Excitation of Nucleon Resonances in Isobar Charge Exchange Reactions

Isaac Vidaña
INFN-Catania

TNPI2017 – XVI Conference on Theoretical Nuclear Physics in Italy
October 3rd – 5th 2017, Cortona (Italy)
First observation of the $\Delta(1232)$ & the Roper N$^*(1440)$

- **In 1952** Fermi *et al.*, observed the $\Delta(1232)$ for the first time in πp scattering

 Phys. Rev. 85, 932 (1952)

- **In 1963** L. David Roper found an unexpected P_{11} resonance at $E \sim 1.44$ GeV

 Phys. Rev. Lett. 12, 340 (1964)
Since then many nucleon resonances have been discovered in

- \(\pi N \) elastic scattering
- \(\pi N \rightarrow \eta N, \sigma N, \omega N, \Lambda K, \Sigma K, \rho N, \pi \Delta \) reactions
- Electroproduction \(\gamma N \)
- More complex processes like e.g., \(\pi N \rightarrow \pi \pi N, \pi \rho N, \omega N, \phi N, K^* Y, \ldots \)
2015 status of the Δ & N resonances

22 Δ resonances known with masses from 1232 to 2950 MeV

<table>
<thead>
<tr>
<th>Particle J^P</th>
<th>Status overall</th>
<th>πN</th>
<th>γN</th>
<th>N_η</th>
<th>N_σ</th>
<th>N_ω</th>
<th>ΛK</th>
<th>ΣK</th>
<th>N_ρ</th>
<th>$\Delta \pi$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta_{(1232)}$ 3/2$^+$</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta_{(1600)}$ 3/2$^+$</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>o</td>
<td>*</td>
<td>***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta_{(1620)}$ 1/2$^-$</td>
<td>***</td>
<td>***</td>
<td>r</td>
<td>*</td>
<td>***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta_{(1700)}$ 3/2$^-$</td>
<td>****</td>
<td>****</td>
<td>b</td>
<td>*</td>
<td>***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta_{(1750)}$ 1/2$^+$</td>
<td>*</td>
<td>*</td>
<td>i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta_{(1900)}$ 1/2$^-$</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>d</td>
<td>*</td>
<td>*</td>
<td>***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta_{(1905)}$ 5/2$^+$</td>
<td>****</td>
<td>****</td>
<td>d</td>
<td>***</td>
<td>*</td>
<td>***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta_{(1910)}$ 1/2$^+$</td>
<td>****</td>
<td>****</td>
<td>e</td>
<td>*</td>
<td>*</td>
<td>***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta_{(1920)}$ 3/2$^-$</td>
<td>****</td>
<td>****</td>
<td>n</td>
<td>***</td>
<td>*</td>
<td>***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta_{(1930)}$ 5/2$^-$</td>
<td>****</td>
<td>****</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta_{(1940)}$ 3/2$^-$</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta_{(1950)}$ 7/2$^+$</td>
<td>****</td>
<td>****</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta_{(2000)}$ 5/2$^+$</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta_{(2150)}$ 1/2$^-$</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta_{(2200)}$ 7/2$^-$</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta_{(2300)}$ 9/2$^+$</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta_{(2350)}$ 5/2$^-$</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta_{(2390)}$ 7/2$^+$</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta_{(2400)}$ 9/2$^-$</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta_{(2420)}$ 11/2$^+$</td>
<td>****</td>
<td>****</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta_{(2750)}$ 13/2$^-$</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta_{(2950)}$ 15/2$^+$</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

***** Existence is certain, and properties are at least fairly well explored.
*** Existence is very likely but further confirmation of quantum numbers and branching fractions is required.
** Evidence of existence is only fair.
* Evidence of existence is poor.

