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Global polarization
“Global” :: along one preferential direction -  
the system orbital momentum || magnetic field

Predicted polarization of the order of  
a few tens of percent!
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Global hyperon polarization at local thermodynamic equilibrium with vorticity,

magnetic field and feed-down

Francesco Becattini,1 Iurii Karpenko,2 Michael Annan Lisa,3 Isaac Upsal,3 and Sergei A. Voloshin4
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The system created in ultrarelativistic nuclear collisions is known to behave as an almost ideal
liquid. In non-central collisions, due to the large orbital momentum, such a system might be the fluid
with the highest vorticity ever created under laboratory conditions. Particles emerging from such
a highly vorticous fluid are expected to be globally polarized with their spins on average pointing
along the system angular momentum. Vorticity-induced polarization is the same for particles and
antiparticles, but the intense magnetic field generated in these collisions may lead to the splitting
in polarization. In this paper we outline the thermal approach to the calculation of the global
polarization phenomenon for particles with spin and we discuss the details of the experimental
study of this phenomenon, estimating the e↵ect of feed-down. A general formula is derived for the
polarization transfer in two-body decays and, particularly, for strong and electromagnetic decays.
We find that accounting for such e↵ects is crucial when extracting vorticity and magnetic field from
the experimental data.

PACS numbers: 25.75.Ld, 25.75.Gz, 05.70.Fh

I. INTRODUCTION

Heavy ion collisions at ultrarelativistic energies create
a strongly interacting system characterized by extremely
high temperature and energy density. For a large fraction
of its lifetime the system shows strong collective e↵ects
and can be described by relativistic hydrodynamics. In
particular, the large elliptic flow observed in such colli-
sions, indicate that the system is strongly coupled, with
extremely low viscosity to entropy ratio [1]. From the
very success of the hydrodynamic description, one can
also conclude that the system might possess an extremely
high vorticity, likely the highest ever made under the lab-
oratory conditions.

A simple estimate of the non-relativistic vorticity, de-
fined as

! =
1

2
r⇥ v, (1)

1 can be made based on a very schematic picture of the
collision depicted in Fig. 1. As the projectile and target
spectators move in opposite direction with the velocity
close to the speed of light, the z component of the collec-
tive velocity in the system close to the projectile specta-
tors and that close to the target spectators are expected
to be di↵erent. Assuming that this di↵erence is a frac-
tion of the speed of light, e.g. 0.1 (in units of the speed of
light), and that the transverse size of the system is about
5 fm, one concludes that the vorticity in the system is of
the order 0.02 fm�1 ⇡ 1022 s�1.

1
sometimes the vorticity is defined without the factor 1/2; we use

the definition that gives the vorticity of the fluid rotating as a

whole with a constant angular velocity ⌦, to be ! = ⌦

FIG. 1. Schematic view of the collision. Arrows indicate the
flow velocity field. The +ŷ direction is out of the page; both
the orbital angular momentum and the magnetic field point
into the page.

In relativistic hydrodynamics, several extensions of the
non-relativistic vorticity defined above can be introduced
(see ref. [2] for a review). As we will see below, the
appropriate relativistic quantity for the study of global
polarization is the thermal vorticity:

$µ⌫ =
1

2
(@⌫�µ � @µ�⌫) (2)

where � = (1/T )u is the four-temperature vector, u be-
ing the hydrodynamic velocity and T the proper temper-
ature. At an approximately constant temperature, the
thermal vorticity can be roughly estimated by $ ⇠ !/T
which, for typical conditions, appears to be of the order
of a percent by using the above estimated vorticity and
the temperature T ⇠ 100 MeV.
Vorticity plays a very important role in the system

evolution. Accounting for vorticity might be the only
way to quantitatively describe the rapidity dependence
of directed flow [3, 4], which, at present, can not be de-
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The system created in ultrarelativistic nuclear collisions is known to behave as an almost ideal liquid. In
noncentral collisions, because of the large orbital momentum, such a system might be the fluid with the highest
vorticity ever created under laboratory conditions. Particles emerging from such a highly vorticous fluid are
expected to be globally polarized with their spins on average pointing along the system angular momentum.
Vorticity-induced polarization is the same for particles and antiparticles, but the intense magnetic field generated
in these collisions may lead to the splitting in polarization. In this paper we outline the thermal approach to
the calculation of the global polarization phenomenon for particles with spin and we discuss the details of the
experimental study of this phenomenon, estimating the effect of feed-down. A general formula is derived for
the polarization transfer in two-body decays and, particularly, for strong and electromagnetic decays. We find
that accounting for such effects is crucial when extracting vorticity and magnetic field from the experimental
data.

DOI: 10.1103/PhysRevC.95.054902

I. INTRODUCTION

Heavy ion collisions at ultrarelativistic energies create a
strongly interacting system characterized by extremely high
temperature and energy density. For a large fraction of its
lifetime the system shows strong collective effects and can
be described by relativistic hydrodynamics. In particular, the
large elliptic flow observed in such collisions, indicate that the
system is strongly coupled, with extremely low viscosity to
entropy ratio [1]. From the very success of the hydrodynamic
description, one can also conclude that the system might
possess an extremely high vorticity, likely the highest ever
made under the laboratory conditions.

A simple estimate of the nonrelativistic vorticity, defined
as1

ω = 1
2 ∇ × v, (1)

can be made based on a very schematic picture of the collision
depicted in Fig. 1. As the projectile and target spectators move
in the opposite direction with the velocity close to the speed of
light, the z component of the collective velocity in the system
close to the projectile spectators and that close to the target
spectators are expected to be different. Assuming that this
difference is a fraction of the speed of light, e.g., 0.1 (in units
of the speed of light), and that the transverse size of the system
is about 5 fm, one concludes that the vorticity in the system is
of the order 0.02 fm−1 ≈ 1022 s−1.

In relativistic hydrodynamics, several extensions of the
nonrelativistic vorticity defined above can be introduced (see

1Sometimes the vorticity is defined without the factor 1/2; we use
the definition that gives the vorticity of the fluid rotating as a whole
with a constant angular velocity !, to be ω = !.

Ref. [2] for a review). As we will see below, the appropriate
relativistic quantity for the study of global polarization is the
thermal vorticity:

ϖµν = 1
2 (∂νβµ − ∂µβν), (2)

where βµ = (1/T )uµ is the four-temperature vector, u being
the hydrodynamic velocity, and T the proper temperature.
At an approximately constant temperature, thermal vorticity
can be roughly estimated by ϖ ∼ ω/T where ω is the local
vorticity, which, for typical conditions, appears to be of the
order of a percent by using the above estimated vorticity and
the temperature T ∼ 100 MeV.

Vorticity plays a very important role in the system evolution.
Accounting for vorticity (via tuning the initial conditions and
specific viscosity) it was possible to quantitatively describe the
rapidity dependence of directed flow [3,4], which, at present,
cannot be described by any model not including initial angular
momentum [2,5,6].

Vorticous effects may also strongly affect the baryon
dynamics of the system, leading to a separation of baryon
and antibaryons along the vorticity direction (perpendicular to
the reaction plane)—the so-called chiral vortical effect (CVE).
The CVE is similar in many aspects to the more familiar chiral
magnetic effect (CME)—the electric charge separation along
the magnetic field. For recent reviews on those and similar
effects, as well as the status of the experimental search for those
phenomena, see [7,8]. For a reliable theoretical calculation of
both effects one has to know the vorticity of the created system
as well as the evolution of (electro)magnetic field.

Finally, and most relevant for the present work, vorticity
induces a local alignment of particles spin along its direction.
The general idea that particles are polarized in peripheral
relativistic heavy ion collisions along the initial (large) angular
momentum of the plasma and its qualitative features were
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Figure 3: A sketch of the immediate aftermath of a Au+Au collision. The vorticity of fluid created

at midrapidity is suggested. The average vorticity points along the direction of the angular momen-

tum of the collision, Ĵsys. This direction is estimated experimentally by measuring the sidewards

deflection of the forward- and backward-going fragments and particles in the BBC detectors. L

hyperons are depicted as spinning tops; see text for details. Obviously, elements in this depiction

are not drawn to scale: the fluid and the beam fragments have sizes of a few femtometers, whereas

the radius of each BBC is about one meter.
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The subscript H denotes L or L, and the decay parameter aL = �aL = 0.642± 0.01317. The

angle q⇤ is indicated in figure 3, in which L hyperons are depicted as tops spinning about their

polarization direction.
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Alternative methods to measure global polarization of Λ hyperons
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We propose alternative methods to measure the global polarization of Λ hyperons. These methods
invlove event averages of proton’s and Λ’s momenta in the lab frame. We carry out simulations using
these methods and show that all of them work equivalently well in obtaining the global polarization
of Λ hyperons.

I. INTRODUCTION

It is well-known that rotation and polarization are inherently correlated: the rotation of an uncharged object can
lead to spontaneous magnetization and polarization, and vice versa [1, 2]. We expect that the same phenomena
exist in heavy ion collisions. It is straightforward to estimate that huge global angular momenta are generated in
non-central heavy ion collisions at high energies [3–8]. How such huge global angular momenta are converted to the
particle polarization in the hot and dense matter and how to measure the global polarization are two core questions
to be answered. To address the first question, there are some theoretical models in the market, e.g., the microscopic
spin-orbital coupling model [3, 4, 8, 9], the statistical-hydro model [10–13] and the kinetic model with Wigner functions
[14–17], see Ref. [18] for a recent review. For the second question, one can use the weak decay property of Λ hyperons
to measure the global polarization [3, 4]: the parity-breaking weak decay of Λ into a proton and a pion is self-analysing
since the daughter proton is emitted preferentially along Λ’s spin in Λ’s rest frame [5, 19]. The global polarization
of a vector meson can be measured through the angular distribution of its decay products which is related to some
elements of its spin density matrix [4].

Recently the global polarization of Λ and Λ̄ has been measured at collisional energies below 62.4 GeV [20, 21].
The average values of the gobal polarization for Λ and Λ̄ are PΛ = (1.08 ± 0.15)% and PΛ̄ = (1.38 ± 0.30)%. The
polarization of Λ̄ is a little larger than that of Λ which is thought to be caused by a negative (positive) magnetic
moment of Λ(Λ̄) in magnetic fields. But such a difference is negligible within the error bars and magnetic fields
extracted from the data are consistent to zero. The global polarization of Λ and Λ̄ decreases with collisional energies.
This is due to that the Bjorken scaling works better at higher energies than lower energies. From the data one can
estimate the local vorticity: ω = (9 ± 1) × 1021 s−1, implying that the matter created in ultra-relativistic heavy ion
collisions is the most vortical fluid that ever exists in nature. The vorticity field of the quark gluon plasma has been
studied by many authors in a variety of methods including hydrodynamical models [22–24] and transport models
[25, 26]. The the global polarization of Λ and Λ̄ has also been calculated by hydrodynamical models [27, 28], the
transport model [29] the chiral kinetic model [30].

