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Chiral effective field theory (EFT)
 S. Weinberg, Phys. A 96, 327 (1979). 
R. Machleidt and D. Entem, Physics Reports 503, 1 (2011).	


Degrees of freedom and symmetry 

Nucleons and pions 
Chiral symmetry 

Soft scale Q
Hard scale        ⇤�

Many-body forces on an equal footing 

At N2LO (n = 3),  
3-nucleon force (3NF) appears. 

Regularization 

J. Fujita and H. Miyazawa, Prog. Theor. Phys. 17, 360 (1957). 
S. A. Coon et al., Nucl. Phys. A317, 242 (1979). 
J. Carlson et al., Nucl. Phys. A401, 59 (1983).	


Fujita-Miyazawa, Tucson-Melbourne, Ulbana, etc. 

Out of our scope


S. Weinberg, Phys. Lett. B 295, 114 (1992). 
U. van Kolck, Phys. Rev. C 49, 2932 (1994).	


5 low-energy constants (LECs) 
(2 of them appear for the first time) 

Perturbative expansion of Lagrangian 

(Q/⇤�)
n Power counting  

Theoretical error 

Theory valid in the scale                , Q ⌧ ⇤�

with the regulator      of the cutoff    . 
 

→ Discussed later. 

u⌫ ⇤

V3N 7�! u⌫ (q,⇤)V3N u⌫ (q
0,⇤) ,
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depending on the cD variation. This is due to the fact that
the structure of the two 1!0 states is exchanged depending
on cD. From Figs. 1 and 2, we can see that for cD <"2 the
4He radius and the 6Li quadrupole moment underestimate
experiment while for cD > 0 the lowest two 1! states of
10B are reversed and the 12C B#M1; 0!0! 1!1$ is over-
estimated. We therefore select cD % "1 for our further
investigation.

We present in Fig. 3 the excitation spectra of 11B as a
function of Nmax for both the chiral NN ! NNN, (top
panel) as well as with the chiral NN interaction alone
(bottom panel). In both cases, the convergence with in-
creasing Nmax is quite good especially for the lowest-lying
states. Similar convergence rates are obtained for our other
p-shell nuclei.

We display in Fig. 4 the natural parity excitation spectra
of four nuclei in the middle of the p shell with both the NN
and the NN ! NNN effective interactions from ChPT. The
results shown are obtained in the largest basis spaces
achieved to date for these nuclei with the NNN interac-
tions, Nmax % 6 (6@!). Overall, the NNN interaction con-
tributes significantly to improve theory in comparison with
experiment. This is especially well demonstrated in the odd
mass nuclei for the lowest few excited states. The cele-
brated case of the ground-state spin of 10B and its sensi-
tivity to the presence of the NNN interaction is clearly
evident. There is an initial indication in these spectra that
the chiral NNN interaction is ‘‘overcorrecting’’ the inad-
equacies of the NN interaction since, e.g., the 1!0 and 4!0
states in 12C are not only interchanged but they are also
spread apart more than the experimentally observed
separation.

Table I contains selected experimental and theoretical
results, including Gamow-Teller (GT) transitions, for 6Li
and A % 10–13. A total of 68 experimental data are sum-
marized in this Table including the excitation energies of
28 states encapsulated in the rms energy deviations. Note
that the only case of an increase in the rms energy deviation
with inclusion of NNN interaction is 13C and it arises due
to the upward shift of the 7
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" state seen in Fig. 4, an
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FIG. 4 (color online). States dominated by p-shell configura-
tions for 10B, 11B, 12C, and 13C calculated at Nmax % 6 using
@! % 15 MeV (14 MeV for 10B). Most of the eigenstates are
isospin T % 0 or 1=2, the isospin label is explicitly shown only
for states with T % 1 or 3=2. The excitation energy scales are in
MeV.

TABLE I. Selected properties of 6Li, 10;11B, and 12;13C from
experiment and theory. E2 transitions are in e2 fm4 and M1
transitions are in !2

N . The rms deviations of excited state
energies are quoted for the states shown in Fig. 4 whose spin-
parity assignments are well established and that are known to be
dominated by p-shell configurations. The total energy rms is for
the 28 excited states from Fig. 4. Results were obtained in the
basis spaces with Nmax % 6 (8 for 6Li) and HO frequency @! %
15 MeV (13 MeV for 6Li, 14 MeV for 10B). In the NN ! NNN
column, we show sensitivity of selected observables to the
change of cD by &1 at fixed Nmax and @!. The experimental
values are from Refs. [14–21].

