Excitation of Nucleon Resonances in Isobar Charge Exchange Reactions

Isaac Vidaña INFN-Catania

Palatin

TNPI2017 – XVI Conference on Theoretical Nuclear Physics in Italy October 3rd – 5th 2017, Cortona (Italy)

First observation of the $\Delta(1232)$ & the Roper N^{*}(1440)

♦ In 1952 Fermi *et al.*, observed the Δ(1232) for the first time in πp scattering

Phys. Rev. 85, 932 (1952)

♦ In 1963 L. David Roper found an unexpected P_{11} resonance at E ~ 1.44 GeV

Phys. Rev. Lett. 12, 340 (1964)

Since them many nucleon resonances have been discovered in

- \triangleright πN elastic scattering
- $\pi N \longrightarrow \eta N$, σN , ωN , ΛK , ΣK, ρN , $\pi \Delta$ reactions
- Electroproduction γN
- More complex processes like e.g., $\pi N \longrightarrow \pi \pi N$, $\pi \rho N$, ωN , ϕN , K^*Y , ...

 $\pi N \rightarrow X$ cross section

2015 status of the Δ & N resonances

22 Δ resonances known with masses from 1232 to 2950 MeV

				Status as seen in —						
		Statu	s	-						
Particle J^P	overa	ll πN	γN	$N\eta$	$N\sigma$	$N\omega$	ΛK	ΣK	$N\rho$	$\Delta \pi$
$\Delta(1232) 3/2^+$	****	****	****	F						
$\Delta(1600) 3/2^+$	***	***	***	0					*	***
$\Delta(1620) 1/2^{-}$	****	****	***		r				***	***
$\Delta(1700) 3/2^{-}$	****	****	****		b				**	***
$\Delta(1750) 1/2^+$	*				i					
$\Delta(1900) 1/2^{-}$	**	**	**			d		**	**	**
$\Delta(1905) 5/2^+$	****	****	****			d		***	**	**
$\Delta(1910) 1/2^+$	****	****	**					*	*	**
$\Delta(1920) 3/2^+$	***	***	**				n	***		**
$\Delta(1930) 5/2^{-1}$	***	***								
$\Delta(1940) 3/2^{-}$	**		**	F				(see	n in	$\Delta \eta$)
$\Delta(1950) 7/2^+$	****	****	****	0				***		***
$\Delta(2000) 5/2^+$	**				r					**
$\Delta(2150) 1/2^{-1}$	*				b					
$\Delta(2200) 7/2^{-}$	*				i					
$\Delta(2300) 9/2^+$	**	**				d				
$\Delta(2350) 5/2^{-}$	*					d				
$\Delta(2390) 7/2^+$	*						в			
$\Delta(2400) 9/2^{-1}$	**	**					n			
$\Delta(2420) 11/2^+$	****	****	*							
$\Delta(2750) \ 13/2^{-1}$	**	**								
$\Delta(2950) 15/2^+$	**	**								

26 N resonances known with masses from 1440 to 2700 MeV

				Status as seen in —						
		Status	5	-						
Particle J^P	overal	ll πN	γN	$N\eta$	$N\sigma$	$N\omega$	ΛK	ΣK	$N\rho$	$\Delta \pi$
$N = 1/2^+$	****									
$N(1440) 1/2^+$	****	****	****		***				*	***
$N(1520) 3/2^-$	****	****	****	***					***	***
$N(1535) 1/2^-$	****	****	****	****					**	*
$N(1650) 1/2^{-}$	****	****	***	***			***	**	**	***
$N(1675) 5/2^-$	****	****	***	*			*		*	***
$N(1680) 5/2^+$	****	****	****	*	**				***	***
N(1685) ??	*									
$N(1700) 3/2^-$	***	***	**	*			*	*	*	***
$N(1710) 1/2^+$	***	***	***	***		**	***	**	*	**
$N(1720) 3/2^+$	****	****	***	***			**	**	**	*
$N(1860) 5/2^+$	**	**							*	*
$N(1875) 3/2^-$	***	*	***			**	***	**		***
$N(1880) 1/2^+$	**	*	*		**		*			
$N(1895) 1/2^-$	**	*	**	**			**	*		
$N(1900) 3/2^+$	***	**	***	**		**	***	**	*	**
$N(1990) 7/2^+$	**	**	**					*		
$N(2000) 5/2^+$	**	*	**	**			**	*	**	
$N(2040) 3/2^+$	*									
$N(2060)5/2^-$	**	**	**	*				**		
$N(2100) 1/2^+$	*									
$N(2150) 3/2^-$	**	**	**				**			**
$N(2190) 7/2^-$	****	****	***			*	**		*	
$N(2220) 9/2^+$	****	****								
$N(2250) 9/2^-$	****	****								
$N(2600)11/2^-$	***	***								
$N(2700) 13/2^+$	**	**								

**** Existence is certain, and properties are at least fairly well explored.
*** Existence is very likely but further confirmation of quantum numbers and branching fractions is required.