The method used in the STAR measurement is through the event average of sin
(

φ∗p − ψRP

)

, where φ∗p and ψRP are
the azimuthal angle of the proton momemtum in Λ’s rest frame and that of the reaction plane respectively [20, 21].
The orientation of the reaction plane cannot be directly measured but through that of the event plane determined
from the direct flow. Therefore a reaction plane resolution factor was introduced to account for the finite resolution
of the reaction plane by the detector [20, 21].

In this paper, we propose alternative methods to measure the global polarization of Λ and Λ̄ hyperons based on
Lorentz transformation. The advantages of these methods are that all event averages are taken over momenta in
the lab frame instead of Λ’s rest frame. We compare these methods by simulations and show that all of them work
equivalently well in obtaining the global polarization of Λ hyperons.

II. HYPERON’S WEAK DECAY AND POLARIZATION

The polarization of the Λ (and Λ̄) hyperons can be measured by its parity-breaking weak decay Λ → p + π−. The
daughter protons are emitted preferentially along the Λ’s polarization in Λ’s rest frame. The angular distribution of
the daughter proton reads

dN

dΩ∗
=

1

4π

(

1 + αH
n
∗ · p∗

|p∗|

)

, (1)
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Global polarization and azimuthal distributions wrt RP
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Figure 3: A sketch of the immediate aftermath of a Au+Au collision. The vorticity of fluid created

at midrapidity is suggested. The average vorticity points along the direction of the angular momen-

tum of the collision, Ĵsys. This direction is estimated experimentally by measuring the sidewards

deflection of the forward- and backward-going fragments and particles in the BBC detectors. L

hyperons are depicted as spinning tops; see text for details. Obviously, elements in this depiction

are not drawn to scale: the fluid and the beam fragments have sizes of a few femtometers, whereas

the radius of each BBC is about one meter.

frame, then

dN

d cosq⇤
= 1
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⇣
1+aH|~PH|cosq⇤

⌘
. (1)

The subscript H denotes L or L, and the decay parameter aL = �aL = 0.642± 0.01317. The

angle q⇤ is indicated in figure 3, in which L hyperons are depicted as tops spinning about their

polarization direction.

The polarization may depend on the momentum of the emitted hyperons. However, when
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Res( 1)
sgn⇤ φp*: φ of daughter proton in Λ rest frame 

Ψ1: 1st-order event plane 
sgnΛ: 1 for Λ,  -1 for anti-Λ 
α: Λ decay parameter (=0.642±0.013) 
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Alternative methods to measure global polarization of Λ hyperons

Irfan Siddique,1 Zuo-tang Liang,2 Michael Annan Lisa,3 Qun Wang,1 and Zhang-bu Xu4, 2
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We propose alternative methods to measure the global polarization of Λ hyperons. These methods
invlove event averages of proton’s and Λ’s momenta in the lab frame. We carry out simulations using
these methods and show that all of them work equivalently well in obtaining the global polarization
of Λ hyperons.

I. INTRODUCTION

It is well-known that rotation and polarization are inherently correlated: the rotation of an uncharged object can
lead to spontaneous magnetization and polarization, and vice versa [1, 2]. We expect that the same phenomena
exist in heavy ion collisions. It is straightforward to estimate that huge global angular momenta are generated in
non-central heavy ion collisions at high energies [3–8]. How such huge global angular momenta are converted to the
particle polarization in the hot and dense matter and how to measure the global polarization are two core questions
to be answered. To address the first question, there are some theoretical models in the market, e.g., the microscopic
spin-orbital coupling model [3, 4, 8, 9], the statistical-hydro model [10–13] and the kinetic model with Wigner functions
[14–17], see Ref. [18] for a recent review. For the second question, one can use the weak decay property of Λ hyperons
to measure the global polarization [3, 4]: the parity-breaking weak decay of Λ into a proton and a pion is self-analysing
since the daughter proton is emitted preferentially along Λ’s spin in Λ’s rest frame [5, 19]. The global polarization
of a vector meson can be measured through the angular distribution of its decay products which is related to some
elements of its spin density matrix [4].

Recently the global polarization of Λ and Λ̄ has been measured at collisional energies below 62.4 GeV [20, 21].
The average values of the gobal polarization for Λ and Λ̄ are PΛ = (1.08 ± 0.15)% and PΛ̄ = (1.38 ± 0.30)%. The
polarization of Λ̄ is a little larger than that of Λ which is thought to be caused by a negative (positive) magnetic
moment of Λ(Λ̄) in magnetic fields. But such a difference is negligible within the error bars and magnetic fields
extracted from the data are consistent to zero. The global polarization of Λ and Λ̄ decreases with collisional energies.
This is due to that the Bjorken scaling works better at higher energies than lower energies. From the data one can
estimate the local vorticity: ω = (9 ± 1) × 1021 s−1, implying that the matter created in ultra-relativistic heavy ion
collisions is the most vortical fluid that ever exists in nature. The vorticity field of the quark gluon plasma has been
studied by many authors in a variety of methods including hydrodynamical models [22–24] and transport models
[25, 26]. The the global polarization of Λ and Λ̄ has also been calculated by hydrodynamical models [27, 28], the
transport model [29] the chiral kinetic model [30].

The method used in the STAR measurement is through the event average of sin
(

φ∗p − ψRP

)

, where φ∗p and ψRP are
the azimuthal angle of the proton momemtum in Λ’s rest frame and that of the reaction plane respectively [20, 21].
The orientation of the reaction plane cannot be directly measured but through that of the event plane determined
from the direct flow. Therefore a reaction plane resolution factor was introduced to account for the finite resolution
of the reaction plane by the detector [20, 21].

In this paper, we propose alternative methods to measure the global polarization of Λ and Λ̄ hyperons based on
Lorentz transformation. The advantages of these methods are that all event averages are taken over momenta in
the lab frame instead of Λ’s rest frame. We compare these methods by simulations and show that all of them work
equivalently well in obtaining the global polarization of Λ hyperons.

II. HYPERON’S WEAK DECAY AND POLARIZATION

The polarization of the Λ (and Λ̄) hyperons can be measured by its parity-breaking weak decay Λ → p + π−. The
daughter protons are emitted preferentially along the Λ’s polarization in Λ’s rest frame. The angular distribution of
the daughter proton reads

dN

dΩ∗
=

1

4π

(

1 + αH
n
∗ · p∗

|p∗|

)

, (1)
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TABLE I: The averaged spin density matrix elements ρ00 with
respect to the reaction plane in mid-central Au+Au collisions
at

√
sNN = 200 GeV.

K∗0 φ

ρ00(pT < 2.0 GeV/c) 0.31 ± 0.04 ± 0.09 0.33 ± 0.01 ± 0.03

ρ00(pT > 2.0 GeV/c) 0.37 ± 0.04 ± 0.09 0.35 ± 0.04 ± 0.05

ρ00(pT < 5.0 GeV/c) 0.32 ± 0.03 ± 0.09 0.34 ± 0.02 ± 0.03

values at larger pT .

00ρ

0 1 2 3 4 5
0

0.2

0.4
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 = 1/3
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fragmentation:
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 (GeV/c)
T

p
FIG. 2: (color online) The spin density matrix elements ρ00

with respect to the reaction plane in mid-central Au+Au col-
lisions at

√
sNN = 200 GeV versus pT of the vector meson.

The sizes of the statistical uncertainties are indicated by er-
ror bars, and the systematic uncertainties by caps . The K∗0

data points have been shifted slightly in pT for clarity. The
dashed horizontal line indicates the unpolarized expectation
ρ00 = 1/3. The bands and continuous horizontal lines show
predictions discussed in the text.

The measurements of the K∗0 and φ global spin align-
ment versus pT of the vector meson for mid-central
Au+Au collisions at

√
sNN = 200 GeV are presented

in Fig. 2, and are summarized in Table I. Both statis-
tical and systematic uncertainties are shown. The dom-
inant contribution to the systematic uncertainty for the
φ (K∗0) meson ranges from 0.020 (0.05) to 0.045 (0.10),
originating from uncertainty in the magnitude and shape
of the residual background after the subtraction of com-
binatorial background. This residual arises from the in-
complete description of combinatorial background via the
event mixing technique and from distortions to the back-
ground in the invariant mass distribution near the φ peak
caused by photon conversions and other correlated back-
grounds such as K0∗ → K+π−, ρ0 → π+π−, Λ → pπ−

and ∆ → Nπ decays [31]. In the case of the K∗0

these backgrounds include K0
S → π+π−, ρ0 → π+π−,

φ → K+K−, Λ → pπ− and ∆ → Nπ decays [32].
Other point-to-point systematic uncertainty associated
with particle identification for the φ (K∗0) meson were

estimated to range from 0.007 (0.06) to 0.012 (0.09) by
tightening the K± (π and K) ⟨dE/dx⟩ cut from 2σ to 1σ.
An additional sizable contribution to the φ uncertainty
was estimated to range from 0.007 to 0.012 by varying
the fitted invariant mass range from 1.00–1.04 GeV/c2

to 1.00–1.06 GeV/c2, and to the K∗0 uncertainty rang-
ing from 0.02 to 0.05 by changing its analyzed rapidity
range from |y| < 1 to |y| < 0.5. The systematic uncer-
tainties in the K0∗ measurements are larger than those
in the φ measurement mainly because of the lower signal-
to-background ratio of ∼ 1/1000 compared to ∼ 1/25 for
the φ meson. The contributions to the systematic uncer-
tainty caused by elliptic flow effects and the event plane
resolution are found to be negligible. The K∗0 and φ
data are consistent with each other and are consistent
with 1/3 at all pT .

Hadronization of globally polarized thermal quarks,
typically having pT < 1 GeV/c, in mid-central Au+Au
collisions is predicted to cause pT dependent deviations
of ρ00 from the unpolarized value of 1/3 [1, 4, 6, 33]. Re-
combination of polarized thermal quarks and anti-quarks
is expected to dominate for pT < 2GeV/c and leads to
values of ρ00 < 1/3 as indicated in Fig. 2 for a typi-
cal range of expected light (strange) quark polarizations
Pq(s) [6]. The fragmentation of polarized thermal quarks
with larger pT , however, would lead to values of ρ00

> 1/3 for 1 < pT < 3 GeV/c [6, 33], which is indi-
cated as well. In the region of 1 < pT < 2 GeV/c both
hadronization mechanisms could occur and their effects
on ρ00 may cancel. As observed in Fig. 2 these effects
are predicted to be smaller than our experiment sensi-
tivity. However, the large (strange) quark polarization,
Pq,s = −0.3, considered in the recombination scenario
of Ref. [1] results in worse agreement of ρ00 with our
φ data than −0.03 < Pq,s < 0.15 discussed in Ref. [4].
Our data are consistent with the unpolarized expectation
ρ00 = 1/3. Recent measurement of the Λ and Λ̄ global
polarization also found no significant polarization and an
upper limit, |PΛ,Λ| ≤ 0.02, was obtained [21].