26 N resonances known with masses from 1440 to 2700 MeV

<table>
<thead>
<tr>
<th>Particle J^P</th>
<th>Status overall</th>
<th>πN</th>
<th>γN</th>
<th>N_η</th>
<th>N_σ</th>
<th>N_ω</th>
<th>ΛK</th>
<th>ΣK</th>
<th>N_ρ</th>
<th>$\Delta \pi$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N_{(1440)}$ 1/2$^+$</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$N_{(1520)}$ 3/2$^-$</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$N_{(1535)}$ 1/2$^-$</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$N_{(1650)}$ 1/2$^-$</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$N_{(1675)}$ 5/2$^-$</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$N_{(1680)}$ 5/2$^+$</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$N_{(1685)}$</td>
<td>?</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$N_{(1700)}$ 3/2$^-$</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$N_{(1710)}$ 1/2$^+$</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$N_{(1720)}$ 3/2$^-$</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$N_{(1880)}$ 5/2$^+$</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$N_{(1875)}$ 3/2$^-$</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$N_{(1880)}$ 1/2$^+$</td>
<td>*</td>
<td>*</td>
<td>****</td>
<td>****</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$N_{(1895)}$ 1/2$^-$</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$N_{(1900)}$ 3/2$^+$</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$N_{(1990)}$ 7/2$^+$</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$N_{(2000)}$ 5/2$^+$</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$N_{(2040)}$ 3/2$^+$</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$N_{(2060)}$ 5/2$^-$</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$N_{(2100)}$ 1/2$^+$</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$N_{(2130)}$ 3/2$^-$</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$N_{(2190)}$ 7/2$^+$</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$N_{(2220)}$ 9/2$^+$</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$N_{(2250)}$ 9/2$^-$</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$N_{(2600)}$ 11/2$^-$</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$N_{(2700)}$ 13/2$^+$</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PDG estimates (2015)
The $\Delta(1232)$

First spin-isospin excited mode of the nucleon corresponding to $\Delta S=1$ & $\Delta T=1$. Conventionally described as a resonant πN state with relative angular momentum $L=1$

$\Delta(1232) \ 3/2^+$

\[I(J^P) = \frac{3}{2}(\frac{3}{2}^+) \]

Breit-Wigner mass (mixed charges) = 1230 to 1234 (≈ 1232) MeV
Breit-Wigner full width (mixed charges) = 114 to 120 (≈ 117) MeV
Re(pole position) = 1209 to 1211 (≈ 1210) MeV
$-2\text{Im}(\text{pole position}) = 98$ to 102 (≈ 100) MeV

<table>
<thead>
<tr>
<th>$\Delta(1232)$ DECAY MODES</th>
<th>Fraction (Γ_f/Γ)</th>
<th>p (MeV/c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N\pi$</td>
<td>100 %</td>
<td>229</td>
</tr>
<tr>
<td>$N\gamma$</td>
<td>0.55-0.65 %</td>
<td>259</td>
</tr>
<tr>
<td>$N\gamma$, helicity=1/2</td>
<td>0.11-0.13 %</td>
<td>259</td>
</tr>
<tr>
<td>$N\gamma$, helicity=3/2</td>
<td>0.44-0.52 %</td>
<td>259</td>
</tr>
</tbody>
</table>

PDG estimates (2015)
The $N^*(1440)$

However … its nature is not completely understood

Theoretical descriptions include:

- **Pure Quark Model**: radial excitation of the nucleon (qqq)*
- **Hybrid model**: $N^*(1440)$ as a qqqG state
- **Dual nature of $N^*(1440)$**: as a qqq & qqqqq̅ states
- **$N^*(1440)$** as a collective excitation

- **Coupled-channel** (πN, σN, $\pi \Delta$, ρN) meson exchange description of the $N^*(1440)$ structure. No qqq component at all.
- **Lattice QCD**