Nucleus/property Expt. NN ! NNN NN
6Li: jE#1!1 0$j [MeV] 31.995 32.63 28.98
Q#1!1 0$ [e fm2] "0:082#2$ "0:12#4$ "0:052
!#1!1 0$ [!N] !0:822 !0:836 !0:845
Ex#3!1 0$ [MeV] 2.186 2.47(8) 2.874
B#E2; 3!1 0! 1!1 0$ 10.69(84) 3.685 4.512
B#E2; 2!1 0! 1!1 0$ 4.40(2.27) 3.847 4.624
B#M1; 0!1 1! 1!1 0$ 15.43(32) 15.04(4) 15.089
B#M1; 2!1 1! 1!1 0$ 0.149(27) 0.08(2) 0.031

10B: jE#3!1 0$j [MeV] 64.751 64.78 56.11
rp [fm] 2.30(12) 2.197 2.256
Q#3!1 0$ [e fm2] !8:472#56$ !6:327 !6:803
!#3!1 0$ [!N] !1:801 !1:837 !1:853
rms (Exp-Th) [MeV] - 0.823 1.482
B#E2; 1!1 0! 3!1 0$ 4.13(6) 3.05(62) 4.380
B#E2; 1!2 0! 3!1 0$ 1.71(0.26) 0.50(50) 0.082
B#GT; 3!1 0! 2!1 1$ 0.083(3) 0.07(1) 0.102
B#GT; 3!1 0! 2!2 1$ 0.95(13) 1.22(2) 1.487

11B: jE# 3
21

" 1
2$j [MeV] 76.205 77.52 67.29

rp# 3
21

" 1
2$ [fm] 2.24(12) 2.127 2.196

Q# 3
21

" 1
2$ [e fm2] !4:065#26$ !3:065 !2:989

!# 3
21

" 1
2$ [!N] !2:689 !2:06#1$ !2:597

rms (Exp-Th) [MeV] - 1.067 1.765
B#E2; 3

21

" 1
2! 1

21

" 1
2$ 2.6(4) 1.476 0.750

B#GT; 3
21

" 1
2! 3

21

" 1
2$ 0.345(8) 0.24(1) 0.663

B#GT; 3
21

" 1
2! 1

21

" 1
2$ 0.440(22) 0.46(2) 0.841

B#GT; 3
21

" 1
2! 5

21

" 1
2$ 0.526(27) 0.53(3) 0.394

B#GT; 3
21

" 1
2! 3

22

" 1
2$ 0.525(27) 0.76(2) 0.574

12C: jE#0!1 0$j [MeV] 92.162 95.57 84.76
rp [fm] 2.35(2) 2.172 2.229
Q#2!1 0$ [e fm2] !6#3$ !4:318 !4:931
rms (Exp-Th) [MeV] - 1.058 1.318
B#E2; 2!0! 0!0$ 7.59(42) 4.252 5.483
B#M1; 1!0! 0!0$ 0.0145(21) 0.006 0.003
B#M1; 1!1! 0!0$ 0.951(20) 0.91(6) 0.353
B#E2; 2!1! 0!0$ 0.65(13) 0.45(1) 0.301

13C: jE# 1
21

" 1
2$j [MeV] 97.108 103.23 90.31

rp# 1
21

" 1
2$ [fm] 2.29(3) 2.135 2.195

!# 1
21

" 1
2$ [!N] !0:702 !0:39#3$ !0:862

rms (Exp-Th) [MeV] - 2.144 2.089
B#E2; 3

21

" 1
2! 1

21

" 1
2$ 6.4(15) 2.659 4.584

PRL 99, 042501 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
27 JULY 2007

042501-3

P. Navrátil et al., Phys. Rev. Lett. 99, 042501 (2007).	


p-shell nuclei

ab initio no-core shell model 

  Inclusion of 3NF improves drastically the order (qualitative) of excited states,  
absolute value (quantitative) as well, compared to the experimental data. 
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J. D. Holt et al., Phys. Rev. C 90, 024312 (2014).	


fp-shell nuclei

Shell model with 40Ca core THREE-NUCLEON FORCES AND SPECTROSCOPY OF . . . PHYSICAL REVIEW C 90, 024312 (2014)
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FIG. 7. (Color online) Excitation energies of bound excited states
in 48Ca compared with experiment [62] and phenomenological
interactions (labels are as in Fig. 6).

physics necessary to reproduce the spectrum is not adequately
captured; the excited states are too compressed and with
incorrect ordering. It is only in the NN + 3N calculations
in the extended pfg9/2 space that we observe a reasonable
description of the 49Ca spectrum.