The centrality dependence of the global spin align-
ment measurements for K∗0 and φ vector mesons with
low and intermediate pT is shown in Fig. 3. The or-
bital angular momentum of the colliding system depends
strongly on the collision centrality. Global polarization
is predicted to be vanishingly small in central collisions
and to increase almost linearly with impact parameter
in semi-central collisions due to increasing particle angu-
lar momentum along with effects of spin-orbit coupling
in QCD [1]. The data exhibit no significant spin align-
ment at any collision centrality and thus can constrain
the possible size of spin-orbit couplings.

Figure 4 and Table II present the K∗0 and φ spin align-
ment measurements with respect to the production plane
in mid-central Au+Au collisions at

√
sNN = 200 GeV to-

gether with the φ meson results in p+p collisions at the
same incident energy. As is the case for our measure-
ments with respect to the reaction plane, the uncertain-
ties in the measurement with respect to the production
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FIG. 9: Same as Fig. 4, dotted curve corresponds to polar-
ization of feed-down corrected ⇤ from ⌃(1385) and ⌃0 decays
only. Dashed curve corresponds to feed-down corrected ⇤
from ⌃0, ⌃(1385), ⇤(1405), ⇤(1520), ⇤(1600), ⌃(1660) and
⌃(1670), including cascade decays, e.g. ⇤(1405) ! ⌃0 ! ⇤.

resonances, C
X!⇤ and C

X!⌃0 are polarization transfer
coe�cients, b

X!⇤ and b

X!⌃0 are the branching ratios
for decay channels yielding in ⇤ and ⌃0 respectively. In
eq. 15 we have used the fact that nearly all ⌃0 decay to
⇤� with polarization transfer �1/3, which allows to treat
cascade decay contributions X ! ⌃0 ! ⇤. The results
are shown in Fig. V, where the thin dotted line corre-
sponds to feed-down contributionsX = ⌃0

,⌃(1385) only.
Surprisingly, in this case the interplay of hadron chem-
istry and polarization transfer in the decays result in a
correction factor, which varies between 0.94�0.98 in the
whole collision energy range. When we take all afore-
mentioned resonances into account (X = ⌃0, ⌃(1385),
⇤(1405), ⇤(1520), ⇤(1600), ⌃(1660), ⌃(1670)), using po-
larization transfer coe�cients listed in table II, we obtain
the dashed line in Fig. V, corresponding to a 15% sup-
pression of the mean polarization of ⇤ with respect to the
primary polarization. This decrease is mostly due to the
increase of the denominator in eq. 15 from the heavier
resonance contributions, whereas their contributions to
the numerator have opposite signs because of alternating
signs of the polarization transfer coe�cients.

There is, however, a further correction which is much
harder to assess, i.e. post-hadronization interactions. In
fact, hadronic elastic interaction may involve a spin flip
which, presumably, will randomize the spin direction of
primary as well as secondary particles, thus decreasing
the estimated mean global polarization in fig. (V). In-
deed, in UrQMD cascade which is used to treat interac-
tions after particlization, cross sections of ⇤ and ⌃0 with
most abundant mesons and baryons - calculated with the
Additive Quark Model - are comparable to those of nu-
cleons [27]. This implies that ⇤’s do rescatter in the
hadronic phase, and indeed we observe from the full cas-

Decay C

1
/2

+ ! 1
/2

+ 0� �1/3
1
/2

� ! 1
/2

+ 0� 1
3
/2

+ ! 1
/2

+ 0� 1/3
3
/2

� ! 1
/2

+ 0� �1/5

⌃0 ! ⇤� �1/3

TABLE II: Polarization transfer coe�cients C (see eq. (14))
to the ⇤ or ⌃ hyperon (the 1

/2
+ state) for various

strong/electromagnetic decays.

cade+hydro+cascade calculation that in the RHIC BES
range only 10-15% of primary ⇤’s escape the system with
no further interactions3, until they decay into pion and
proton far away from the fireball. For the present, we
are not able to provide a quantitative evaluation of the
rescattering e↵ect on polarization, whose assessment is
left to future studies. The only safe statement for the
time being is that the dashed line in fig. (V) is an up-
per bound for the predicted mean global ⇤ polarization
within the hydrodynamical model with the specific initial
conditions used in our calculation.

VI. CONCLUSIONS

In summary, we have calculated the global polariza-
tion of ⇤ hyperons produced at midrapidity in Au-Au
collisions at RHIC Beam Energy Scan collision energies,p
sNN = 7.7 � 200 GeV, in the framework of hadronic

cascade + 3 dimensional event-by-event viscous hydrody-
namic model (UrQMD+vHLLE). The in-plane components
of the polarization vector as a function of transverse mo-
mentum are found to have a quadrupole structure (sim-
ilar to the one obtained in [7]) and can be as large as
several percents for large transverse momentum. The
mean, momentum integrated polarization vector is di-
rected parallel to the angular momentum of the fireball
and its magnitude substantially increases from 0.2% to
1.8% as collision energy decreases from full RHIC en-
ergy down to

p
sNN = 7.7 GeV. Such increase is related

to (1) emerging shear flow pattern in beam direction at
lower collision energies related to baryon stopping, and
(2) shorter lifetime of fluid phase, which does not dilute
initial vorticity as much as it does at higher collision en-
ergies. At the same time, we did not observe a linear
relation between the polarization and the ratio angular
momentum/energy of the fireball.
Significant fraction of the produced ⇤ originate from

resonance decays. We have calculated the contribution

3
The remaining 85-90% of ⇤ contain decay products of primary

⌃

0
, ⌃

⇤
and other resonances up to ⌃(1670), which is covered by

the calculations above.
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FIG. 4. (Color online) Global polarization of ! hyperons as a
function of ! pseudorapidity η!. Symbol keys are the same as in
Fig. 3. A constant line fit to these data points yields P! = (2.8 ±
9.6) × 10−3 with χ 2/ndf = 6.5/10 for Au+Au collisions at

√
sNN =

200 GeV (centrality region 20–70%), and P! = (1.9 ± 8.0) × 10−3

with χ 2/ndf = 14.3/10 for Au+Au collisions at
√

sNN = 62.4 GeV
(centrality region 0–80%). Only statistical uncertainties are shown.

Figure 4 presents the ! hyperon global polarization as a
function of ! pseudorapidity η!. The symbol keys for the data
points are the same as in Fig. 3. Note that the scale is different
from the one in Fig. 3. The pt -integrated global polarization
result is dominated by the region p!

t < 3 GeV/c, where the
measurements are consistent with zero (see Fig. 3). The solid
lines in Fig. 4 indicate constant fits to the experimental data:
P! = (2.8 ± 9.6) × 10−3 with χ2/ndf = 6.5/10 for Au+Au
collisions at

√
sNN = 200 GeV (centrality region 20–70%) and

P! = (1.9 ± 8.0) × 10−3 with χ2/ndf = 14.3/10 for Au+Au
collisions at

√
sNN = 62.4 GeV (centrality region 0–80%).

The lines associated with each of the two beam energies are
almost indistinguishable from zero within the resolution of
the plot. The results for the ! hyperon global polarization as
a function of η! within the STAR acceptance are consistent
with zero.

Figure 5 presents the ! hyperon global polarization as a
function of centrality given as a fraction of the total inelastic
hadronic cross section. Within the statistical uncertainties we
observe no centrality dependence of the ! global polarization.

The statistics for !̄ hyperons are smaller than those for !
hyperons by 40% (20%) for Au+Au collisions at

√
sNN =

62.4 (200) GeV. Figures 6, 7, and 8 show the results for the
!̄ hyperon global polarization as a function of !̄ transverse
momentum, pseudorapidity, and centrality (the symbol keys
for the data points are the same as in Figs. 3–5). Again, no
deviation from zero has been observed within statistical errors.
The constant line fits for the !̄ hyperon global polarization give
P!̄ = (1.8 ± 10.8) × 10−3 with χ2/ndf = 5.5/10 for Au+Au
collisions at

√
sNN = 200 GeV (centrality region 20–70%)

and P!̄ = (−17.6 ± 11.1) × 10−3 with χ2/ndf = 8.0/10 for
Au+Au collisions at

√
sNN = 62.4 GeV (centrality region

0–80%).
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FIG. 5. (Color online) Global polarization of ! hyperons as a
function of centrality given as a fraction of the total inelastic hadronic
cross section. Symbol keys are the same as in Fig. 3. Only statistical
uncertainties are shown.

C. Acceptance effects and systematic uncertainties

The derivation of Eq. (3) assumes a perfect reconstruction
acceptance for hyperons. For the case of an imperfect detector,
we similarly consider the average of ⟨sin(φ∗

p − %RP)⟩ but
take into account the fact that the integral over the solid
angle d&∗

p = dφ∗
p sin θ∗

pdθ∗
p of the hyperon decay baryon

three-momentum p∗
p in the hyperon rest frame is affected by

detector acceptance:

⟨sin(φ∗
p − %RP)⟩ =

∫
d&∗

p

4π

dφH

2π
A(pH , p∗

p)
∫ 2π

0

d%RP

2π

× sin(φ∗
p − %RP)[1 + αHPH (pH ; %RP)

× sin θ∗
p sin(φ∗

p − %RP)]. (5)

Here pH is the hyperon three-momentum, and A(pH , p∗
p) is a

function to account for detector acceptance. The integral of this
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FIG. 6. (Color online) Global polarization of !̄ hyperons as a
function of !̄ transverse momentum p!̄

t . Symbol keys are the same
as in Fig. 3. Only statistical uncertainties are shown.
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directed flow is of the same order of magnitude as for
charged particles (!10%), the effect of such interference is
negligible (!1%) in the ! and !̄ hyperon global polarization
measurement [26]. It is possible that because of both the
hyperon reconstruction procedure and the imperfection of the
reaction plane determination, the higher harmonics of hyperon
anisotropic flow (i.e., elliptic flow) will also contribute, but
these are higher order corrections than those from hyperon
directed flow.

To check the analysis code, Monte Carlo simulations with
sizable linear transverse momentum dependence of hyperon
global polarization and hydrodynamic pH

t spectra were per-
formed. Both the sign and magnitude of the reconstructed
polarization agreed with the input values within statistical
uncertainties.

The measurement could be affected by other systematic
effects. Most of them are similar to those present in an
anisotropic flow analysis, with the most significant one coming
from the determination of the event plane vector and its
resolution. In calculating the reaction plane resolution, we
used the random subevent technique [6], as well as the
mixed harmonic method [6,10,27] with the second-order event
plane determined from TPC tracks. The mixed harmonic
method is known to be effective in suppressing a wide
range of nonflow effects (short-range correlations, effects of
momentum conservation [28], etc.).