<table>
<thead>
<tr>
<th>$N(1440)$ DECAY MODES</th>
<th>Fraction (Γ_f/Γ)</th>
<th>ρ (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N\pi$</td>
<td>55–75 %</td>
<td>391</td>
</tr>
<tr>
<td>$N\eta$</td>
<td>(0.0±1.0) %</td>
<td>†</td>
</tr>
<tr>
<td>$N\pi\pi$</td>
<td>30–40 %</td>
<td>338</td>
</tr>
<tr>
<td>$\Delta\pi$</td>
<td>20–30 %</td>
<td>135</td>
</tr>
<tr>
<td>$\Delta(1232)\pi, P$-wave</td>
<td>15–30 %</td>
<td>135</td>
</tr>
<tr>
<td>$N\rho$</td>
<td><8 %</td>
<td>†</td>
</tr>
<tr>
<td>$N\rho, S=1/2, P$-wave</td>
<td>(0.0±1.0) %</td>
<td>†</td>
</tr>
<tr>
<td>$N(\pi\pi)_{S=0}$</td>
<td>10–20 %</td>
<td>†</td>
</tr>
<tr>
<td>$\rho\gamma$</td>
<td>0.035–0.048 %</td>
<td>407</td>
</tr>
<tr>
<td>$\rho\gamma$, helicity=1/2</td>
<td>0.035–0.048 %</td>
<td>407</td>
</tr>
<tr>
<td>$n\gamma$</td>
<td>0.02–0.04 %</td>
<td>406</td>
</tr>
<tr>
<td>$n\gamma$, helicity=1/2</td>
<td>0.02–0.04 %</td>
<td>406</td>
</tr>
</tbody>
</table>

PDG estimates (2015)
Is the study of nucleon resonances still interesting?

After more than 60 years studying nucleon resonances one could think that not, but … determining in-medium (density & isospin dependence) properties of nucleon resonances is essential for a better understanding of …

✧ the underlying dynamics governing many nuclear reactions
✧ three-nucleon force mechanisms
✧ EoS of asymmetric nuclear matter (neutron stars)
✧ …
Isobar Charge Exchange Reactions

- Allow the investigation of nuclear & nucleon (spin-isospin) excitations in nuclei
 - Low energies: GT, spin-dipole, spin-quadrupole, quasi-elastic
 - High energies: excitation of a nucleon into Δ, N^*, …
- Being peripheral can provide information on radial distributions (surface & tail) of protons & neutrons in nuclei (neutron skin thickness) → information on (low density) asymmetric nuclear matter

Are important tools to study the spin-isospin dependence of the nuclear force
Past Observations of the $\Delta(1232)$ in Isobar Charge Exchange Reactions

1980’s complete experimental program to measure $\Delta(1232)$ excitation in isobar charge exchange reactions with light & medium mass projectiles at SATURNE accelerator in Saclay

(p,n) reactions (n,p) reactions

Shift of the Δ peak to lower energies for medium & heavy targets

What’s its origin?

D. Bachelier, et al., PLB 172, 23(1986)
Recent experiments have been performed with the FRS at GSI using stable (112Sn, 124Sn) & unstable (110Sn, 120Sn, 122Sn) tin projectiles on different targets. The use of relativistic nuclei far off stability allows to explore the isospin degree of freedom enlarging our present knowledge of the properties of isospin-rich nuclear systems. Qualitative agreement with the results of SATURNE.
In this work we study the excitation of nucleon (Δ, N^*) resonances in isobar charge exchange reactions with heavy nuclei to analyze recent measurements at GSI.

In the next I will present:

- **Model for the reaction**
 - OME (π, ρ, σ)
 - Δ & N^* excitation in Target & Projectile

- **Results**
 - $(^{112}\text{Sn},^{112}\text{In})$ reaction on a proton target at 1GeV/nucleon
 - Origin of the shift of the Δ peak

- **Isospin content of projectile tail**: inclusive & exclusive measurements. Neutron skin thickness & L from ICER
Model for the reaction

\[\frac{d^2\sigma}{dE d\Omega} \left(^A Z, ^A(Z\pm1) \right) = \sum N_2=n,p \sum c=el,in \left(\frac{d^2\sigma}{dE_3 d\Omega_3} \right)_c N_{N_1N_2} \]