The ground state in 49Ca is dominated by the single-particle
configuration of a p3/2 particle on top of 48Ca. Therefore, the
first excited 1/2−

1 state, predicted in very good agreement with
experiment, reflects the effective p3/2-p1/2 gap for this nucleus.
Also the location of the lowest 7/2−

1 state is in reasonable
agreement with the tentatively assigned experimental level
(it lies some 500 keV lower), and with predictions from
the phenomenological interactions. This state is dominated
by a 2p-1h(f7/2)−1(p3/2)2 configuration on top of 48Ca and
therefore reflects the effective f7/2-p3/2 gap plus correlations
discussed for the closure of 48Ca.
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FIG. 8. (Color online) Excitation energies of bound excited states
in 49Ca compared with experiment [18,62] and phenomenological
interactions (labels are as in Fig. 6).
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FIG. 9. (Color online) Excitation energies of bound excited states
in 50Ca compared with experiment [18,62] and phenomenological
interactions (labels are as in Fig. 6).

However, in our calculations we observe that the 5/2−
1 state

is quite low compared with experiment and the phenomenolog-
ical interactions. This is indicative of a small effective p3/2-f5/2
gap in this region. We also note that the spin of the fourth
excited state has not been experimentally identified, but that
our calculations, as in phenomenology, predict it as a 7/2−

state.

4. 50Ca

In Fig. 9 we see that, for 50Ca, the location of the first
excited 2+

1 state is overpredicted in all MBPT calculations by
∼500 keV. The 0+ ground state and the 2+

1 state are dominated
by (p3/2)2 configurations. Therefore, the increased 2+

1 energy
is related to the low excited 0+ state found in 48Ca.

Although most of the experimental spin and parity as-
signments are tentative, in our calculations with NN + 3N
forces in the pfg9/2 space, the remaining states are compatible
with experiment and comparable to the results with the
phenomenological interactions. In particular, the large 2 MeV
gap between the 2+

1 and 2+
2 states is not reproduced in our

other MBPT calculations. The location of the lowest 1+
1

state differs significantly in the three calculations, which are
otherwise consistent with the data, with the MBPT prediction
being 1 MeV and 500 keV above the GXPF1A and KB3G
predictions, respectively. A reliable assignment of the spin of
the third excited state in 50Ca at 3.53 MeV is needed to identify
this state and test the theoretical calculations.

5. 51Ca

In 51Ca there is no definite experimental information on the
spins of the excited states, only tentative assignments based
largely on inferences from phenomenological interactions
[14,17]. Therefore, we show in Fig. 10 only our NN + 3N
calculation in the extended pfg9/2 space and compare with

024312-7

  The 3NF effect with g9/2 is significant. 
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Nucleus-nucleus scattering

Elastic and inelastic 16O-16O scattering 

MICROSCOPIC COUPLED-CHANNELS CALCULATIONS OF . . . PHYSICAL REVIEW C 93, 014607 (2016)

the sum of the excitation energies of P (εP) and T (εT). M
is defined as M = APAT/(AP + AT), where AP(T) is the
mass number of P (T). UCoul(R) is the Coulomb potential
between P and T. W (LSL′S ′|Jλ) is the Racah coefficient and
NIPεPITεT

= [2(1 + δIPIT
δεPεT

)]−1/2.
The inputs of the microscopic coupled-channels calculation

are the effective nucleon-nucleon interactions g(dr) and g(ex),
and the transition densities ρ

λA
IAI ′

A
(A = P and T). In this

paper, we use the Melbourne g-matrix interaction modified
with the chiral 3NF effects [11,18]. Although a g matrix
contains an effect of single-particle excitation in nuclear
matter, the effect of collective excitation for a specific nucleus
is not adequately included. Following preceding studies,
therefore, we take into account these collective excited states
using the coupled-channels framework. A possible double
counting of the coupling to nonelastic channels is expected
to be negligible, because the channels explicitly included
are specifically collective and have no analog in nuclear
matter.

We take the frozen density approximation for evaluating ρ
in the argument of the g matrix; that is, ρ = ρP(rm) + ρT(rm)
is used, where rm means the midpoint of the interacting two
nucleons. For the coupling potentials, we take the average of
the densities in the initial and final states, i.e., ρA = (ρλA=0

I ′
AI ′

A
+

ρ
λA=0
IAIA

)/2 for A = P or T.
Since we need not only the ground state density but also

transition densities for excited states, we adopt microscopic
cluster models to obtain them. For 12C, we consider the 0+

1 ,
2+

1 (4.44 MeV), 0+
2 (7.65 MeV), and 2+

2 (10.3 MeV) states,
and we use the transition densities obtained by the resonating
group method (RGM) based on a 3α model [31]. These
densities are found to reproduce the elastic and inelastic form
factors determined by electron scattering and thus are highly
reliable. Note that the transition density between the 2+