To suppress the contribution to the global polarization
measurement from nonflow effects (mainly due to momentum
conservation) the combination of both east and west forward
TPC event plane vectors was used. The contribution from
other few-particle correlations (i.e., resonances, jets, etc.) was
estimated by comparing the results obtained from correlations
using positive or negative particles to determine the reaction
plane. Uncertainties related to the dependence of tracking
efficiency (in particular, charged particle and ! (!̄) hyperon
reconstruction efficiency) on azimuthal angle were estimated
by comparing the results obtained with different magnetic
field settings and also with event plane vectors determined
from positively or negatively charged particles. The magnitude
of nonflow correlations is multiplicity dependent, and its
contribution to anisotropic flow measurement increases with
collision centrality. The average uncertainty due to the reaction
plane reconstruction is estimated to be 30%.

All uncertainties discussed in Secs. II A and II C are relative.
Table I summarizes systematic errors in the global polarization
measurement. Although some of the systematic uncertainty
contributions may be expected to be correlated, we have
conservatively combined all contributions by linear summation
to arrive at an upper limit for the total systematic uncertainty.
The overall relative uncertainty in the ! (!̄) hyperon global

TABLE I. Summary of systematic uncertainties of the
! (!̄) global polarization measurement. See Secs. II A
and II C for details.

Source of uncertainty Value

Decay parameter α!,!̄ error 2%
Background, K0

S contamination 8%
Multistrange feed-down 15%
#0 feed-down 30%
PH (φH − %RP) dependence (A2 term) 20%
Reaction plane uncertainty 30%
Hyperon anisotropic flow contribution !1%
Hyperon spin precession !0.1%

Total uncertainty (sum) 105%

polarization measurement due to detector effects is estimated
to be less than a factor of 2.

Taking all these possible correction factors into account
and considering that our measurements are consistent with
zero with statistical error of about 0.01, our results suggest
that the global ! and !̄ polarizations are !0.02 in magnitude.

III. CONCLUSION

The ! and !̄ hyperon global polarization has been
measured in Au+Au collisions at center-of-mass energies√

sNN = 62.4 and 200 GeV with the STAR detector at RHIC.
An upper limit of |P!,!̄| ! 0.02 for the global polarization of
! and !̄ hyperons within the STAR detector acceptance is
obtained. This upper limit is far below the few tens of percent
values discussed in Ref. [1], but it falls within the predicted
region from the more realistic calculations [4] based on the
HTL model.
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Energy dependence (𝜌00)  
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meson spin alignment at 

𝑠𝑁𝑁 = 19-62 GeV. 
 

¾ 𝜌00 shows weak beam 
energy dependence. 
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𝑝𝑇 dependence (𝜌00)  
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dependence with currently 
large systematical 
uncertainties dominated by 
the residual background 
estimation (under further 
investigation).  
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ready been carried out in lepton induced reactions and
hadron–hadron collisions [4–13,16–18].
Unlike the polarization of hyperons, the spin-

alignment of vector mesons, ρV
00, does not know the

direction of the reaction plane since it only depends on
cos2 θ (see Eq. (3)). Therefore, one cannot measure the
sign of the quark polarization through spin-alignment
of vector mesons. On the other hand, one does not
need to determine the direction of the reaction plane
to measure the spin alignment which is directly re-
lated to the magnitude of the quark polarization along
the orientation of the reaction plane.
We now assume that quarks and anti-quarks in the

QGP are polarized as described in [1] and calculate
the spin alignment of V by considering the following
three different hadronization scenarios: (1) recombi-
nation of the polarized quarks and anti-quarks; (2) re-
combination of the polarized quarks (anti-quarks) with
unpolarized anti-quarks (quarks); (3) fragmentation of
polarized quarks (or anti-quarks).
The picture envisaged here is the following. In a

non-central A + A collision, a QGP is formed and
the quarks and anti-quarks in the QGP are polarized.
Besides them, there are also quarks and anti-quarks
created in the accompanying processes such as the
hard scattering of the partons and the subsequent par-
ton cascade, etc. These quarks and anti-quarks are
characterized by higher transverse momenta and are
unpolarized. Hence, there are different possibilities
for hadrons to be produced. First, they can be pro-
duced via the recombination of the quarks and anti-
quarks in QGP, this corresponds to the hadroniza-
tion scenario (1). Second, they can also be formed
via the recombination of the quarks/anti-quarks in
QGP with those from the accompanying processes.
In this case, we have the recombination of polar-
ized quarks (anti-quarks) with unpolarized anti-quarks
(quarks), and this corresponds to the hadronization
scenario (2). Finally, they can also be produced via
the fragmentation of a fast quark/anti-quark from the
QGP. This corresponds to the scenario (3). Clearly,
the three different hadronization scenarios should
contribute to different kinematic regions. While the
first scenario should play the dominant role in the
low pT and central rapidity region, the second and
third should play the important roles for the inter-
mediate pT and forward rapidity regions, respec-
tively.

We first consider the hadronization scenario (1) of
constituent quark recombination in which both quarks
and anti-quarks are polarized. This is likely the case
for hadronization in the central rapidity region for low
pT hadrons. We take −n⃗b = −ŷ as the quantization
axis, and obtain the spin density matrix for quarks
ρq as

(5)ρq = 1
2

(
1+ Pq 0
0 1− Pq

)
,

and similarly for anti-quarks ρ q̄ . Since the system is
thermalized, there should be no intrinsic correlation
between the quark and anti-quark in QGP. Also, since
our purpose is to study the effect of global quark polar-
ization, we will not go to the detail of the recombina-
tion mechanism but, just as people usually do [14,15],
assume no particular correlation between the quark
and the anti-quark that combine into a vector meson.
Hence, we can calculate the spin density matrix of the
vector meson V by making the direct product of ρq

and ρ q̄ . After transforming it to the coupled basis, we
obtain the normalized spin density matrix ρV for vec-
tor mesons as

(6)ρV =

⎛

⎜⎜⎝

(1+Pq)(1+Pq̄ )

3+PqPq̄
0 0

0 1−PqPq̄

3+PqPq̄
0

0 0 (1−Pq)(1−Pq̄ )

3+PqPq̄

⎞

⎟⎟⎠ .

Hence, we obtain

(7)ρ
V (rec)
00 = 1− PqPq̄

3+ PqPq̄
,

and all the non-diagonal elements are zero. Assuming
Pu = Pd = Pū = Pd̄ ≡ Pq , and Ps = Ps̄ , we obtain the
results for ρ and K∗ mesons as

(8)ρ
ρ(rec)
00 =

1− P 2
q

3+ P 2
q

,

(9)ρ
K∗(rec)
00 = 1− PqPs

3+ PqPs
.

We see that both ρ
ρ
00 and ρK∗

00 are smaller than 1/3 if
they are produced via recombination of similarly po-
larized quarks and anti-quarks. The non-diagonal ele-
ments are zero if there is no correlation between the
polarization of the quark and anti-quark.
The polarization of quark and anti-quark discussed

in [1] is a low pT phenomenon, since the polariz-
ing interaction typically has a momentum scale of

Z.-T. Liang, X.-N. Wang / Physics Letters B 629 (2005) 20–26 23

p0 = µL0, where 1/µ is the interaction range and L0
is the typical relative orbital angular momentum be-
tween two-colliding partons. When the initial pT of a
quark is much larger than p0, the quark will not be po-
larized. But such a quark can still recombine with a
polarized low pT anti-quark to form a hadron, accord-
ing to the hadronization scenario (2). The spin align-
ment for such formed vector mesons can be obtained
by inserting Pq = 0 or Pq̄ = 0 into Eq. (7). We have
then ρV

00 = 1/3, even if one of the constituent quarks
is polarized before recombination.
Finally, we consider the hadronization scenario (3),

i.e., fragmentation of a polarized quark q↑ → V + X.
This likely happens for quarks with large rapidities
in the QGP and may play an important for hadrons
in the forward rapidity region. The situation in this
case is very much different from that in scenario (1)
or (2). Here, the anti-quark that combines with the
initial polarized quark is created in the fragmentation
process and may carry the information of the initial
quark that induces this creation. This implies that the
polarization of this anti-quark can be correlated to that
of the initial quark. Since this is a non-perturbative
process that cannot be calculated from pQCD, we do
not know a priori whether such a correlation indeed
exists. Fortunately, the situation here is very similar
to e+e− → Z0 → qq̄ → V + X, where the initial q

and q̄ are longitudinally polarized so that we have the
fragmentation process q⃗ → V + X. Therefore, we can
compare it with the latter to extract some useful infor-
mation.
The 00-element of the spin density matrix for the

vector mesons in e+e− → Z0 → qq̄ → V + X have
been measured at LEP [13,16–18]. The results show
clearly that ρV

00 is significantly larger than 1/3 in the
helicity frame of the vector meson (i.e., the quanti-
zation axis is taken as the polarization direction of
the fragmenting quark) at large fractional momenta.
A simple calculation [19] for ρV

00 in e+e− → V + X

has been carried out by building the direct product
of the spin density matrix of the polarized leading
quark (ρq ) and that of the anti-quark created during the
fragmentation process (ρfragq̄ ). In the helicity frame,
ρq takes exactly the form as shown by Eq. (5). The
most general form was taken for ρ

frag
q̄ . The calcula-

tion is exactly the same as that for quark recombina-
tion. It also leads to a result of ρV

00 for the first rank
V ’s similar to that shown by Eq. (7). The only differ-

ence is that we should replace Pq̄ in Eq. (7) by P
frag
q̄ ,

which is the polarization of the anti-quark created in
the fragmentation process. This result has been com-
pared with the available data [13,16–18]. It has been
found out that, the available data can only be fitted if
the anti-quark is taken as effectively polarized in the
opposite direction as the leading quark, and the polar-
ization is P

frag
q̄ = −βPq , where β ≈ 0.5 was obtained

[19] by fitting the data [13,16–18]. Hence, for the first
rank V ’s,

(10)ρ
V (frag)
00 =

1+ βP 2
q

3− βP 2
q

.