** Evidence of existence is only fair.

Evidence of existence is poor.

The $\Delta(1232)$

First spin-isospin excited mode of the nucleon corresponding to $\Delta S=1$ & $\Delta T=1$. Conventionally described as a resonant πN state with relative angular momentum L=1

∆(1232) 3/2⁺

 $I(J^P) = \frac{3}{2}(\frac{3}{2}^+)$

Breit-Wigner mass (mixed charges) = 1230 to 1234 (\approx 1232) MeV Breit-Wigner full width (mixed charges) = 114 to 120 (\approx 117) MeV Re(pole position) = 1209 to 1211 (\approx 1210) MeV -2Im(pole position) = 98 to 102 (\approx 100) MeV

△(1232) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
Νπ	100 %	229
$N\gamma$	0.55-0.65 %	259
$N\gamma$, helicity=1/2	0.11-0.13 %	259
$N\gamma$, helicity=3/2	0.44–0.52 %	259

The N*(1440)

PDG estimates (2015)

N(1440) 1/2⁺

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

Breit-Wigner mass = 1410 to 1450 (\approx 1430) MeV Breit-Wigner full width = 250 to 450 (\approx 350) MeV Re(pole position) = 1350 to 1380 (\approx 1365) MeV -2Im(pole position) = 160 to 220 (\approx 190) MeV

N(1440) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
Νπ	55-75 %	391
Nη	(0.0±1.0) %	†
$N\pi\pi$	30-40 %	338
$\Delta \pi$	20–30 %	135
$arDelta(1232)\pi$, <i>P</i> -wave	15–30 %	135
Nρ	<8 %	†
N ho, $S=1/2$, P -wave	(0.0±1.0) %	†
$N(\pi\pi)_{S-\text{wave}}^{I=0}$	10-20 %	-
Ργ	0.035-0.048 %	407
$p\gamma$, helicity=1/2	0.035-0.048 %	407
nγ	0.02-0.04 %	406
$n\gamma$, helicity=1/2	0.02-0.04 %	406

However ... its nature is not completely understood

Theoretical descriptions include:

- $\Rightarrow Pure Quark Model: radial excitation of the nucleon <math>(qqq)^*$
- $\begin{array}{l} \diamond \quad \text{Dual nature of } N^*(1440) \text{ as a } qqq \\ \& qqqq\bar{q} \text{ states} \end{array}$

 \Rightarrow N^{*}(1440) as a collective excitation

- Coupled-channel (πN, σN, πΔ, ρ N) meson exchange description of the N*(1440) structure. No qqq component at all.
- ♦ Lattice QCD

Is the study of nucleon resonances still interesting?

After more than 60 years studying nucleon resonances one could think that not, but ... determining in-medium (density & isospin dependence) properties of nucleon resonances is essential for a better understanding of ...

 \diamond the underlying dynamics governing many nuclear reactions

 \diamond three-nucleon force mechanisms

♦ EoS of asymmetric nuclear matter (neutron stars)

Isobar Charge Exchange Reactions

- Allow the investigation of nuclear & nucleon (spin-isospin) excitations in nuclei
 - ✓ Low energies: GT, spin-dipole, spinquadrupole, quasi-elastic
 - ✓ High energies: excitation of a nucleon into Δ , N^{*}, ...
- Being peripheral can provide information on radial distributions (surface & tail) of protons & neutrons in nuclei (neutron skin thickness) → information on (low density) asymmetric nuclear matter

Are important tools to study the spin-isospin dependence of the nuclear force

Past Observations of the $\Delta(1232)$ in Isobar Charge Exchange Reactions

1980's complete experimental program to measure $\Delta(1232)$ excitation in isobar charge exchange reactions with light & medium mass projectiles at SATURNE accelerator in Saclay

Shift of the Δ peak to lower energies for medium & heavy targets

What's its origin?

