-10.10(1)
	B_{Λ}	2.32(2)		2.33(1)

In Progress:

- completion of the mass transformations formalism (*W* coefficients);
- 2 bound state calculation of ³H with full NN-N Δ - $\Delta\Delta$ channels;

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Future Application: Transitions inside Hypernuclei

	S = 0 $S = -1$	S = -2	S = -3 S = -4
I = 0	$(NN \rightarrow NN)$	$ \begin{pmatrix} \Lambda\Lambda \to \Lambda\Lambda & \Lambda\Lambda \to \Xi N & \Lambda\Lambda \to \Sigma\Sigma \\ \Xi N \to \Lambda\Lambda & \Xi N \to \Xi N & \Xi N \to \Sigma\Sigma \\ \Sigma\Sigma \to \Lambda\Lambda & \Sigma\Sigma \to \Xi N & \Sigma\Sigma \to \Sigma\Sigma \end{pmatrix} $	(EE → EE)
I = 1/2	$\begin{pmatrix} \Lambda N \to \Lambda N & \Lambda N \to \\ \Sigma N \to \Lambda N & \Sigma N \to \end{pmatrix}$	$\sum_{\Sigma N}$	$ \begin{pmatrix} \Lambda\Xi \to \Lambda\Xi & \Lambda\Xi \to \Sigma\Xi \\ \Sigma\Xi \to \Lambda\Xi & \Sigma\Xi \to \Sigma\Xi \end{pmatrix} $
I = 1	$(NN \rightarrow NN)$	$ \begin{pmatrix} \Xi N \to \Xi N & \Xi N \to \Lambda \Sigma & \Xi N \to \Sigma \Sigma \\ \Lambda \Sigma \to \Xi N & \Lambda \Sigma \to \Lambda \Sigma & \Lambda \Sigma \to \Sigma \Sigma \\ \Sigma \Sigma \to \Xi N & \Sigma \Sigma \to \Lambda \Sigma & \Sigma \Sigma \to \Sigma \Sigma \end{pmatrix} $	(ΞΞ→ΞΞ)
I = 3/2	$(\Sigma N \rightarrow \Sigma N)$		$(\Sigma\Xi ightarrow \Sigma\Xi)$
I = 2		$(\Sigma\Sigma \rightarrow \Sigma\Sigma)$	

M. Viviani (INFN-Pisa)

FBS: progetti e prospettive

3 1 4 3 TNPI17. October 5, 2017 28/30

< 17 ▶

- Summary of research projects
- PD: Algebraic approach to medium-light nuclei
- 4 PI+LE: NN and 3N interaction with △ d.o.f.
- 5 TIFPA: Lorentz Integral Transform method
 - TIFPA: study of hypernuclei (talk by Ferrari-Ruffino)

Conclusions

・ 同 ト ・ ヨ ト ・ ヨ

Conclusions

Collaboration with many experimental groups

- Reactions of astrophysical interest (LUNA, TH, TUNL, ORNL, ...)
- Electromagnetic reactions (JLab)
- Hypernuclei (DaΦNE, ...)
- Exotic nuclei (ISOLDE, GANIL, ...)

Future projects & collaborations

- Efimov physics and Nuclear Physics
- Double β decay, dark-matter interactions, EDM: application of the interaction derived from EFT in heavy nuclei (STRENGTH)
- Generalized parton distributions in light nuclei (NINPHA)
- Electroweak reactions with LIT (MANYBODY)
- Exotic nuclei (SPES)

٩

3

30/30

(日)