For V ’s other than the first rank hadrons, ρV = 1/3.
These results can be considered as a parametrization
of the LEP data [13,16–18].
If the same model can be applied to the fragmen-

tation of quarks (anti-quarks) polarized along the op-
posite direction of the reaction plane in heavy-ion
collisions, then the anti-quarks (quarks) that are pro-
duced in the fragmentation and will combine with the
leading quarks (anti-quarks) to form vector mesons
is effectively polarized in the opposite direction as
the initial quarks (anti-quarks) with the polarization
P
frag
q̄ = −βPq . One can then obtain a result for ρV

00
in the same form as that shown by Eq. (10). The dif-
ference is that now the quantization axis is along the
opposite direction of the reaction plane, which is trans-
verse to the direction of longitudinal motion. Taking
the fragmentation of different flavors of quarks and
anti-quarks into account, we obtain, for the first rank
V ’s,

(11)ρ
ρ(frag)
00 =

1+ βP 2
q

3− βP 2
q

,

(12)

ρ
K∗(frag)
00 = fs

ns + fs

1+ βP 2
q

3− βP 2
q

+ ns

ns + fs

1+ βP 2
s

3− βP 2
s

,

where ns and fs are the strange quark abundances rel-
ative to up or down quarks in QGP and quark fragmen-
tation, respectively. Therefore, in this case of quark
fragmentation, ρ00 is always larger than 1/3.
One can measure directly the angular distribution

of vector mesons’ decay products with respect to
the reaction plane and therefore determine the spin-
alignment of vector mesons in non-central heavy-
ion collisions. Such measurements will elucidate
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p0 = µL0, where 1/µ is the interaction range and L0
is the typical relative orbital angular momentum be-
tween two-colliding partons. When the initial pT of a
quark is much larger than p0, the quark will not be po-
larized. But such a quark can still recombine with a
polarized low pT anti-quark to form a hadron, accord-
ing to the hadronization scenario (2). The spin align-
ment for such formed vector mesons can be obtained
by inserting Pq = 0 or Pq̄ = 0 into Eq. (7). We have
then ρV

00 = 1/3, even if one of the constituent quarks
is polarized before recombination.
Finally, we consider the hadronization scenario (3),

i.e., fragmentation of a polarized quark q↑ → V + X.
This likely happens for quarks with large rapidities
in the QGP and may play an important for hadrons
in the forward rapidity region. The situation in this
case is very much different from that in scenario (1)
or (2). Here, the anti-quark that combines with the
initial polarized quark is created in the fragmentation
process and may carry the information of the initial
quark that induces this creation. This implies that the
polarization of this anti-quark can be correlated to that
of the initial quark. Since this is a non-perturbative
process that cannot be calculated from pQCD, we do
not know a priori whether such a correlation indeed
exists. Fortunately, the situation here is very similar
to e+e− → Z0 → qq̄ → V + X, where the initial q

and q̄ are longitudinally polarized so that we have the
fragmentation process q⃗ → V + X. Therefore, we can
compare it with the latter to extract some useful infor-
mation.
The 00-element of the spin density matrix for the

vector mesons in e+e− → Z0 → qq̄ → V + X have
been measured at LEP [13,16–18]. The results show
clearly that ρV

00 is significantly larger than 1/3 in the
helicity frame of the vector meson (i.e., the quanti-
zation axis is taken as the polarization direction of
the fragmenting quark) at large fractional momenta.
A simple calculation [19] for ρV

00 in e+e− → V + X

has been carried out by building the direct product
of the spin density matrix of the polarized leading
quark (ρq ) and that of the anti-quark created during the
fragmentation process (ρfragq̄ ). In the helicity frame,
ρq takes exactly the form as shown by Eq. (5). The
most general form was taken for ρ

frag
q̄ . The calcula-

tion is exactly the same as that for quark recombina-
tion. It also leads to a result of ρV

00 for the first rank
V ’s similar to that shown by Eq. (7). The only differ-

ence is that we should replace Pq̄ in Eq. (7) by P
frag
q̄ ,

which is the polarization of the anti-quark created in
the fragmentation process. This result has been com-
pared with the available data [13,16–18]. It has been
found out that, the available data can only be fitted if
the anti-quark is taken as effectively polarized in the
opposite direction as the leading quark, and the polar-
ization is P

frag
q̄ = −βPq , where β ≈ 0.5 was obtained

[19] by fitting the data [13,16–18]. Hence, for the first
rank V ’s,

(10)ρ
V (frag)
00 =

1+ βP 2
q

3− βP 2
q

.

For V ’s other than the first rank hadrons, ρV = 1/3.
These results can be considered as a parametrization
of the LEP data [13,16–18].
If the same model can be applied to the fragmen-

tation of quarks (anti-quarks) polarized along the op-
posite direction of the reaction plane in heavy-ion
collisions, then the anti-quarks (quarks) that are pro-
duced in the fragmentation and will combine with the
leading quarks (anti-quarks) to form vector mesons
is effectively polarized in the opposite direction as
the initial quarks (anti-quarks) with the polarization
P
frag
q̄ = −βPq . One can then obtain a result for ρV

00
in the same form as that shown by Eq. (10). The dif-
ference is that now the quantization axis is along the
opposite direction of the reaction plane, which is trans-
verse to the direction of longitudinal motion. Taking
the fragmentation of different flavors of quarks and
anti-quarks into account, we obtain, for the first rank
V ’s,

(11)ρ
ρ(frag)
00 =

1+ βP 2
q

3− βP 2
q

,

(12)

ρ
K∗(frag)
00 = fs

ns + fs

1+ βP 2
q

3− βP 2
q

+ ns

ns + fs

1+ βP 2
s

3− βP 2
s

,

where ns and fs are the strange quark abundances rel-
ative to up or down quarks in QGP and quark fragmen-
tation, respectively. Therefore, in this case of quark
fragmentation, ρ00 is always larger than 1/3.
One can measure directly the angular distribution

of vector mesons’ decay products with respect to
the reaction plane and therefore determine the spin-
alignment of vector mesons in non-central heavy-
ion collisions. Such measurements will elucidate
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To extract primary hyperon polarization one 
needs to correct for feed-down (most important 
are decays                               ,    
and                  (taking into account the 
difference in the magnetic moments). 
This correction is about 5-15%
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•Measured Lambda and Anti-
Lambda polarization

• Includes results from 
previous STAR null result 
(2007)

•            
 implies positive vorticity

•                            would 
imply magnetic coupling

Global polarization measure

PH (Λ) and PH (Λ̄)>0

PH (Λ̄)>PH (Λ)
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that the background signal was consistent with zero when345

increasing the background by applying looser topologi-346

cal cuts. Therefore the results from zero-background as-347

sumption for the fitting function was used as the final348

results and the difference from the non-zero background349

assumption was included in the systematic uncertainty350

(∼13%).351

We further examined whether or not there is a possi-352

ble experimental bias to our results. The data of Au+Au353

collision was taken with two different polarity of the mag-354

netic field. In order to check the effect of the magnetic355

field configuration, we divided the data into two groups356

to have the same polarity and confirmed that there was357

no significant difference between two groups. Those two358

groups also correspond to earlier or later time of the data359

taking. Despite the change of the trigger condition for360

further improvement during runs and the change of the361

detector condition, no significant difference was observed.362

We also calculated the cumulant terms and subtracted363

them from the observed signal to check a possible de-364

tector effect due to non-uniformity in acceptance and a365

residual detector effect coming from the event plane cal-366

ibration:367

⟨⟨sin(Ψ1 − φ∗
p)⟩⟩ − ⟨⟨sinΨ1⟩⟩⟨⟨cosφ∗

p⟩⟩368

+ ⟨⟨cosΨ1⟩⟩⟨⟨sinφ∗
p⟩⟩, (4)369

where the double brackets indicates an average over par-370

ticles first and then an average over events. It was found371

that the correction terms are very small and there was372

no significant difference beyond the current uncertainty373

after the correction. Therefore we didn’t apply this cor-374

rection in the final results.375

The effect of the tracking efficiency was studied and376

found to be negligible. Also, the acceptance correction377

proposed in our previous analysis [6] was applied. The378

measured polarization can be written as:379

8

παH
⟨sinΨRP⟩ = A0(p

H
T , ηHH )PH(pHT , ηH), (5)380

where A0 is an acceptance correction factor defined as381

follows:382

A0(p
H
T , ηHT ) =

4

π
⟨sin θ∗⟩. (6)383

The correction factor A0 was estimated by the experi-384

mental data.385

The analysis was also performed separately for each386

data set taken in different years. It was found that the387

results from year 2010, 2011, and 2014 were consistent388

within their uncertainties. Therefore we combined all389

results to improve the statistical uncertainties.390

IV. RESULTS391

Figure 4 presents the global polarization of Λ and392

Λ̄ as a function of the collision energy for 20%–50%393

centrality bin in Au+Au collisions, together with re-394

sults from lower collision energies from
√
sNN = 7.7–395

62.4 GeV [7]. The previous result for
√
sNN = 200396

GeV has a large uncertainty and is consistent with zero.397

Our new results for
√
sNN = 200 GeV with significantly398

improved statistics reveals non-zero values of the polar-399

ization signal, 0.277 ± 0.040 (stat) ± 0.039
0.049 (sys) and400

0.240 ± 0.045 (stat) ± 0.061
0.045 (sys) for Λ and Λ̄ respec-401

tively, and are found to follow the global trend of the en-402

ergy dependence. Calculations from the hydrodynamic403

model for primary Λ and Λ taking into account the effect404

of feed-down [8] are compared. The model calculations405

surprisingly reproduce the data over a wide range of the406

collision energy including
√
sNN = 200 GeV within cur-407

rent precision of the experimental measurements. Cal-408

culations from a Multi-Phase Transport (AMPT) model409

are also compared and show slightly higher than the hy-410

drodynamic model in the predictions, but are in good411

agreement with the data within uncertainties.412
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We also performed differential measurements of the415

polarization, such as the collision centrality, hyperon’s416

transverse momentum, and pseudorapidity dependence.417

The vorticity of the system is expected to be smaller in418
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To extract primary hyperon polarization one 
needs to correct for feed-down (most important 
are decays                               ,    
and                  (taking into account the 
difference in the magnetic moments). 
This correction is about 5-15%
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that the background signal was consistent with zero when345

increasing the background by applying looser topologi-346

cal cuts. Therefore the results from zero-background as-347

sumption for the fitting function was used as the final348

results and the difference from the non-zero background349

assumption was included in the systematic uncertainty350

(∼13%).351

We further examined whether or not there is a possi-352

ble experimental bias to our results. The data of Au+Au353

collision was taken with two different polarity of the mag-354

netic field. In order to check the effect of the magnetic355

field configuration, we divided the data into two groups356

to have the same polarity and confirmed that there was357

no significant difference between two groups. Those two358

groups also correspond to earlier or later time of the data359

taking. Despite the change of the trigger condition for360

further improvement during runs and the change of the361

detector condition, no significant difference was observed.362

We also calculated the cumulant terms and subtracted363

them from the observed signal to check a possible de-364

tector effect due to non-uniformity in acceptance and a365

residual detector effect coming from the event plane cal-366

ibration:367

⟨⟨sin(Ψ1 − φ∗
p)⟩⟩ − ⟨⟨sinΨ1⟩⟩⟨⟨cosφ∗

p⟩⟩368

+ ⟨⟨cosΨ1⟩⟩⟨⟨sinφ∗
p⟩⟩, (4)369

where the double brackets indicates an average over par-370

ticles first and then an average over events. It was found371

that the correction terms are very small and there was372

no significant difference beyond the current uncertainty373

after the correction. Therefore we didn’t apply this cor-374

rection in the final results.375

The effect of the tracking efficiency was studied and376

found to be negligible. Also, the acceptance correction377

proposed in our previous analysis [6] was applied. The378

measured polarization can be written as:379

8

παH
⟨sinΨRP⟩ = A0(p

H
T , ηHH )PH(pHT , ηH), (5)380

where A0 is an acceptance correction factor defined as381

follows:382

A0(p
H
T , ηHT ) =

4

π
⟨sin θ∗⟩. (6)383

The correction factor A0 was estimated by the experi-384

mental data.385

The analysis was also performed separately for each386

data set taken in different years. It was found that the387

results from year 2010, 2011, and 2014 were consistent388

within their uncertainties. Therefore we combined all389

results to improve the statistical uncertainties.390

IV. RESULTS391

Figure 4 presents the global polarization of Λ and392

Λ̄ as a function of the collision energy for 20%–50%393

centrality bin in Au+Au collisions, together with re-394

sults from lower collision energies from
√
sNN = 7.7–395

62.4 GeV [7]. The previous result for
√
sNN = 200396

GeV has a large uncertainty and is consistent with zero.397

Our new results for
√
sNN = 200 GeV with significantly398

improved statistics reveals non-zero values of the polar-399

ization signal, 0.277 ± 0.040 (stat) ± 0.039
0.049 (sys) and400

0.240 ± 0.045 (stat) ± 0.061
0.045 (sys) for Λ and Λ̄ respec-401

tively, and are found to follow the global trend of the en-402

ergy dependence. Calculations from the hydrodynamic403

model for primary Λ and Λ taking into account the effect404

of feed-down [8] are compared. The model calculations405

surprisingly reproduce the data over a wide range of the406

collision energy including
√
sNN = 200 GeV within cur-407

rent precision of the experimental measurements. Cal-408

culations from a Multi-Phase Transport (AMPT) model409

are also compared and show slightly higher than the hy-410

drodynamic model in the predictions, but are in good411

agreement with the data within uncertainties.412
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We also performed differential measurements of the415

