SNla & CCSN

Munich, October 13th, 2017



Role of SN

* Huge amounts of energy involved in the explosion

v'They inject 10° ergs per event of kinetic energy

v'They produce ~ 10%° ergs of e.m. energy

‘/ Lmax ~ 1010 I_O

v'They are at the origin of neutron stars and stellar black holes
* They are the major producers of iron peak elements

v 50-60% of the Fe-peak elements are produce y’ S.Nl:a
* They are well suited to provide cosmological d‘lst

v’ Discovery of the accelerate expansion 6f'the Unlverse

v’ Dark Energy EoS u ’ Lo,
5 N
AL : SN2007af
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# Explosions related to e.d. cores in single/binary stars
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# The fate of these cores depends on the rate at which the front injects
energy and e-captures on ashes remove energy
- He cores always explode
- C/O cores can explode or collapse
- Hybrid C/O-O/Ne can explode or collapse
- O/Ne cores collapse, explode?
- Fe cores always collapse



SNIla are caused by the thermonuclear explosion

of a C/O white dwarf near the Chandrasekhar’s mass
in a close binary system

\ SN + 5Co decay Colgate & McKee’69
\ Clayton+'69

Diffusion and expansion time
scales approximately equal

Luminosity

ganuma-ray
escape
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t (days since peak)

(from S. Woosley ppt)



The necessary condition to use y — rays as a diagnostic
tool is to detect them!

Comptel/CGRO

SN1991T (Lichti+'94, Morris+'97)
Detection

SN1998bu (Georgii+'01)

Upper limit

Integral

SN2011fe (Isern+'13) Upper limit

SN2014J Detection!
(Churazov+'14,15
Diehl+’14,15
Isern+’16 )




# Need to callibrate
the Phillips relationship

# Different scenarios &
explosion mechanisms
can coexist

# Each scenario/explosion
has the own gamma
signature

Hicken et al
— Phillips relation




Scenarios

Single degenerate scenario (Whelan & lben’73,
Nomoto’82, Han & Podsialowski’04)

Double degenerate scenario (webbink’84, Iben &
Tutukov’'84

Sub-Chandrasekhar scenario (Woosley &
Weaver'94,Livhe & Arnet’95, Shen et al’13)

WD-WD collision scenario (Kushnir et al’13)

Core degenerate scenario (Livio & Riess’03, Kashi
& Soaker’11, Soker’11)
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SN2014)J early emission
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# Despite the two teams disagree in the details, the excess
is real and probably caused by the presence of *®Ni in the
outer layers
#Two issues: detached blobs from the interior or

He ignition (subCH) = More precise data are needed!
# eASTROGAM could detect the presence of 2e-3 Mo of Ni

SN2014J, day ~18
e-ASTROGAM; 500 ks
d,""%' + 0.04 M, of S6Ni
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Apparent magnitude
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Days since the explosion (April 3)

Figure 1: The multi-band light curve of MUSSES1604D. Photometry in g, r and i bands
(observer-frame) are in the AB system. Error bars denote 1-o uncertainties. Dashed lines are
best-fitting light curves derived from the non-early photometry (t = 12 days) with SALT2'. The
explosion epoch is estimated by adopting a classical > fireball model for the early-flash phase

(see Methods). The inset zooms in on the early-phase multi-band light curve by Subaru/HSC,

which shows that the brightening in g-band “paused” after the second-night observation.

Exemple: SN2016jhr displays a bump
in the early light curve. Several
possible origins: SubCH,

interaction CSM...

*® Ni lines would provide unambiguos
information about the origin

The proof that subCh (He ignited SNIa) really exist would be a major
achievement: annihilation line, frequency of SNla, chemical evolution...



Core Collapse Supernovae
\I\/Iassive Star (>8M,)

H-rich

—-———

» Different mass loss
— SN type

» Core collapse
« Compact object
(NS/BH)

« Energy deposited
— SN explosion
Parameters

[M.., E, M(*Ni)]
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From Tominaga+'05
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SNIIP, SNIIL, 87A-like

Q
o
3
=
g
=)
©
g
)
=
@
g
>
o
2
]
Q
)

Absolute magnitude (mag)

N

‘\\C\\
\§ \
\ ¥\

A

N
I

200 300
Days from peak

# Light curve with a large variety of
shapes caused by the different
envelopes

# M. ~10°-101Mo

# Sensitivity strongly depends on the

width of the line
# 30-70 times more sensitive than

INTEGRAL @ 847 keV

s st Superluminous supernovae
# Pair instability

o an . # Circumstellar interaction
# Massive winds.
#...

In all cases detection of *°Ni
would be crucial



# The mass of Ni depends on the initial mass
Name E/10°%erg | M(*®Ni) /M4
1998bw o0 04
1997 ef 19 0.15
2002ap 4 0.08
1994| 1 0.07

Explosion model: SN2005bf

Complete trap of gamma-ray Spectra:
narrow feature

Light curve:
broad & bright

|

Massive & less energetic

# The velocity of NS

and the association to
GRB suggest non spherical
events 2 Holes, jets,..

Enhanced

The detection of *®Ni->Co gamma-ray

would provide basic escape M, ~6—-7 Mg (He star)
hqles ?’?

information as proved in B w0 w| Mmn~23E2M)

the case Of SN 1987A ' days since explosion (2005 March 28 U E ~1.3 X 1051 el’g
| M(Ni) ~ 0.3 M, (NS)

Absolute Bolometric Magnitude

Tominaga et al. 2005




44T]

# eASTROGAM would allow detection
of 44Ti in most of young remnants
(< 500 yrs) of the Milky Way.

# SNR87A and the youngest in LMC
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44Ti in Cas A (NuSTAR)

# Distributed in knots in the inner
region = Convective instability
(Grefenstette+’ 14,17)

SN 1.987A
v, &-ASTROGAM
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# Everything able to explode eventually do it!

Scenarios leading
to a SNIla

ACCRETION SCENARIO

THIS...

!

WHITE DWARF GROWS IN MASS

il OR THls? MERGER SCENARIO

ORBITING WHITE DWARFS

Accreted matter:
H, He or C+O

# At a first glance both scenarios SD & DD can coexist!