Double differential cross section (spectrum) calculated as

Glauber-like model where only the nucleons in the overlap region participate in the reaction & the rest are simply spectators.
Elementary Processes

The model includes contributions from

✧ Elastic NN \(\rightarrow\) NN processes

✧ Inelastic NN \(\rightarrow\) NN\(\pi\) processes

s-wave \(\pi\) production

p-wave (resonance pole) \(\pi\) production
Two Pion Emission Elementary Processes

Note that

<table>
<thead>
<tr>
<th>$\boldsymbol{N(1440)}$ DECAY MODES</th>
<th>Fraction (Γ_i/Γ)</th>
<th>p (MeV/c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N \pi$</td>
<td>55–75 %</td>
<td>391</td>
</tr>
<tr>
<td>$N \eta$</td>
<td>(0.0 ± 1.0) %</td>
<td>†</td>
</tr>
<tr>
<td>$N \pi \pi$</td>
<td>30–40 %</td>
<td>338</td>
</tr>
<tr>
<td>$\Delta \pi$</td>
<td>20–30 %</td>
<td>135</td>
</tr>
<tr>
<td>$\Delta(1232) \pi$, P-wave</td>
<td>15–30 %</td>
<td>135</td>
</tr>
</tbody>
</table>

Important elementary process (but not included here yet) are
List of elementary (p,n) processes

✧ Elastic $N_2(N_1,N_3)N_4$ process

✧ Inelastic $N_2(N_1,N_3)N_4\pi$ & $N_2(N_1,N_3\pi)N_4$ processes
Example: \((p,n)\) reaction on a proton target

\[pp \rightarrow np\pi^+ \]

Contribution from 5 processes

- s-wave \(\pi\) emission in Target
 \[p(p,n)p\pi^+ \]

- s-wave \(\pi\) emission in Projectile
 \[p(p,n\pi^+)p \]

- \(\Delta^{++}\) excitation in Target
 \[p(p,n)\Delta^{++} = p(p,n)p\pi^+ \]

- \(\Delta^+\) & \(P_{11}^+\) excitation in Projectile
 \[p(p,\Delta^+)p = p(p,n\pi^+)p \]
 \[p(p,P_{11}^+)p = p(p,n\pi^+)p \]

- Clear dominance of \(\Delta^{++}\) excitation in the target

Data from G. Glass et al., PRD 15, 36 (1977)
Elementary \((p,n)\) cross sections

- **\(\Delta(1232)\) excitation**
 - Reaction with a proton Target
 - c.s. of \(\Delta\) excitation in target \(\sim 9\) times larger than c.s. of \(\Delta\) excitation in projectile
 - Reaction with a neutron Target
 - similar strength of the c.s.

- **\(N^*(1440)\) excitation**
 - Reaction with a proton Target
 - \(P_{11}^+\) excited only in Projectile
 - Reaction with a neutron Target
 - strength of c.s. for \(N^*\) excitation in projectile \(\sim 1 - 5\) than of \(N^*\) in target
List of elementary \((n,p)\) processes

- **Elastic** \(N_2(N_1,N_3)N_4\) process

 \[
 p(n,p)n
 \]

- **Inelastic** \(N_2(N_1,N_3)N_4\pi\) & \(N_2(N_1,N_3\pi)N_4\) processes

 \[
 p(n,p\pi^0)n
 p(n,p\pi^-)p
 n(n,p\pi^-)n
 \]

 \[
 p(n,\Delta^0)p = p(n,p\pi^-)p
 p(n,\Delta^+)n = p(n,p\pi^0)n
 n(n,\Delta^0)n = n(n,p\pi^-)n
 \]

 \[
 p(n,\Delta^0)n = p(n,p\pi^-)n
 n(n,\Delta^0)n = n(n,p\pi^-)n
 \]
Elementary \((n,p)\) cross sections

\(\Delta(1232)\) excitation

- Reaction with a proton Target
 - similar strength of the c.s.
- Reaction with a neutron Target
 - c.s. of \(\Delta\) excitation in target \(\sim 9\) times larger than c.s. of \(\Delta\) excitation in projectile