polarization, such as the collision centrality, hyperon’s416

transverse momentum, and pseudorapidity dependence.417

The vorticity of the system is expected to be smaller in418
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…”chemistry”: what is the role of  
quark/baryon chemical potential

…”mechanism”: “quark” vs  
“hadron”; hadron’s spin w.f.

  

Polarization four-vector in the LAB frame

At first order in the gradients:

F. B., V. Chandra, L. Del Zanna, E. Grossi, Ann. Phys. 338 (2013) 32F. B., V. Chandra, L. Del Zanna, E. Grossi, Ann. Phys. 338 (2013) 32 

Same formula obtained with a perturbative expansion of the solution of the Wigner function 
e.o.m. in

R. Fang, L.G. Pang, Q. Wang, X.N. Wang, arXiv:1604.04036

BEWARE the factor 1/8! If polarization is normalized to 100% must be ¼ instead. 
For the properly normalized polarization I will use the symbol P, so P = 2P
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Polarization of fermions in a vorticular fluid

Ren-hong Fang,1 Long-gang Pang,2 Qun Wang,1 and Xin-nian Wang3, 4

1Interdisciplinary Center for Theoretical Study and Department of Modern Physics,
University of Science and Technology of China, Hefei, Anhui 230026, China

2Frankfurt Institute for Advanced Studies, Ruth-Moufang-Strasse 1, 60438 Frankfurt am Main, Germany
3Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics,

Central China Normal University, Wuhan, 430079, China
4Nuclear Science Division, MS 70R0319, Lawrence Berkeley National Laboratory, Berkeley, California 94720

Fermions become polarized in a vorticular fluid due to spin-vorticity coupling. Such a polarization
can be calculated from the Wigner function in a quantum kinetic approach. Extending previous
results for chiral fermions, we derive the Wigner function for massive fermions up to the next-to-
leading order in spatial gradient expansion. The polarization density of fermions can be calculated
from the axial vector component of the Wigner function and is found to be proportional to the local
vorticity ω. The polarizations per particle for fermions and anti-fermions decrease with the chemical
potential and increase with energy (mass). Both quantities approach the asymptotic value !ω/4
in the large energy (mass) limit. The polarization per particle for fermions is always smaller than
that for anti-fermions, whose ratio of fermions to anti-fermions also decreases with the chemical
potential. The polarization per particle on the Cooper-Frye freeze-out hyper-surface can also be
formulated and is consistent with the previous result of Becattini et al..

I. INTRODUCTION

In non-central high-energy heavy-ion collisions, the large orbital angular momentum present in the colliding system
can lead to non-vanishing local vorticity in the hot and dense fluid [1–6]. The vorticity induced by global orbital
angular momentum in the fluid can be considered as local rotational motion of particles [3, 4, 7, 8]. It is closely
related to the rapidity dependence of the v1 flow and shear of the longitudinal flow velocity inside the reaction plane
[5, 9, 10].

As a result of spin-orbital coupling, quarks and anti-quarks can become polarized along the normal direction of the
reaction plane [1, 2, 5]. Through hadronization of polarized quarks and anti-quarks, hyperons can also be polarized in
the same direction in the final state [1, 2, 11]. Measurements of such global hyperon polarization is feasible through
the parity-violating decay of hyperons [12, 13]. Such measurements will shed light on properties of the vorticular
structures of the strongly coupled quark-gluon plasma (sQGP) in high-energy heavy-ion collisions.

Quark and anti-quark polarization in a vorticular fluid is also closely related to the Chiral Magnetic and Vortical
Effects [14–19]. From the solutions of Wigner functions for chiral or massless fermions in a quantum kinetic approach
one can derive the axial current jµ5 = ρ5uµ+ξ5ωµ+ξB5 Bµ, where ρ5 is the axial charge density, uµ is the fluid velocity,
ωµ ≡ 1

2ϵ
µσαβuσ∂αuβ is the vorticity 4-vector, and Bµ = 1

2ϵ
µνλσuνFλσ is the 4-vector of the magnetic field with Fλρ

being the strength tensor of the electromagnetic field. The coefficients ξ5 and ξB5 are all functions of temperatures
and chemical potentials µ and µ5 [19]. In a three-flavor quark matter with u, d and s quarks and their anti-quarks,
ξB5 = 0. In other words, the axial current in a three-flavor quark matter is blind to the magnetic field and solely
induced by the vorticity. Such an axial current leads to the Local Polarization Effect [19] which is also connected to
the spin-vorticity coupling for chiral or massless fermions [20].

In this paper, we will extend our Wigner function method for massless fermions to massive ones and formulate the
polarization of massive fermions induced by vorticity. In Section II, we will give a brief introduction to the Wigner
function method and derive the equations for the Wigner function components for massive fermions based on Ref.
[21, 22]. The Wigner function components can be determined perturbatively by gradient expansion. In Section III,
we will derive the Wigner function at the leading order by definition. Using the projection method we can extract
each component of the Wigner function at the leading order. We will propose the first order solution for the axial
vector component in Section IV by extending the solution for massless fermions. In Section V, we will show that the
axial vector component can be regarded as the spin density in phase space. We can obtain the polarization density
after completion of momentum integration of the axial vector component in Section VI. We will also formulate the
fermion polarization on the freezeout hypersurface by extending the Cooper-Frye formula. We will give a summary
of the results in the final section.

We adopt the same sign conventions for fermion charge Q as in Refs. [19, 20, 22, 23], and the same sign convention
for the axial vector Aµ ∼

〈

ψ̄γµγ5ψ
〉

as in Resf. [19, 20, 23] but different sign convention from Ref. [22].
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One can write the relation between T -vorticity and kine-
matical vorticity by expanding the definition (5):

!µν = 1
2

[
(∂νT ) uµ − (∂µT ) uν

]
+ Tωµν,

implying that the double-transverse projection of !,

%µρ%νσ !ρσ ≡ !%
µν = Tω%

µν .

Hence, the tensor ω% shares the same conservation proper-
ties of !%, namely it vanishes at all times if it is vanishing
at the initial time. Conversely, the mixed projection of the
kinematical vorticity,

uρωρσ %σν = 1
2
Aσ ,

does not. It then follows that for an ideal uncharged fluid with
ω% = 0 at the initial time, the kinematical vorticity is simply

ωµν = 1
2
(Aµuν − Aνuµ). (9)

2.3 The thermal vorticity

This is defined as [13]:

ϖµν = 1
2
(∂νβµ − ∂µβν) (10)

where β is the temperature four-vector. This vector is defined
as (1/T )u once a four-velocity u, that is a hydrodynamical
frame, is introduced, but it can also be taken as a primordial
quantity to define a velocity through u ≡ β/

√
β2 [16]. The

thermal vorticity features two important properties: it is adi-
mensional in natural units (in cartesian coordinates) and it
is the actual constant vorticity at the global equilibrium with
rotation [17] for a relativistic system, where β is a Killing
vector field whose expression in Minkowski space–time is
βµ = bµ +ϖµνxν , b and ϖ being constant. In this case the
magnitude of thermal vorticity is – with the natural constants
restored – simply h̄ω/kBT where ω is a constant angular
velocity. In general (replacing ω with the classical vortic-
ity defined as the curl of a proper velocity field) it can be
readily realized that the adimensional thermal vorticity is a
tiny number for most hydrodynamical systems, though it can
be significant for the plasma formed in relativistic nuclear
collisions.

Furthermore, the thermal vorticity is responsible for the
local polarization of particles in the fluid according to the
formula [12]

*µ(x, p) = −1
8
ϵµρστ (1 − nF )ϖρσ pτ

m
, (11)

which applies to spin 1/2 fermions, nF being the Fermi–
Dirac–Juttner distribution function,

nF = 1
eβ(x)·p−µ/T + 1

. (12)

Similarly to the previous subsection, one can readily
obtain the relation between T -vorticity and thermal vorticity:

ϖµν = 1
2T 2

[
(∂µT ) uν − (∂νT ) uµ

]
+ 1

T 2 !µν . (13)

Again, the double-transverse projection of ϖ is proportional
to the one of !:

%µρ%νσ ϖρσ ≡ ϖ%
µν = 1

T 2 !%
µν = 1

T
ω%,

whereas the mixed projection turns out to be, using Eq. (13),

uρϖρσ %σν = 1
2T 2 ∇νT + Aν

2T
.

Again, for an ideal uncharged fluid with ω% = 0 at the initial
time, by using the equations of motion (6), one sees that the
above projection is just Aν/T and that the thermal vorticity
is simply

ϖµν = 1
T
(Aµuν − Aνuµ). (14)

A common feature of the kinematical and thermal vorticity
is that their purely spatial components can be non-vanishing
if the acceleration and velocity field are non-parallel, even
though velocity is vanishing at the beginning.

3 High energy nuclear collisions

In nuclear collisions at very large energy, the QCD plasma is
an almost uncharged fluid. Therefore, according to previous
section’s arguments, in the ideal fluid approximation, if the
transversely projected vorticity tensor ω% initially vanishes,
so will the transverse projection !% and ϖ% and the kine-
matical and thermal vorticities will be given by the formu-
las (9) and (14), respectively. Indeed, the T -vorticity ! will
vanish throughout because also its longitudinal projection-
vanishes according to Eq. (6). This is precisely what hap-
pens for the usually assumed BIC for the flow at τ0, that is
ux = uy = uη = 0, where one has ω% = 0 at the beginning
as it can be readily realized from the definition (1). On the
other hand, for a viscous uncharged fluid, transverse vortic-
ities can develop even if they are zero at the beginning.