1 and
0+

2 states is modified as suggested in Ref. [31]. For 16O,
the 0+

1 , 3−
1 (6.13 MeV), and 2+

1 (6.92 MeV) states are taken
into account. We use the transition densities obtained by the
orthogonality condition model (OCM) assuming an α + 12C
structure [32]. However, the transition densities between the
excited states are not calculated; we thus neglect the coupling
between the excited states in the calculation of the 16O -16O
scattering. Note that we multiply the 16O transition density
between the 0+

1 and 3−
1 (2+

1 ) states by 0.816 (1.17), so as to
reproduce the experimental values of B(E3) and B(E2), i.e.,
1490 ± 70 e6fm6 and 39.3 ± 1.6 e4fm4 [33], respectively. A
similar procedure was adopted in Refs. [28,34] using the same
transition densities of 16O. In the reaction calculation, we do
not use the excitation energies of 12C and 16O evaluated by the
microscopic models but adopt the experimental values of them.

In the present calculation, we treat transitions only by
the nuclear interaction, although the Coulomb interaction
is included in the diagonal components of the coupling
potentials. The symmetrization of the identical bosons as well
as the mutual excitation is included properly. We adopt the
relativistic kinematics of P and T. As for the integration to
calculate the coupling potentials in Eq. (3), we perform the
Monte-Carlo integration with random numbers generated by
the Mersenne Twister method [35].
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FIG. 1. Differential cross sections of elastic and inelastic
16O -16O scattering at (a) 70 MeV/nucleon and (b) 44 MeV/nucleon.
The solid (dashed) line corresponds to the result with (without) the
3NF effects, and the dotted (dot-dashed) line corresponds to the
result of the one-step calculation with (without) the 3NF effects.
The experimental data are taken from Refs. [36–38]. The inelastic
cross sections are scaled by the factor shown inside the panel for
clarity.

III. RESULTS AND DISCUSSIONS

Figure 1 shows the differential cross sections for the
16O -16O scattering at (a) 70 MeV/nucleon and (b) 44 MeV/
nucleon as a function of the scattering angle θ in the center-of-
mass system. In each panel, three cross sections corresponding
to the 0+

1 (top), 3−
1 (middle), and 2+

1 (bottom) states of the
ejectile are shown; the other particle is in the ground state
in the final state. For the 0+

1 state, i.e., the elastic scattering,
the ratio to the Rutherford cross section is plotted. The solid
(dashed) line is the result of the coupled-channels calculation
with (without) the 3NF effects, and the dotted (dot-dashed)
line corresponds to the result of the one-step calculation with

014607-3

  Backward angle → high density 
  Similar effect on 12C-12C scattering. 

Knock-out reaction 40Ca(p, 2p)39K 
PROBING THREE-NUCLEON-FORCE EFFECTS VIA (p, . . . PHYSICAL REVIEW C 96, 024609 (2017)
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FIG. 2. Triple differential cross sections of 40Ca(p,2p)39K at
150 MeV as a function of the recoil momentum of the residue.
The 0p3/2 proton is knocked out and the emitted angles are fixed
as θL

1 = 30◦ and θL
2 = 40◦. The meaning of the shaded bands is the

same as in Fig. 1.

include spectroscopic factors 2.58 for 0d3/2 and 1.03 for 1s1/2,
which are deduced from the (e,e′p) reaction analysis [37];
these values have been confirmed to be consistent with those
deduced from the (d,3He) reaction analysis [38].

The difference between the results with and without 3NF
is small and the cutoff ambiguities are also negligibly small
both for 0d3/2 and for 1s1/2. Since the protons bound in those
outermost orbits are knocked out mainly in the surface region
of 40Ca, the reaction process is hardly affected by the 3NF
effects, as discussed later in detail.

The theoretical results well reproduce the experimental data
in both cases of 0d3/2 and 1s1/2. In Ref. [36], the estimated
spectroscopic factors were 4.0 for 0d3/2 and 1.4 for 1s1/2. The
main difference between their and our results comes from the
distorting potentials. Because the modern optical potentials
adopted [33] are more well tuned, the present framework is
expected to be more reliable.

In Fig. 2, we predict the TDX of 40Ca(p,2p)39K at the
incident proton energy of 150 MeV, as a function of the recoil
momentum of the residue. The 0p3/2 proton is supposed to
be knocked out. The emitted angles are fixed as θL

1 = 30◦ and
θL

2 = 40◦. EL
1 varies from 18 to 73 MeV. The spectroscopic

factor is assigned to be 4, which corresponds to the single-
particle limit for 0p3/2 orbit.