\(N^*(1440)\) excitation

- \(N^*\) excited in reaction with both proton & neutron targets
 - \(P_{11}^+\) state excited only in projectile
 - \(P_{11}^0\) state excited both in projectile & target.
 - strength of c.s. for \(N^*\) excitation in projectile \(\sim 1 - 5\) than of \(N^*\) in target
Number of elementary processes $N_{N_1N_2}$

$$N_{N_1N_2} = \int d^2 \vec{b} \rho_{\text{overlap}}^{N_1N_2}(b)[1 - T(b)] P_\pi(b)$$

- N_1N_2 density of overlap region
 $$\rho_{\text{overlap}}^{N_1N_2}(b) = \int dz \int d^3 \vec{r} \rho_P^{N_1}(\vec{r}) \rho_T^{N_2}(\vec{b} + \vec{z} + \vec{r})$$

- Transmission function
 $$1 - T(b) = 1 - \exp\left(- \int dz \int d^3 \vec{r} \sigma_{\text{NN}} \rho_P(\vec{r}) \rho_T(\vec{b} + \vec{z} + \vec{r})\right)$$

- Pion survival probability
 $$P_\pi(b) = \exp\left(- \int dz \int d^3 \vec{r} \sigma_{\pi N} \rho_P(\vec{r}) \rho_T(\vec{b} + \vec{z} + \vec{r})\right)$$

N.B. Density distributions from RMF or SHF calculations
Peripheral character of the reaction

The reaction is peripheral

- Low impact parameters
 - Strong pion absorption due to large overlap. Therefore, $[1-T(b)]P_\pi(b)$ very small

- High impact parameters
 - Small overlap. Therefore, $[1-T(b)]P_\pi(b)$ very small
Number of elementary processes N_{N1N2}

$$N_{N_1N_2} = \int d^2\vec{b}\rho_{\text{overlap}}^{N_1N_2}(b)[1 - T(b)]P(\pi)(b), \quad \rho_{\text{overlap}}^{N_1N_2}(b) = \int dz\int d^3\vec{r}\rho_{\pi\nu}^{N_1}(\vec{r})\rho_{\pi\nu}^{N_2}(\vec{b} + \vec{z} + \vec{r})$$

<table>
<thead>
<tr>
<th>reaction</th>
<th>N_R</th>
<th>N_{pp}</th>
<th>N_{pn}</th>
<th>N_{np}</th>
<th>N_{nn}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{112}\text{Sn}^+\text{H}$</td>
<td>0.017</td>
<td>0.006</td>
<td>0</td>
<td>0.011</td>
<td>0</td>
</tr>
<tr>
<td>$^{112}\text{Sn}^+\text{C}$</td>
<td>0.019</td>
<td>0.003</td>
<td>0.003</td>
<td>0.007</td>
<td>0.006</td>
</tr>
<tr>
<td>$^{112}\text{Sn}^+\text{Cu}$</td>
<td>0.022</td>
<td>0.003</td>
<td>0.004</td>
<td>0.006</td>
<td>0.009</td>
</tr>
<tr>
<td>$^{112}\text{Sn}^+\text{Pb}$</td>
<td>0.027</td>
<td>0.001</td>
<td>0.007</td>
<td>0.004</td>
<td>0.015</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>reaction</th>
<th>N_R</th>
<th>N_{pp}</th>
<th>N_{pn}</th>
<th>N_{np}</th>
<th>N_{nn}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{124}\text{Sn}^+\text{H}$</td>
<td>0.019</td>
<td>0.004</td>
<td>0</td>
<td>0.015</td>
<td>0</td>
</tr>
<tr>
<td>$^{124}\text{Sn}^+\text{C}$</td>
<td>0.023</td>
<td>0.002</td>
<td>0.002</td>
<td>0.010</td>
<td>0.009</td>
</tr>
<tr>
<td>$^{124}\text{Sn}^+\text{Cu}$</td>
<td>0.024</td>
<td>0.001</td>
<td>0.002</td>
<td>0.009</td>
<td>0.010</td>
</tr>
<tr>
<td>$^{124}\text{Sn}^+\text{Pb}$</td>
<td>0.029</td>
<td>0.0006</td>
<td>0.003</td>
<td>0.005</td>
<td>0.020</td>
</tr>
</tbody>
</table>
The \((^{112}\text{Sn},^{112}\text{In})\) reaction on a proton target at 1 GeV/nucleon
Origin of the shift of the Δ peak