D. Bachelier, et al., PLB 172, 23(1986)

Recent Experiments

Recent experiments have been performed with the FRS at GSI using stable (¹¹²Sn, ¹²⁴Sn) & unstable (¹¹⁰Sn, ¹²⁰Sn, ¹²²Sn) tin projectiles on different targets

The use of relativistic nuclei far off stability allows to explore the isospin degree of freedom enlarging our present knowledge of the properties of isospinrich nuclear systems

the results of SATURNE

In this work we study the excitation of nucleon (Δ, N^*) resonances in isobar charge exchange reactions with heavy nuclei to analyze recent measurements at GSI

In the next I will present

- \diamond Model for the reaction
 - OME (π, ρ, σ)
 - * Δ & N* excitation in Target & Projectile
- \diamond Results
 - ✤ (¹¹²Sn,¹¹²In) reaction on a proton target at 1GeV/nucleon
 - Origin of the shift of the Δ peak
- ✦ Isospin content of projectile tail: inclusive & exclusive measurements. Neutron skin thickness & L from ICER

Model for the reaction

Glauber like model where only the nucleons in the overlap region participate on the reaction & the rest are simply spectators

Double differential cross section (spectrum) calculated as

$$\frac{d^{2}\sigma}{dEd\Omega}\Big|_{(^{A}Z,^{A}(Z\pm1))} = \sum_{N_{2}=n,p} \sum_{c=el,in} \left(\frac{d^{2}\sigma}{dE_{3}d\Omega_{3}}\right)_{c} N_{N_{1}N_{2}}$$

elementary cross sections

effective number of elementary processes contributing to the reaction

Elementary Processes

Two Pion Emission Elementary Processes

Note that

N(1440) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Νπ	55-75 %	391
Nη	(0.0±1.0) %	†
Νππ	30–40 %	338
$\Delta \pi$	20–30 %	135
$\Delta(1232)\pi$, <i>P</i> -wave	15-30 %	135

Important elementary process (but not included here yet) are

List of elementary (p,n) processes

Example: (p,n) reaction on a proton target

• Clear dominance of Δ^{++} excitation in the target

Data from G. Glass et al., PRD 15, 36 (1977)

Contribution from 5 processes

 \diamond s-wave π emission in Target

 $p(p,n)p\pi^+$

 \diamond s-wave π emission in Projectile

$$p(p,n\pi^{+})p$$

♦ Δ^{++} excitation in Target

$$p(p,n)\Delta^{\scriptscriptstyle ++} = p(p,n)p\pi^{\scriptscriptstyle +}$$

 $\diamond \Delta^+ \& P_{11}^+$ excitation in Projectile

$$p(p,\Delta^{+})p = p(p,n\pi^{+})p$$
$$p(p,P_{11}^{+})p = p(p,n\pi^{+})p$$

Elementary (p,n) cross sections

٠

Different shape & strength of c.s. shift reson. pos. in nuclei ?

- ✓ Reaction with a proton Target
 - c.s. of Δ excitation in target ~ 9 times larger than c.s. of Δ excitation in projectile
- \checkmark Reaction with a neutron Target
 - similar strength of the c.s.
- \checkmark Reaction with a proton Target
 - P_{11}^{+} excited only in Projectile
- \checkmark Reaction with a neutron Target
 - strength of c.s. for N* excitation in projectile ~ 1 - 5 than of N* in target

List of elementary (n,p) processes

Elementary (n,p) cross sections

$\Rightarrow \Delta(1232)$ excitation

- ✓ Reaction with a proton Target
 - similar strength of the c.s.
- ✓ Reaction with a neutron Target
 - c.s. of Δ excitation in target ~ 9 times larger than c.s. of Δ excitation in projectile
- ✓ N* excited in reaction with both proton & neutron targets
 - P_{11}^{+} state excited only in projectile
 - P_{11}^{0} state excited both in projectile & target.
 - strength of c.s. for N* excitation in projectile ~ 1 - 5 than of N* in target

Number of elementary processes N_{N1N2}

$$N_{N_1N_2} = \int d^2 \vec{b} \rho_{overlap}^{N_1N_2}(b) [1 - T(b)] P_{\pi}(b)$$