In this case, we observe large enhancement of the cross
sections by the 3NF effects. At the peak, the cross section
increases by 20%, while the theoretical uncertainty coming
from the cutoff dependence of chiral interaction is as small
as 4%. The increase in the cross sections is mainly due to
the enhanced tensor component by the chiral 3NF effects. The
kinematics of the NN system corresponding to the peak in
Fig. 2 are estimated as κ ′ = 0.983 fm−1, κ = 1.46 fm−1, and
θκκ ′ = 78.7◦. Here, θκκ ′ is the angle between κ and κ ′, that
is, the scattering angle of the two protons. It is well known
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FIG. 3. The matter density profile of 40Ca (solid line) and the
TMD corresponding to the knockout reactions from 0p3/2-orbit
(dashed line) and 1s1/2-orbit protons (dotted line). The TMDs
are shown in arbitrary units. The mean densities calculated with
dashed and dotted lines are ρ̄(1s1/2) = 0.022 fm−3 and ρ̄(0p3/2) =
0.076 fm−3, respectively.

that noncentral components are dominant at around 90◦ for
unpolarized pp cross sections. Thus, the 3NF effects can be
clearly detected in the knockout reaction from a deeply bound
state. It should be noted that, for elastic scattering, the 3NF
effects are generally discussed at large scattering angles, in
which cross sections are small. The situation for the (p,2p)
reaction is very different from this.

When a head-on collision between two protons occurs,
the relative momenta κ and κ ′ becomes large. The nonzero
recoil momentum region in Figs. 1 and 2 corresponds to this
condition. Even in that case, we confirmed that κ and κ ′ are
smaller than the lower limit of the cutoff scale in the present
calculations.

To evaluate the in-medium effect for the reactions dis-
cussed, we introduce the transition matrix density (TMD) δ(R)
defined by

∫
dRδ(R) ∝ d3σ

dEL
1 d&L

1 d&L
2

, (2)

which indicates a transition strength as a function of R;
the explicit expression of δ(R) is found in Ref. [39]. In
Fig. 3, we show the matter density profile of 40Ca and the
δ(R) corresponding to the knockout reaction from 1s1/2- and
0p3/2-orbit protons. The δ(R) is shown in arbitrary units. One
sees that the TMD for the 1s1/2 knockout (dashed line) is
more peripheral than that for 0p3/2 (dotted line). Calculating
an expectation value of the matter density with the TMDs,
we can estimate a mean density ρ̄ for each kinematics, which
stands for a typical density assigned for the density dependence
of the g-matrix interactions. The evaluated values of ρ̄ near
the quasifree condition, that is, at the zero recoil momentum
in Fig. 1, and the peak in Fig. 2 are ρ̄(1s1/2) = 0.022 fm−3

and ρ̄(0p3/2) = 0.076 fm−3. The 0p3/2 knockout gives the

024609-3

K. Minomo et al., Phys. Rev. C 93, 014607 (2016).	
 K. Minomo et al., Phys. Rev. C 96, 024609 (2017).	


  Specific kinematical-condition. 

Significance of 3NF | Scattering observables	
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Pure neutron matter Symmetric nuclear matter 

L. Coraggio et al., Phys. Rev. C 87, 014322 (2013).	
 L. Coraggio et al., Phys. Rev. C 89, 044321 (2014). 

  Crucial 3NF effect for saturation. 

Significance of 3NF | Nuclear matter	
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FIG. 7. (Color online) Same as in Fig. 6, but including the
contribution of the N2LO 3NF.

and c3, cutoff parameters, and regulator function are exactly
the same as in the corresponding N3LO NN potential; see
Table I.

In Fig. 8, we show our results, obtained at third order in the
perturbative expansion, with and without taking into account
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FIG. 8. (Color online) Results obtained for the g.s.e. per particle
of infinite neutron matter at third-order in perturbation theory for
three sets of chiral interactions which differ by the cutoff !.

3NF effects. The results obtained with 2NFs show considerable
dependence on the choice of the regulator and its cutoff param-
eter. This is at variance with the desired regulator independence
of the EFT. However, when including the contributions of the
three-body potentials, which are consistent with their 2NF
partner, regulator dependence is strongly reduced. This is
our main result and first clear evidence that modern chiral
potentials can provide model-independent results in many-
body calculations if 2NF and 3NF are treated consistently.

V. CONCLUDING REMARKS AND OUTLOOK

In this paper we have studied the regulator dependence of
many-body predictions when employing chiral two- and three-
nucleon potentials, using as a testing ground the perturbative
calculation of the neutron-matter energy per particle. We
find substantial regulator dependence of the predictions when
only 2NFs are taken into account. The main outcome of this
study is the observation that the 3NF can play a crucial role
in the restoration of regulator independence. However, this
mechanism works properly only when the chiral 2NF and 3NF
are treated consistently in the sense that the same parameters
are used for the same vertices that occur in all topologies
involved. This is particularly true for the LECs c1 and c3
occurring first at N2LO in the chiral power counting.