It should be noted, though, that even if the space–space
components (x, y, η indices) of the kinematical vorticity ten-
sor vanish at the initial Bjorken time τ0, they can develop at
later times even for an ideal fluid if the spatial parts of the
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–  

– positive value, 2σ average for 
7.7-39 GeV

PΛprimary
= ω

2T
∼5 %

μN≡
e ℏ

2mp

, where mp  is the

proton mass

Polarization of anti-Lambdas is higher 
than that of Lambdas - indication of the 
magnetic field effect?

➜ Omega/T of the order of a few percent 
➜ Magnetic fields  eB ⇠ 10�2m2

⇡

Isaac Upsal – August 2017 8

•Measured Lambda and Anti-
Lambda polarization

• Includes results from 
previous STAR null result 
(2007)

•            
 implies positive vorticity

•                            would 
imply magnetic coupling

Global polarization measure

PH (Λ) and PH (Λ̄)>0

PH (Λ̄)>PH (Λ)

STAR, Nature 548, 62–65 (2017)

STAR 
preliminary
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Fig. 1. Magnetic field for static medium with Ohmic conductivity, σOhm.

The decay of the conductivity owing to expansion of the medium can only decrease the life-
time of the magnetic field and thus will not be considered here. Our simulations are done for
Au–Au collisions at energy

√
s = 200 GeV and fixed impact parameter b = 6 fm. In Fig. 1 we

show time evolution of the magnetic field in the origin x⃗ = 0 as a function of the electric con-
ductivity σOhm. The results show that the lifetime of the strong magnetic field (eB > m2

π ) is not
affected by the conductivity, if one uses realistic values obtained in Ref. [5].

4. Energy dependence

In the previous section, we established that for realistic values of the conductivities the elec-
tromagnetic fields in heavy-ion collisions are almost unmodified by the presence of the medium.
Thus one can safely use the magnetic field generated by the original protons only. This magnetic
field can be approximated as follows

eB(t, x⃗ = 0) = 1
γ

cZ

t2 + (2R/γ )2 , (18)

where Z is the number of protons, R is the radius of the nuclei, γ is the Lorentz factor and, finally,
c is some non-important numerical coefficient. We are interested on the effect of the magnetic
field on the matter, otherwise the magnetic field does not contribute to photon production. Thus
we need to compute the magnetic field at the time tm, characterizing matter formation time.
On the basis of a very general argument, one would expect that tm = aQ−1

s . Here we assumed
that the Color Glass Condensate (CGC) provides an appropriate description of the early stage
of heavy ion collisions, namely Qs ≪ ΛQCD; in the CGC framework, owing to the presence of
only one dimensional scale, the matter formation time is inversely proportional to the saturation
scale. We also note that if the formation time for a particle is much less than this, the magnetic
field has a correspondingly larger effect, as the magnetic field is biggest at early times. The
phenomenological constraints from photon azimuthal anisotropy at the top RHIC energy demand
tm ≈ 2R/γRHIC, i.e. a = 2RQRHIC

s /γRHIC. Using this relation, we can estimate the magnitude of

MHD simulations�

���
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Thus one can safely use the magnetic field generated by the original protons only. This magnetic
field can be approximated as follows

eB(t, x⃗ = 0) = 1
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t2 + (2R/γ )2 , (18)

where Z is the number of protons, R is the radius of the nuclei, γ is the Lorentz factor and, finally,
c is some non-important numerical coefficient. We are interested on the effect of the magnetic
field on the matter, otherwise the magnetic field does not contribute to photon production. Thus
we need to compute the magnetic field at the time tm, characterizing matter formation time.
On the basis of a very general argument, one would expect that tm = aQ−1

s . Here we assumed
that the Color Glass Condensate (CGC) provides an appropriate description of the early stage
of heavy ion collisions, namely Qs ≪ ΛQCD; in the CGC framework, owing to the presence of
only one dimensional scale, the matter formation time is inversely proportional to the saturation
scale. We also note that if the formation time for a particle is much less than this, the magnetic
field has a correspondingly larger effect, as the magnetic field is biggest at early times. The
phenomenological constraints from photon azimuthal anisotropy at the top RHIC energy demand
tm ≈ 2R/γRHIC, i.e. a = 2RQRHIC

s /γRHIC. Using this relation, we can estimate the magnitude of

pT < 2 GeV=c in 10%–30% centrality and becomes con-
sistent with zero by 50%–60% centrality within large
systematic uncertainties. The small but finite Δv1 agrees
with the expectation for the effects of the initial electric
field. The sign flipping of the electric field discussed in
Ref. [14] seems not to be observed within the current
uncertainty, which is close to the expectation discussed
in Ref. [16].
Figure 3 shows v1 and Δv1 in the 10%–40% centrality

bin. For pT < 2 GeV=c, the Δv1 seems to increase with
pT . The v1 results from Auþ Au collisions (the so-called
even component of v1) show much smaller values (∼by a
factor of 10) compared to those in Cuþ Au. Note that the
odd component of v1 in Auþ Au collisions is similarly
small [34]. The Δv1 in Auþ Au is consistent with zero.
Calculations for charged pions from the parton-hadron-
string-dynamics (PHSD) model [15], which is a dynami-
cal transport approach in the partonic and hadronic
phases, are compared to the data. As indicated in
Eq. (2), the measured Δv1 could be smeared by the
fluctuations in ψE and Ψ1 orientations, but note that the
PHSD model takes such event-by-event fluctuations into
account. The PHSD model calculates two cases: charge-
dependent v1 with and without the initial electric field
(EF). For the case with the EF switched on, the model
assumes that all electric charges are affected by the EF and
this results in a large separation of v1 between positive and
negative particles as shown in Fig. 3(a). In Fig. 3(b), the
calculations of the Δv1 with and without the EF are shown
together, but note that the EF-on data points are scaled by
0.1 relative to the PHSD results. After scaling by 0.1, the
model describes rather well the pT dependence of the
measured data for pT < 2 GeV=c.
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FIG. 2. Directed flow of positive and negative particles from minimum bias Cuþ Au collisions at
ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV, as a function of
pT , in five centrality bins. The difference between the positive and negative spectra is shown in the lower panels, where the open boxes
show the systematic uncertainties. See the text for the definition of the positive direction for v1.
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FIG. 3. Directed flow of positive and negative particles and
the difference between the two spectra as a function of pT in
10%–40% centrality in Cuþ Au and Auþ Au collisions. The
PHSD model calculations [15] for charged pions with and
without the initial electric field (EF) in the same centrality region
are presented for comparison. Note that the charge difference of
v1 with the EF on is scaled by 0.1.
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At the time of the strong EM fields (~0.25 fm) only  
about 10% of all charges are produced

have not yet been created during the lifetime of the strong electric field, which is of the order of, or
less than, 1 fm=c.

DOI: 10.1103/PhysRevLett.118.012301

Hot and dense nuclear matter has been extensively
studied in nucleus-nucleus collisions at the Relativistic
Heavy Ion Collider (RHIC) [1–4] and the Large Hadron
Collider (LHC) [5–7]. Numerous experimental results have
suggested that a quark-gluon plasma (QGP) consisting of
deconfined quarks and gluons is created in these collisions.
At present, the emphasis is on characterizing the detailed
properties of the QGP.
One of the most important and informative experimental

observables used to study the properties of the QGP is
the azimuthal anisotropic flow, which can be characterized
by the Fourier coefficients extracted from the azimuthal
distribution of the final state particles [8]. The second-order
Fourier coefficient (so called elliptic flow) and higher-order
Fourier coefficients vn (n > 2) are found to be very
sensitive to the shear viscosity over entropy density ratio
η=s [9,10]. The first-order Fourier coefficient v1, also
known as directed flow, is sensitive to the equation of
state of the medium and therefore could be a possible probe
of a QGP phase transition [11–13].
Recent theoretical studies suggest that an asymmetric

colliding system can provide new insights regarding the
properties of a QGP, such as the electric conductivity [14]
and the time evolution of the quark densities [15]. Figure 1
shows an example of the distribution of spectators and
participants (protons and neutrons) in the transverse plane
for a Cuþ Au collision assuming an impact parameter of
6 fm. Because of the difference in the number of protons in

the two nuclei, a strong electric field is created at the initial
stage of the collision and the direction of the field is
indicated by the arrow in Fig. 1. The lifetime of the field
might be very short, of the order of a fraction of 1 fm=c
(e.g., t ∼ 0.25 fm=c from Ref. [14,15]), but the electric
charges from quarks and antiquarks that are present in the
early stage of the collision would experience the Coulomb
force and so would be pushed along or opposite to the field
direction depending on the particle charge. The azimuthal
distribution of produced particles (including the effect of
the electric field) can be written as [14,16]

dN"

dϕ
∝ 1þ 2v1 cosðϕ −Ψ1Þ " 2dE cosðϕ − ψEÞ % % % ; ð1Þ

where ϕ is the azimuthal angle for a particle,Ψ1 is the angle
of orientation for the first-order event plane, and the upper
(lower) sign of " is for the positively (negatively) charged
particles. ψE denotes the azimuthal angle of the electric
field; it is strongly correlated with Ψ1 (see Fig. 1) but can
differ from Ψ1 event by event due to the fluctuation of the
initial nucleon distribution. The coefficient dE characterizes
the strength of dipole deformation induced by the electric
field and is proportional to the electric conductivity of
the plasma. Then the directed flow v1 of positively and
negatively charged particles can be expressed as

v"1 ¼ v1 " dEhcosðΨ1 − ψEÞi; ð2Þ

where hi means an average over all particles in all events.
Equation (2) illustrates how the presence of an electric field
results in charge separation for directed flow. The strength
of the charge separation depends on the number of (anti)
quarks existing at the earliest stages of the collision when
the electric field is strong. Therefore, the measurement of
charge-dependent directed flow can be used to test the
quark production mechanism, such as the two-wave sce-
nario of quark production [17,18]. Also, understanding the
time evolution of the quark density in heavy-ion collisions
is very important for a detailed theoretical prediction of the
chiral magnetic effect [19,20] and the chiral magnetic wave
[21,22]. These effects are supposed to emerge under an
initial strong magnetic field and are actively searched for by
various experiments [23–27].
In this Letter, we present the first measurement of the

charge-dependent directed flow in Cuþ Au collisions atffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV. The results are presented for different
collision centralities as a function of the particle transverse
momentum pT and pseudorapidity η. For comparison we
also show results for Auþ Au collisions where the effect is

FIG. 1. Example of a noncentral Cuþ Au collision viewed in
the transverse plane showing an initial electric field ~E caused by
the charge difference between two nuclei. ΨAu-SP

1 denotes the
direction of Au spectators.
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…”timing”: when the orbital angular  
momentum is transferred to spin? 