\((^{124}\text{Sn},^{124}\text{In})\) \(\rightarrow\) \((^{124}\text{Sn},^{124}\text{Sb})\)

Is the shift due to in-medium effects? If yes, then why it seems to be almost the same for all targets?

\textbf{NO:} in-medium (density) modification of Δ & N^* properties because the reaction is very peripheral & density is small

\textbf{YES:} excitation mechanisms of Δ (N^*) in both Target & Projectile

Conclusion already pointed out in the analysis of charge exchange reactions with lighter nuclei (e.g., E. Oset, E. Shiino & H. Toki, PLB 224, 249 (1989))
Isospin content of the projectile tail: inclusive measurements

<table>
<thead>
<tr>
<th>(n,p) channel</th>
<th>(p,n) channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{A}Z, ^{A}(Z+1))</td>
<td>(^{A}Z, ^{A}(Z-1))</td>
</tr>
</tbody>
</table>

Consider the ratio

\[R = \frac{\sigma\left(^{A}Z, ^{A}(Z+1)\right)}{\sigma\left(^{A}Z, ^{A}(Z-1)\right)} \]

In the model

\[R = \frac{\sigma_{nn \rightarrow pn\pi^{-}}N_{nn} + \sigma_{np \rightarrow pp\pi^{-}}N_{np} + \sigma_{np \rightarrow pn\pi^{0}}N_{np}}{\sigma_{pp \rightarrow np\pi^{+}}N_{pp} + \sigma_{pn \rightarrow nn\pi^{+}}N_{pn} + \sigma_{pn \rightarrow np\pi^{0}}N_{pn}} \]

\[\approx \frac{N_{n}^{(P)}}{N_{p}^{(P)}} \times \left(\frac{\sigma_{nn \rightarrow pn\pi^{-}}N_{n}^{(T)} + \sigma_{np \rightarrow pp\pi^{-}}N_{p}^{(T)} + \sigma_{np \rightarrow pn\pi^{0}}N_{p}^{(T)}}{\sigma_{pp \rightarrow np\pi^{+}}N_{p}^{(T)} + \sigma_{pn \rightarrow nn\pi^{+}}N_{n}^{(T)} + \sigma_{pn \rightarrow np\pi^{0}}N_{n}^{(T)}} \right) \]

This suggest

\[\frac{N_{n}^{(P)}}{N_{p}^{(P)}} \propto f\left(N_{n}^{(T)}, N_{p}^{(T)}\right) R \]

How to disentangle ?. With exclusive measurements ?
Exclusive measurements & isospin content of the projectile tail

\[(n,p) \text{ channel} \]

(1): \(^A Z + X \rightarrow ^A (Z+1) + \pi^- + X'\]
(2): \(^A Z + X \rightarrow ^A (Z+1) + \pi^0 + X''\]

\[(p,n) \text{ channel} \]

(3): \(^A Z + X \rightarrow ^A (Z-1) + \pi^+ + \tilde{X}\]
(4): \(^A Z + X \rightarrow ^A (Z-1) + \pi^0 + \tilde{X}''\]

Consider the ratios

\[R_1 = \frac{\sigma^{(1)}_{(A Z, A (Z+1))}}{\sigma^{(3)}_{(A Z, A (Z+1))}}, \quad R_2 = \frac{\sigma^{(2)}_{(A Z, A (Z+1))}}{\sigma^{(4)}_{(A Z, A (Z+1))}} \]