In Refs. [10,11] the large uncertainties of the results for
the ground-state energy per neutron trace back to the choice of
using a range of values for c1 and c3 obtained from a high-order
analysis of πN scattering [24]. This is at variance with the cis
employed in the present paper which, as reported in Sec. II,
are uniquely fixed in peripheral NN partial waves.

In closing, we note that the present investigation deals
only with identical nucleon systems and that the regulator
dependence should also be investigated in systems with
different concentrations of interacting protons and neutrons.
In infinite symmetric nuclear matter, contributions from the
intermediate-range 1π -exchange component VD and the short-
range contact interaction VE also come into play. This means
that the calculation of the g.s.e. depends also on the coupling
constants cD and cE . Even though these parameters can be
fixed in few-body systems, there is some freedom in doing so,
resulting in more latitude for the 3NF contribution in nuclear
matter (as compared to pure neutron matter).

This will be an interesting subject for a future study that
may shed more light on the topic of regulator independence
of many-body calculations with chiral potentials. The results
of such investigations will provide valuable guidance for the
proper application of these interactions in microscopic nuclear
structure calculations.
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FIG. 8. (Color online) Nuclear matter energy per particle ob-
tained from the N3LO 2NF with cutoff ! = 500 MeV. The first,
second, and third order in the perturbative expansion and the
Padé approximant [2|1] are shown as a function of the Fermi
momentum kF .

from the one computed at third order, E3, for the whole range
of Fermi momenta considered. The perturbative character is
also indicated by the fact that the curve corresponding to E3 is
almost indistinguishable from the [2|1] Padé approximant one.
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FIG. 9. (Color online) Same as in Fig. 8, but including the
contribution of the N2LO 3NF.

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

 kF [fm
–1]

–16

–12

–8

–4

0

4

8

12

16

20

 E
/A

 [M
eV

]

E1

E2

E3
E[2|1]

1st order
2nd order
3rd order
Pade’ [2|1]

N3LO 2NF + N2LO 3NF [450 MeV]

FIG. 10. (Color online) Same as Fig. 9, but for ! = 450 MeV.

Different considerations about the perturbative expansion
have to be drawn when including the effects of 3NF. As a
matter of fact, from inspection of Fig. 9, it can be seen that
now the curve corresponding to E3 deviates from the one given
by the [2|1] Padé approximant for kF larger than 1.6 fm−1,
indicating a worsening of the perturbative behavior. On the
other hand, using the other chiral potentials with lower cutoffs,
the perturbative behavior is satisfactory at least up to kF = 1.8
fm−1, as shown in Fig. 10 for ! = 450 MeV.

In Fig. 11 we display our predicted EOS obtained with
chiral potentials that apply different regulator functions. We
have added to each 2NF a 3NF whose LECs ci , cutoff
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FIG. 11. (Color online) Results obtained for the g.s.e. per particle
of infinite nuclear matter at third-order in perturbation theory for three
sets of chiral interactions which differ by the cutoff !.
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  Only the 2-pion exchange term  
contributes. 
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 6 

  Formulation of the 3-body MEs is given simply. 
 

  No observable is shown but only the MEs of the contact term  
(due to limited time to develop our code). 
 

  Cutoff dependence with a few types of the regulator is investigated. 
 

→ Picking up only the contact term breaks consistency of  chiral EFT,  
     but this framework can be easily extended to other two long-range terms. 

This presentation


Motivation

  Including the 3NF based on the chiral EFT in shell model calculations  

by means of the harmonic-oscillator (HO) basis-functions. 
 

  Investigating 3NF effect with elucidating cutoff dependence, LEC dependence,  
model-space (nuclides or single-particle orbits) dependence, etc.  
 

→ It is necessary to develop our own code for the 3-body matrix elements (MEs). 



�

�

�

h

⇥ ⇤

i

JT

E

=
X

(coe↵.)

(

9j

)(

9j

)

⇥
n

6j
o

hh HOB ii hh HOB ii

⇥
n

6j
on

6j
o

(

9j

)

⇥
�

�

�

h

�

�

�

E

�

�

�

CM
Ei

JT

E

3-body ME with HO | Separation of CM motion	
 7 

Antisymmetrized 3-body ME


CM separation 
Antisymm. 

Separation of CM motion


jj coupling → LS coupling 

Recoupling for  
antisymmetrization 

Talmi transformations 
I. Talmi, Helv. Phys. Acta 25, 185 (1952).	