♦ N₁N₂ density of overlap region
$$\rho_{overlap}^{N_1N_2}(b) = \int dz \int d^3 \vec{r} \rho_P^{N_1}(\vec{r}) \rho_T^{N_2}(\vec{b} + \vec{z} + \vec{r})$$
Transmission function

$$1 - T(b) = 1 - \exp\left(-\int dz \int d^3 \vec{r} \sigma_{NN} \rho_P(\vec{r}) \rho_T(\vec{b} + \vec{z} + \vec{r})\right)$$

 \Leftrightarrow Pion survival probability

.

$$P_{\pi}(b) = \exp\left(-\int dz \int d^{3}\vec{r} \sigma_{\pi N} \rho_{P}(\vec{r}) \rho_{T}(\vec{b} + \vec{z} + \vec{r})\right)$$

N.B. Density distributions from RMF or SHF calculations

Beam direction

Peripheral character of the reaction

The reaction is peripheral

- ✓ Low impact parameters
 - Strong pion absorption due to large overlap. Therefore, [1-T(b)]P_π(b) very small
- ✓ High impact parameters
 - Small overlap. Therefore, [1-T(b)] $P_{\pi}(b)$ very small

Number of elementary processes N_{N1N2}

$$N_{N_1N_2} = \int d^2 \vec{b} \rho_{overlap}^{N_1N_2}(b) \left[1 - T(b)\right] P_{\pi}(b), \ \rho_{overlap}^{N_1N_2}(b) = \int dz \int d^3 \vec{r} \rho_P^{N_1}(\vec{r}) \rho_T^{N_2}(\vec{b} + \vec{z} + \vec{r})$$

reaction	N _R	N _{pp}	N _{pn}	N _{np}	N _{nn}
112 Sn+ 1 H	0.017	0.006	0	0.011	0
$^{112}Sn + ^{12}C$	0.019	0.003	0.003	0.007	0.006
$^{112}Sn + ^{63}Cu$	0.022	0.003	0.004	0.006	0.009
¹¹² Sn+ ²⁰⁸ Pb	0.027	0.001	0.007	0.004	0.015

reaction	N _R	N _{pp}	N _{pn}	N _{np}	N _{nn}
124 Sn+ 1 H	0.019	0.004	0	0.015	0
$^{124}Sn + ^{12}C$	0.023	0.002	0.002	0.010	0.009
¹²⁴ Sn+ ⁶³ Cu	0.024	0.001	0.002	0.009	0.010
¹²⁴ Sn+ ²⁰⁸ Pb	0.029	0.0006	0.003	0.005	0.020

The (¹¹²Sn,¹¹²In) reaction on a proton target at 1 GeV/nucleon

Origin of the shift of the Δ peak

Is the shift due to inmedium effects ?. If yes, then why it seems to be almost the same for all targets ?

NO: in - m e d i u m (density) modification of Δ & N^{*} properties because the reaction is very peripheral & density is small

YES: excitation mechanisms of Δ (N^{*}) in both Target & Projectile

Conclusion already pointed out in the analysis of charge exchange reactions with lighter nuclei (e.g., E. Oset, E. Shiino & H. Toki, PLB 224, 249 (1989))

Isospin content of the projectile tail: inclusive measurements

(n,p) channel $\begin{pmatrix} AZ, A(Z+1) \end{pmatrix}$ (p,n) channel $\begin{pmatrix} AZ, A(Z-1) \end{pmatrix}$

Consider the ratio
$$R = \frac{\sigma_{(A_{Z},A_{(Z+1)})}}{\sigma_{(A_{Z},A_{(Z-1)})}}$$

In the model
$$R = \frac{\sigma_{nn \to pn\pi^{-}} N_{nn} + \sigma_{np \to pp\pi^{-}} N_{np} + \sigma_{np \to pn\pi^{0}} N_{np}}{\sigma_{pp \to np\pi^{+}} N_{pp} + \sigma_{pn \to nn\pi^{+}} N_{pn} + \sigma_{pn \to np\pi^{0}} N_{pn}}$$
$$\approx \frac{N_{n}^{(P)}}{N_{p}^{(P)}} \times \left(\frac{\sigma_{nn \to pn\pi^{-}} N_{n}^{(T)} + \sigma_{np \to pp\pi^{-}} N_{p}^{(T)} + \sigma_{np \to pn\pi^{0}} N_{p}^{(T)}}{\sigma_{pp \to np\pi^{+}} N_{p}^{(T)} + \sigma_{pn \to nn\pi^{+}} N_{n}^{(T)} + \sigma_{pn \to np\pi^{0}} N_{n}^{(T)}}\right)$$
This suggest $\longrightarrow \frac{N_{n}^{(P)}}{N_{p}^{(P)}} \propto f(N_{n}^{(T)}, N_{p}^{(T)})R$ How to disentangle ?. With exclusive measurements ?

