e-ASTROGAM WB - Nucleosynthesis

<u>Conveners</u>: Jordi Isern (IEEC), Mark Leising (Clemson), Vincent Tatischeff (CSNSM) Ο

40

20

 10^{-1}

511 keV

Authors: Eugene Churazov, Roland Diehl, Margarita Hernanz, Jordi Isern, Pierre Jean, Mark Leising, Nikos Prantzos, o (deg) Solen Balman, Alain Coc, Laura Delgado, Domitilla de Martino, Robert Gehrz, Jordi José, Marina Orio, Gloria Sala, Sumner Starrfield, Vincent Tatischeff

Counts/s/cm²/keV

e-ASTROGAM Radioactivities

Isotope	Production site	Decay chain	Half-life	γ -ray energy (keV)
				and intensity
⁷ Be	Nova	$^{7}\mathrm{Be} \xrightarrow{\epsilon} ^{7}\mathrm{Li}^{*}$	$53.3 \mathrm{~d}$	478(0.11)
⁵⁶ Ni	SNIa, CCSN	56 Ni $\stackrel{\epsilon}{\longrightarrow} ^{56}$ Co*	$6.075~{ m d}$	158 (0.99), 812 (0.86)
		${}^{56}\mathrm{Co} \xrightarrow{\epsilon(0.81)} {}^{56}\mathrm{Fe}^*$	$77.2~{\rm d}$	$847\ (1),\ 1238\ (0.67)$
57 Ni	SNIa, CCSN	${}^{57}\mathrm{Ni} \stackrel{\epsilon(0.56)}{\longrightarrow} {}^{57}\mathrm{Co}^*$	$1.48 { m d}$	$1378\ (0.82)$
		$^{57}\mathrm{Co} \xrightarrow{\epsilon} {}^{57}\mathrm{Fe}^*$	$272~{\rm d}$	$122\ (0.86),\ 136\ (0.11)$
22 Na	Nova	$^{22}\mathrm{Na} \xrightarrow{\beta^+(0.90)} ^{22}\mathrm{Ne}^*$	2.61 y	1275~(1)
⁴⁴ Ti	CCSN, SNIa	$^{44}\mathrm{Ti} \xrightarrow{\epsilon} {^{44}\mathrm{Sc}}^*$	60.0 y	$68 \ (0.93), \ 78 \ (0.96)$
		${}^{44}\mathrm{Sc} \xrightarrow{\beta^+(0.94)} {}^{44}\mathrm{Ca}^*$	$3.97~\mathrm{h}$	1157(1)
26 Al	CCSN, WR AGB, Nova	$^{26}\mathrm{Al} \xrightarrow{\beta^+(0.82)} {}^{26}\mathrm{Mg}^*$	$7.4 \cdot 10^5 { m y}$	1809(1)
$^{60}\mathrm{Fe}$	CCSN	$^{60}\mathrm{Fe} \xrightarrow{\beta^{-}} {}^{60}\mathrm{Co}^{*}$	$1.5 \cdot 10^6 { m y}$	59 (0.02)
		60 Co $\xrightarrow{\beta^{-}}$ 60 Ni*	$5.27 { m y}$	$1173\ (1),\ 1332\ (1)$

2

Highlights:

- ⁵⁶Ni decay chain detected from SN 1987A (core-collapse) and SN 2014J (thermonuclear)
 => new insights on the (asymmetric) explosion mechanisms (see Diehl 2017)
- ⁴⁴Ti detected from 2 SNRs, Cas A and SN 1987A, no other source found in γ-ray surveys (Tsygankov et al. 2016) => synthesis in a rare class of SNe (see also Crocker et al. 2017)?
- ²⁶Al and ⁶⁰Fe diffuse radioactivities (flux ratio of 15%) => hot ISM properties (Krause et al. 2015)

V. Tatischeff 2nd e-ASTROGAM workshop: finalization of the White Book Munich 13 - 14 Oct 2017

e-ASTROGAM Keyperformances

E (keV)	FWHM (keV)	Origin	SPI sensitivity (ph cm ⁻² s ⁻¹)	e-ASTROGAM sensitivity (ph cm ⁻² s ⁻¹)	Improvement factor
511	1.3	Narrow line component of the e+/e- annihilation radiation from the Galactic center region	5.2×10^{-5}	4.1×10^{-6}	13
847	35	⁵⁶ Co line from thermonuclear SN	2.3×10^{-4}	3.5×10^{-6}	66
1157	15	⁴⁴ Ti line from core-collapse SN remnants	9.6×10^{-5}	3.6×10^{-6}	27
1275	20	²² Na line from classical novae of the ONe type	1.1×10^{-4}	3.8×10^{-6}	29
2223	20	Neutron capture line from accreting neutron stars	1.1×10^{-4}	2.1×10^{-6}	52
4438	100	¹² C line produced by low-energy Galactic cosmic-ray in the interstellar medium	1.1×10^{-4}	1.7×10^{-6}	65

e-ASTROGAM Contributions on nucleosynthesis

- 1. <u>Thermonuclear supernovae (SN Ia)</u>: *Eugene Churazov, Roland Diehl, Jordi Isern, and Vincent Tatischeff*
- 2. <u>Core collapse supernovae</u>: Jordi Isern, Mark Leising, Roland Diehl, and Vincent Tatischeff
- 3. <u>Nova explosions</u>: *Margarita Hernanz, Jordi José, Pierre Jean, et al.*
- 4. <u>Diffuse gamma-ray line emissions</u>: *Roland Diehl, Nikos Prantzos, and Vincent Tatischeff*
- 5. <u>Galactic positron annihilation radiation</u>: *Nikos Prantzos, Pierre Jean, Jordi Isern, and Vincent Tatischeff*