※ Harmonic oscillator bracket (HOB) 
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2Ŝ2Ĵ 2!̂2

⇥ hhN12L12n12l12, L12 |nalanblb, L12iid1
hhNLnl,J |N12L12nclc,J iid2

⇥
⇢
l12 L12 L12

lc L J

�⇢
L l J
l12 L !

�⇢
L ! L
S J I

�

⇥

8
<

:

la
1
2 ja

lb
1
2 jb

L12 S12 J12

9
=

;

8
<

:

L12 S12 J12
lc

1
2 jc

L S J

9
=

;

8
<

:

l12 l !
S12

1
2 S

I12 I I

9
=

;

Explicit expression 21 variables + 7 summations 



*hD ���
D
CM

���
i

JT

�����

h⇥ ⇤ i

JT

+

⌘ Tn12l12S12I12nlIINL
nalajanblbjbnclcjcJ12J

=
X

L12LSJ

X

N12L12

X

!

(�)lc+l12+J+L12+L+S+J ĵaĵbĵcĴ12Ŝ12Î12ÎÎL̂2
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Explicit expression 21 variables + 7 summations 
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matrix elements to obtain pure antisymmetrized m-scheme matrix elements,
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∑

Jab,J
′
ab,J

∑

Tab,T
′
ab,T

(
ja jb

ma mb

∣∣∣∣
Jab

Mab

) (
Jab jc

Mab mc

∣∣∣∣
J
M

)(
1
2

1
2

mta mtb

∣∣∣∣
Tab

MT ab

) (
Tab

1
2

MT ab mtc

∣∣∣∣
T

MT

)

×
(

j ′
a j ′

b

m′
a m′

b

∣∣∣∣
J ′

ab

M ′
ab

)(
J ′

ab j ′
c

M ′
ab m′

c

∣∣∣∣
J
M

) (
1
2

1
2

m′
ta m′

tb

∣∣∣∣
T ′

ab

M ′
T ab

)(
T ′

ab
1
2

M ′
T ab m′

tc

∣∣∣∣
T
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× a⟨ãb̃c̃; JabJ ; TabT | V |ã′b̃′c̃′; J ′
abJ ; T ′

abT ⟩a, (16)

with all M and MT quantum numbers determined by sums
of the single-particle m and mt quantum numbers, e.g.,
Mab = ma + mb. This decoupling is trivial and requires only
Clebsch-Gordan coefficients. Therefore, the decoupling can
be easily and efficiently done on the fly during the many-body
calculation.

F. Computational strategy

After discussing the formal steps for the calculation
of the three-body matrix elements entering NCSM-type
many-body calculations, we would like to address a few
computational aspects, because they are crucial for prac-
tical applications and set the limits for present ab initio
calculations.

The calculation of three-body matrix elements is a prime
example for the “recompute versus store” paradigm. In many
NCSM applications including chiral 3N interactions [8,30,42],
the complete set of m-scheme matrix elements (16) was com-
puted and stored before the actual many-body calculation. As
mentioned earlier, the sheer number of three-body m-scheme
matrix elements sets a severe limit to the model-space sizes that
are accessible with this approach. This is illustrated in Fig. 1,
which shows the memory needed to store m-scheme matrix
elements of the 3N interaction exploiting all basic symmetries
as functions of the maximum total energy quantum number
E3 max of the three-body states. For a NCSM calculation of a
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FIG. 1. (Color online) Memory required to store the T coef-
ficients ( ), as well as the three-body matrix elements in the
antisymmetrized-Jacobi ( ), JT -coupled ( ), and m-scheme ( )
representations as function of the maximum three-body energy
quantum number E3max. All quantities are assumed to be single-
precision floating point numbers.

mid-p-shell nucleus in Nmax = 8, corresponding to E3 max =
11, about 33 GB are needed to store the necessary 3N matrix
elements in single-precision exploiting all symmetries [29].
Moreover, disk-I/O and memory access is nontrivial for these
huge sets. To extend the NCSM model space to Nmax = 12
or even 14 for mid-p-shell nuclei, we have made a first step
towards a “recompute instead of store” strategy in Ref. [33].
Instead of precomputing m-scheme matrix elements, we only
precompute and store the JT -coupled matrix elements defined
by Eq. (14). All the computationally demanding steps of
the transformation are still done in the precompute phase.
However, as illustrated in Fig. 1, the storage needed for the
JT -coupled matrix elements is reduced by up to three orders of
magnitude. For an Nmax = 8 p-shell calculation only 0.4 GB
of storage is needed for the three-body matrix elements in
single precision.