In the model

\[R_1 = \frac{\sigma_{nn \rightarrow pn \pi^-} N_{nn} + \sigma_{np \rightarrow pp \pi^-} N_{np}}{\sigma_{pp \rightarrow np \pi^0} N_{pp} + \sigma_{pn \rightarrow nn \pi^0} N_{pn}} \approx \frac{N^{(P)}_{n}}{N^{(P)}_{p}} \times \left(\frac{\sigma_{nn \rightarrow pn \pi^-} N^{(T)}_{n} + \sigma_{np \rightarrow pp \pi^-} N^{(T)}_{p}}{\sigma_{pp \rightarrow np \pi^0} N^{(T)}_{p} + \sigma_{pn \rightarrow nn \pi^0} N^{(T)}_{n}} \right) \]
\[R_2 = \frac{\sigma_{np \rightarrow pn \pi^0} N_{np}}{\sigma_{pn \rightarrow np \pi^0} N_{pn}} \approx \frac{N^{(P)}_{n}}{N^{(P)}_{p}} \times \left(\frac{\sigma_{np \rightarrow pn \pi^0} N^{(T)}_{n}}{\sigma_{pn \rightarrow np \pi^0} N^{(T)}_{n}} \right) \]

This suggests

\[\frac{N^{(P)}_{n}}{N^{(P)}_{p}} \propto f(N^{(T)}_{n}, N^{(T)}_{p})R_1, \quad \frac{N^{(P)}_{n}}{N^{(P)}_{p}} \propto g(N^{(T)}_{n}, N^{(T)}_{p})R_2 \]

Seems as entangled as before!!
The cleanest case: measurements with a proton target

In this case we can consider just one ratio

\[R_1 = \frac{\sigma^{(1)}_{A Z, A (Z+1)}}{\sigma^{(3)}_{A Z, A (Z-1)}} \]

\[R_1 = \frac{\sigma_{np\rightarrow pp\pi^-}}{\sigma_{pp\rightarrow np\pi^+}} \frac{N_{np}}{N_{pp}} \sim \frac{\sigma_{np\rightarrow pp\pi^-}}{\sigma_{pp\rightarrow np\pi^+}} \frac{N_n^{(P)} N_p^{(T)}}{N_p^{(P)} N_p^{(T)}} = \frac{N_n^{(P)}}{N_p^{(P)}} \times \left(\frac{\sigma_{np\rightarrow pp\pi^-}}{\sigma_{pp\rightarrow np\pi^+}} \right) \]

in this case

\[\frac{N_n^{(P)}}{N_p^{(P)}} \propto R_1 \]
Isospin content of the projectile: model estimations

✧ **Projectile mass number dependence**

✧ **Target atomic number dependence**
Neutron Skin Thickness & Symmetry Energy

Accurate measurements of

\[R = \frac{\sigma^{(A_Z, A(Z+1))}}{\sigma^{(A_Z, A(Z-1))}} \]

can be used to extract the neutron skin thickness of heavy nuclei &

\(^{136}\text{Xe}\) on a proton target at 1GeV/A
Summary & Future Perspectives

✧ Summary
Study of nucleon (Δ, N*) resonances in isobar charge reactions with heavy nuclei

- Model based on OME. Δ & N* excitation in Target & Projectile
- Reasonably good agreement with recent measurements
- Origin of Δ shift in medium & heavy targets due to excitation in Target & Projectile. Not to in-medium (density) effects as pointed out in analysis of reactions with lighter nuclei (e.g., Oset et al., PLB (1989))

✧ Future Perspectives

Experiment
- Exclusive measurements to identify the different reaction mechanisms.
 - Sensitivity to the isospin content of projectile tail.
 - Neutron skin thickness from ICE reactions

Theory
- Inclusion of other reaction mechanism (2π emission)
- You for your time & attention

- Ignazio, Angela, Alejandro, Laura & Michele for their invitation

- My collaborators from the SuperFRS collaboration J. Benlliure, H. Geissel, C. Sheidenberger, H. Lenske & many many others …