e-ASTROGAM Positron annihilation radiation

- First (and brightest) gamma-ray line detected from outside the solar system (Johnson et al. 1972; Leventhal et al. 1978)
- $F_{511} = 2.7 \times 10^{-3}$ ph cm⁻² s⁻¹ => Galactic positron annihilation rate of $\sim 5 \times 10^{43}$ s⁻¹
- Three distinct annihilation regions in the Galaxy: disc, bulge and center (nucleus) (Skinner et al. 2014)
- Bulge/disk ratio of ~ 1.4 (Weidenspointer et al. 2008) now reduced to 0.58 ± 0.13 with the detection of more low surface brightness emission (Siegert et al. 2016)

e-ASTROGAM Annihilation in flight

- Diffuse emission in the 1 100 MeV range constraints the energy of the released positrons, because of the continuum radiation from in-flight annihilation, $E_{e+} < 3$ MeV (Beacom & Yuksel 2005), $E_{e+} < 7.5$ MeV (Sizun et al. 2006)
- Rules out e⁺ production in cosmic-ray interactions (p + p), in pulsars and magnetars $(\gamma + \gamma, \gamma + B)$, as well as from "canonical" (i.e. GeV) dark matter annihilation/decay

e-ASTROGAM Candidate positron sources

From Prantzos et al. 2011, Rev. Mod. Phys.

Source	Process	$E(e^+)^{\rm a}$ (MeV)	e^{+} rate ^b $\dot{N}_{e^{+}}(10^{43} \text{ s}^{-1})$	Bulge/disk B/D	x ^c	Comments
Massive stars: ²⁶ Al	β^+ decay	~1	0.4	< 0.2		\dot{N} , B/D : Observationally inferred
Supernovae: ²⁴ Ti	β^+ decay	~1	0.3	< 0.2		N: Robust estimate
SNIa: ⁵⁶ Ni	β^+ decay	~1	2	< 0.5	?	Assuming $f_{e^+ esc} = 0.04$
Novae	β^+ decay	1	0.02	< 0.5		Insufficient e^+ production
Hypernovae/GRB: ⁵⁶ Ni	β^+ decay	~1	?	< 0.2		Improbable in inner MW
Cosmic rays	<u> </u>	30	0.1	< 0.2		Too high e^+ energy
LMXRBs	$\gamma - \gamma$	~1	2	< 0.5	2	Assuming $L_{e^+} \sim 0.01 L_{obs X}$
Microquasars (μ Qs)	$\gamma - \gamma$	~1	1	< 0.5		e^+ load of jets uncertain
Pulsars	$\frac{\gamma \gamma}{\gamma} \frac{\gamma}{\gamma} \frac{\gamma}{\gamma} \frac{\gamma}{B}$	>30	0.5	< 0.2	1	Too high e^+ energy
ms pulsars	$\frac{\gamma - \gamma}{\gamma - \gamma_B}$	>30	0.15	< 0.5		Too high e^+ energy
Magnetars	$\frac{\gamma \gamma}{\gamma \gamma}$	>30	0.16	< 0.2		Too high e^+ energy
Central black hole	<i>p-p</i>	High	?			Too high e^+ energy, unless $B > 0.4$ mG
	$\gamma - \gamma$	1	?		2	Requires e^+ diffusion to ~ 1 kpc
Dark matter	Annihilation	1 (?)	?		•	Requires light scalar particle, cuspy DM profile
	Deexcitation	1	?			Only cuspy DM profiles allowed
	Decay	1	<u>,</u>			Ruled out for all DM profiles
Observational constraints	-	<7	2	>1.4		•

Munich

7

e-ASTROGAM Positrons from a rare class of SN Ia?

Crocker et al. 2017, Nature Astronomy, vol. 1, id. 0135

- With the revised upwards disk contribution (Siegert et al. 2016), both the bulge/disk and nucleus/bulge luminosity ratios are consistent with the stellar mass ratios
- \Rightarrow A single β^+ source connected to old stars could explain the global distribution
- <u>Proposed source</u>: SN1991bg-like thermonuclear SNe producing ~ 0.03 M_{sol} of ⁴⁴Ti via detonation of CO-He WD binary mergers with a recurrence time of ~ 530 years
- \Rightarrow May also explain the lack of ⁴⁴Ti-emitting SNRs and the solar system abund. of ⁴⁴Ca

e-ASTROGAM Annihilation radiation spectroscopy

- 511 keV line shape and Ps fraction in the bulge consistent with annihilation in a mixture of warm (T ~ 8000 K) neutral and ionized phases of ISM (Jean et al. 2006)
- Very little is known on the propagation of the positrons from their sources to the region of annihilation

e-ASTROGAM Expected results

- e-ASTROGAM will perform a deep Galactic survey of the positron annihilation radiation
- ⇒ Detailed morphology of the various components (disk, wide bulge, narrow bulge, central source)
- ⇒ Possible detection of individual star forming regions (e.g. Cygnus)
- ⇒ Point sources (e.g. microquasars)?
- ⇒ A single β⁺ source (which one?) to explain the global distribution (together with ²⁶Al)?

V. Tatischeff 2nd e-ASTROGAM workshop: finalization of the White Book

b (deg)

Munich