Exclusive measurements & isospin content of the projectile tail

(p,n) channel (n,p) channel $(1): {}^{A}Z + X \to {}^{A}(Z+1) + \pi^{-} + X' \quad (3): {}^{A}Z + X \to {}^{A}(Z-1) + \pi^{+} + \tilde{X}$ $(2): {}^{A}Z + X \to {}^{A}(Z+1) + \pi^{0} + X'' \quad (4): {}^{A}Z + X \to {}^{A}(Z-1) + \pi^{0} + \tilde{X}''$ Consider the ratios $R_1 = \frac{\sigma^{(1)}_{(A_Z, A_{(Z+1)})}}{\sigma^{(3)}}, R_2 = \frac{\sigma^{(2)}_{(A_Z, A_{(Z+1)})}}{\sigma^{(4)}}$ $(A_{7} A_{(7-1)})$ $(A_{Z} A_{(Z-1)})$ In the model $R_{1} = \frac{\sigma_{nn \to pn\pi^{-}} N_{nn} + \sigma_{np \to pp\pi^{-}} N_{np}}{\sigma_{pp \to np\pi^{+}} N_{pp} + \sigma_{pn \to nn\pi^{+}} N_{pn}} \approx \frac{N_{n}^{(P)}}{N_{p}^{(P)}} \times \left(\frac{\sigma_{nn \to pn\pi^{-}} N_{n}^{(T)} + \sigma_{np \to pp\pi^{-}} N_{p}^{(T)}}{\sigma_{pp \to np\pi^{+}} N_{p}^{(T)} + \sigma_{pn \to nn\pi^{+}} N_{n}^{(T)}}\right)$ $R_{2} = \frac{\sigma_{np \to pn\pi^{0}} N_{np}}{\sigma_{pn \to np\pi^{0}} N_{pn}} \approx \frac{N_{n}^{(P)}}{N_{p}^{(P)}} \times \left(\frac{\sigma_{np \to pn\pi^{0}} N_{p}^{(T)}}{\sigma_{pn \to np\pi^{0}} N_{n}^{(T)}}\right) \qquad \text{Seems as entangled as before !!}$ This suggest $\longrightarrow \frac{N_{n}^{(P)}}{N_{p}^{(P)}} \propto f(N_{n}^{(T)}, N_{p}^{(T)})R_{1}, \quad \frac{N_{n}^{(P)}}{N_{p}^{(P)}} \propto g(N_{n}^{(T)}, N_{p}^{(T)})R_{2}$

The cleanest case: measurements with a proton target

Isospin content of the projectile: model estimations

Neutron Skin Thickness & Symmetry Energy

Accurate measurements of

$$R = \frac{\sigma_{(A_{Z},A_{(Z+1)})}}{\sigma_{(A_{Z},A_{(Z-1)})}}$$

can be used to extract the neutron skin thickness of heavy nuclei & L

¹³⁶Xe on a proton target at 1GeV/A

Summary & Future Perspectives

♦ Summary

Study of nucleon (Δ , N^{*}) resonances in isobar charge reactions with heavy nuclei

- Model based on OME. $\Delta \& N^*$ excitation in Target & Projectile
- Reasonably good agreement with recent measurements
- Origin of \$\Delta\$ shift in medium & heavy targets due to excitation in Target & Projectile. Not to in-medium (density) effects as pointed out in analysis of reactions with lighter nuclei (e.g., Oset et al., PLB (1989))
- ♦ Future Perspectives

Experiment

• Exclusive measurements to identify the different reaction mechanisms.

 \checkmark Sensitivity to the isospin content of projectile tail.

Neutron skin thickness from ICE reactions

Theory

• Inclusion of other reaction mechanism (2π emission)

• You for your time & attention

- Ignazio, Angela, Alejandro, Laura & Michele for their invitation
- My collaborators from the SuperFRS collaboration J. Benlliure, H. Geissel, C. Sheidenberger, H. Lenske & many many others ...