The price to pay for this gain is the on-the-fly decoupling
(16) of the three-body matrix elements during the many-body
calculation. We have optimized the storage scheme for the
JT -coupled matrix elements to facilitate a fast and cache-
optimized on-the-fly decoupling: We store the values of the
matrix elements in a one-dimensional vector. The order and
position of the matrix elements is defined via a fixed loop
order for all quantum numbers of the JT -coupled matrix
elements. The six outer loops are defined by the quantum
numbers ã, b̃, c̃, ã′, b̃′, c̃′ of the single-particle orbitals, where
we exploit antisymmetry and Hermeticity. The six inner loops
are defined by the coupled quantum numbers Jab, J ′

ab, J
and Tab, T ′

ab, T in this specific order. The three innermost
isospin loops run over all five possible combinations of the
isospin quantum numbers and can be unrolled manually. We
do not exploit antisymmetry constraints for matrix elements
with identical single-particle orbitals to keep a fixed stride
for this inner segment. The angular-momentum loops use
the triangular constraints defined through the single-particle
quantum numbers. To evaluate a specific m-scheme matrix
element we jump to the position in the vector defined by the
orbital quantum numbers and then evaluate the decoupling
loops as a linear sweep over a contiguous segment of
the storage vector. Thus, the decoupling operation is very
simple and highly cache efficient. This simplicity and its
moderate memory footprint makes the decoupling routine an
excellent candidate for porting to accelerator cards and first
developments along these lines have been successful already
[54]. The standard implementation of the JT -coupled scheme
has already been adopted in various many-body methods
[18,21,22,29,34–36,55].
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Antisymm.  
Jacobi-HO ME 

m-scheme ME 
JT-coupled ME 

T coeff. 

R. Roth et al, Phys. Rev. C 90, 024325 (2014).	


  CPU time occupying ~ 97% of a whole calculation. 
                   e.g.) fp-shell (normal-ordered) ~3 days/thread.  

Calculating the coefficient requires 

  Memory
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  The computing of the 3-body MEs will be implemented in  
a hybrid Open-MP-MPI code to take full advantage of the  
HPC facilities of the Italian supercomputing centre (CINECA).
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Numerical way (diagonalization of antisymmetrizer)

P. Navrátil et al., Phys. Rev. C 61, 044001 (2000).	


JT-coupled state Jacobi-HO state 
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Numerical way (diagonalization of antisymmetrizer)


Eigenvalue equation 
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Contact term
 E. Epelbaum et al., Phys. Rev. C 66, 064001 (2002). 
P. Navrátil, Few-Body Syst. 41, 117 (2007).	
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One-pion exchange + contact term
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E. Epelbaum et al., Phys. Rev. C 66, 064001 (2002). 
P. Navrátil, Few-Body Syst. 41, 117 (2007).	
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Dividing two propagators using complete set 
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  Irreducible-tensor expression and regularization 
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  The value of the LEC cE is determined from, together with cD ,  
the 3H and 3He binding energy and their Gamow-Teller MEs. 

L. Coraggio et al.,  
Phys. Rev. C 75, 024311 (2007).	


R. Machleidt and D.R. Entem,  
Phys. Rep. 503 1 (2011). 

L. Coraggio et al., Phys. Rev. C 89, 044321 (2014). 
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Three sets of the regulator and LECs
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Result | Correlation plot of MEs of contact term	
 

p-shell (no-core)
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  The difference originates from LEC. 

JT-coupled ME 
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p-shell (s-core)
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sd-shell (sp-core)


20 Result | Correlation plot of MEs of contact term	
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  An almost universal slope  
compared to the p-shell results. 
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3NF of chiral N2LO
 JT-coupled ME → Jacobi-HO ME


CM separation 
Antisymm. 

A

Dh⇥ ⇤ i

JT

���V3N

���
h⇥ ⇤ i

JT

E

A A

D ���V3N

���
E

A

 0
 1

 2
 3

 4
 5 0  1  2  3  4  5

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

k 1
(f
m

�
1 )

K1(fm�1)

u
⌫
(k

1
,K

1
,⇤

)  0
 1

 2
 3

 4
 5 0  1  2  3  4  5

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

k 1
(f
m

�
1 )

K1(fm�1)

u
⌫
(k

1
,K

1
,⇤

)  0
 1

 2
 3

 4
 5 0  1  2  3  4  5

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

k 1
(f
m

�
1 )

K1(fm�1)

u
⌫
(k

1
,K

1
,⇤

)
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Future plan

  The long-range terms (2-pion exchange and 1-pion exchange + contact) 
  Observables (Spectroscopy, etc.) 
→ Benchmark for p-shell nuclei. 