ROTATING QUARK-GLUON PLASMA IN RELATIVISTIC . . . PHYSICAL REVIEW C 94, 044910 (2016)

FIG. 11. Averaged vorticity ⟨ωy⟩ from the AMPT model as a
function of time at various impact parameter b for fixed beam energy√

sNN = 200 GeV. The solid curves are from a fitting formula (see
text for details).

averaged vorticity increases with decreasing beam energy, in
quite the opposite trend to the angular momentum. This may
be understood as follows: With increasing beam energy, the
fluid moment of inertia (pertinent to rotation) increases more
rapidly than the decrease of vorticity; thus, the total angular
momentum is still increasing. We have numerically checked
that this is indeed the case.

Finally, we present a parametrization of averaged vorticity
as a function of time, centrality, and beam energy, which
provides comprehensive and very good fit to the numerical
results of Au + Au collisions from AMPT. This is given by

⟨ωy⟩(t,b,
√

sNN ) = A(b,
√

sNN )

+B(b,
√

sNN )(0.58t)0.35e−0.58t , (8)

FIG. 12. Averaged vorticity ⟨ωy⟩ from the AMPT model as a
function of time at varied beam energy

√
sNN for fixed impact

parameter b = 7 fm. The solid curves are from a fitting formula
(see text for details).

FIG. 13. Averaged vorticity ⟨ωy⟩, with spatial rapidity span η ∈
(−1,1) and η ∈ (−4,4), respectively, from the AMPT model as a
function of time at

√
sNN = 200 GeV for fixed impact parameters

b = 7,9 fm.

with the two coefficients A and B given by

A = [e−0.016 b
√

sNN + 1] × tanh(0.28 b)

×[0.001 775 tanh(3 − 0.015
√

sNN ) + 0.0128],

B = [e−0.016 b
√

sNN + 1] × [0.023 88 b + 0.012 03]

×[1.751 − tanh(0.01
√

sNN )].

In the above relations,
√

sNN should be evaluated in the unit
of GeV, b in the unit of fm, t in the unit of fm/c, and ωy

in the unit of fm−1. The solid curves in Figs. 11 and 12 are
obtained from the above formula, in comparison with actual
AMPT results. As can be seen, the agreement is excellent and
we have checked that in all cases the relative error of the above
formula is, at most, a few percent. Such parametrization could
be conveniently used for future studies of various vorticity-
driven effects in QGP.

C. Study of uncertainties

In this last part, we investigate a number of uncertainties in
quantifying the averaged vorticity.

One uncertainty is related to the choice of volume in per-
forming the average. In the previous section we have chosen to
average over the spatial rapidity span of η ∈ (−4,4). However,
when it comes to certain specific vorticity-driven effects and
the pertinent final hadron observables, it is not 100% clear what
is precisely the relevant longitudinal volume. To get an idea
of this uncertainty, we have computed the ⟨ωy⟩ for different
choices of spatial rapidity span; see Fig. 13 for results from
η ∈ (−1,1) in comparison with those from η ∈ (−4,4), and see
Fig. 14 for results from η ∈ (−2,2) in comparison with those
from η ∈ (−4,4). As one can see from the comparison, at early
to not-so-late time, the results differ by about a factor of two
between η ∈ (−1,1) and η ∈ (−4,4), but differ by about 30%
percent or so between η ∈ (−2,2) and η ∈ (−4,4). At late time
the results with η ∈ (−4,4) are significantly larger than the
others. Clearly, the contributions to the averaged vorticity from
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Yin Jiang,1 Zi-Wei Lin,2 and Jinfeng Liao1,3

1Physics Department and Center for Exploration of Energy and Matter, Indiana University, 2401 North Milo B. Sampson Lane,
Bloomington, Indiana 47408, USA

2Department of Physics, East Carolina University, Greenville, North Carolina 27858, USA
3RIKEN BNL Research Center, Building 510A, Brookhaven National Laboratory, Upton, New York 11973, USA

(Received 8 March 2016; revised manuscript received 13 September 2016; published 18 October 2016)

We study the rotational collective motion of the quark-gluon plasma in relativistic heavy-ion collisions using
the widely adopted a multiphase transport (AMPT) model. The global angular momentum, the average vorticity
carried by the quark-gluon plasma, and the locally defined vorticity fields are computed for Au + Au collisions,
with detailed information of their time evolution, spatial distribution, as well as the dependence on beam energy
and collision centrality.
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I. INTRODUCTION

In relativistic heavy-ion collisions a hot deconfined form of
QCD matter, the quark-gluon plasma (QGP), has been created
[1,2]. In such collision experiments at the Relativistic Heavy
Ion Collider (RHIC) and the Large Hadron Collider (LHC),
the QGP is found to undergo strong collective expansion as a
relativistic fluid with extremely small dissipation [3–5].

Recently, there has been significant interest in the rotational
aspects of the QGP collective motion, particularly regarding
possible observable consequences of such rotation. Indeed,
in the noncentral heavy-ion collisions, there is a nonzero
total angular momentum J ∝ b

√
sNN (with b as the impact

parameter) carried by the system of two colliding nuclei.
Note that the beam energy

√
sNN is the nucleon-nucleon

center-of-mass energy. After the initial impact, most of this
total angular momentum is carried away by the so-called
“spectators,” but there is a sizable fraction that remains in
the created QGP and implies a nonzero rotational motion in
the fluid [6,7]. It was proposed a while ago that such rotation
may affect the spin polarization of certain hadron production
[8,9]. More recent ideas concern possible anomalous transport
effects in a chiral QGP (for reviews and further references on
this topic, see, e.g., [10–12]). The initial interest focused on
effects induced by external electromagnetic fields [13] such
as the well-known chiral magnetic effect, chiral magnetic
wave, etc. [14–20]. It was later pointed out [15] that fluid
rotation bears a lot of similarity to an external magnetic field
and can also induce similar anomalous transport effects. One
example is the chiral vortical effect [15,21,22] which predicts
a baryon current induced along the fluid rotation axis that
can be measured via baryon separation across the reaction
plane. Another example is the chiral vortical wave [23–26],
which predicts a baryonic charge quadrupole formed along the
fluid rotation axis that can be measured via baryon/antibaryon
elliptic flow splitting. Active experimental efforts are under
way to detect possible signals of these effects, and it is of
great phenomenological importance to quantify the rotational
motion of the QGP in these collisions.

In this paper, we will present the quantification of QGP
rotation in the relativistic heavy-ion collisions, utilizing the
tool of a multiphase transport (AMPT) model simulations. We

will report our results for the QGP global angular momentum,
the average vorticity carried by the QGP, and the locally
defined vorticity fields with detailed information of their
time evolution, spatial distribution, and the dependence on
beam energy and collision centrality. The rest of the paper is
organized as follows. We give some general discussions on the
fluid rotation in Sec. II. A brief discussion is given in Sec. III on
our method of extracting rotational motion from AMPT, and
we further present results for the QGP angular momentum. We
report results for the vorticity fields and the fireball-averaged
vorticity in Sec. IV. Finally, a summary is given in Sec. V.

II. DISCUSSIONS ON THE FLUID ROTATION

A. Angular momentum and vorticity

The global rotation of a fluid can be quantified by the
total angular momentum. For a many-body system of discrete
classical (quasi)particles, one could calculate the total angular
momentum J⃗ unambiguously by summing each particle’s
contribution together,

J⃗ =
∑

i

r⃗i × p⃗i , (1)

with r⃗i and p⃗i the position and momentum of each particle
in given reference frame. For a large-enough system after
proper coarse graining (e.g., like the fluid being made of
many fluid cells), it can be considered as a continuous
medium characterized by a series of locally defined quantities
like momentum density, energy density, and particle-number
density p⃗(r⃗), ϵ(r⃗) and n(r⃗), respectively. One then could
rewrite the total angular momentum as

J⃗ =
∫

d3rr⃗ × p⃗(r⃗). (2)

The fluid vorticity ω⃗ is a more subtle quantity that is locally
derived from local velocity field v⃗(r⃗). In the above coarse-
graining picture, one may define the velocity field through
the momentum and energy densities as v⃗(r⃗) = p⃗(r⃗)/ϵ(r⃗) at
each point/cell. To avoid ambiguity, we will adopt the familiar

2469-9985/2016/94(4)/044910(9) 044910-1 ©2016 American Physical Society

…and anisotropic flow =>               !z

… and asymmetric collisions  
(CuAu, dAu, pPb,…) =>                  !�

… and radial flow+longitudunal(y) =>                      
   
                        + anisotropic flow  => 

!�

!�(�)

Some of the velocity gradients are 
large from t0, some (e.g. due to 
anisotropic flow) require time to 
be fully developed

http://file://localhost/users/voloshin/desktop/untitled.xcf


Chi2018, Galileo Galilei Institute,, Florence, Italy, 19-22 March 2018page S.A. Voloshin

Global/local polarization and…

…directed flow (tilt, dipole flow, viscosity)

5

[7] J.-H. Gao, S.-W. Chen, W.-t. Deng, Z.-T. Liang, Q. Wang, and300

X.-N. Wang, Phys. Rev. C77, 044902 (2008), arXiv:0710.2943301

[nucl-th]302

[8] G. Bunce et al., Phys. Rev. Lett. 36, 1113 (1976)303

[9] K. J. Heller et al., Phys. Rev. Lett. 51, 2025 (1983)304

[10] In principle, convolution of the production-plane polarization305

with finite directed flow [50] may produce a global effect. We306

estimate this to be far smaller than the signals we report here,307

in agreement with other estimates [12].308

[11] B. Betz, M. Gyulassy, and G. Torrieri, Phys. Rev. C76, 044901309

(2007), arXiv:0708.0035 [nucl-th]310

[12] F. Becattini, L. Csernai, and D. J. Wang, Phys. Rev. C88,311

034905 (2013), arXiv:1304.4427 [nucl-th]312

[13] F. Becattini, V. Chandra, L. Del Zanna, and E. Grossi, Annals313

Phys. 338, 32 (2013), arXiv:1303.3431 [nucl-th]314

[14] L. P. Csernai, F. Becattini, and D. J. Wang, Proceedings,315

14th International Conference on Strangeness in Quark Mat-316

ter (SQM 2013), J. Phys. Conf. Ser. 509, 012054 (2014)317

[15] F. Becattini, G. Inghirami, V. Rolando, A. Beraudo,318

L. Del Zanna, A. De Pace, M. Nardi, G. Pagliara, and V. Chan-319

dra, Eur. Phys. J. C75, 406 (2015), arXiv:1501.04468 [nucl-th]320

[16] U. Heinz and R. Snellings, Ann. Rev. Nucl. Part. Sci. 63, 123321

(2013), arXiv:1301.2826 [nucl-th]322

[17] L. P. Csernai, D. D. Strottman, and C. Anderlik, Phys. Rev.323

C85, 054901 (2012), arXiv:1112.4287 [nucl-th]324

[18] Y. Jiang, Z.-W. Lin, and J. Liao, (2016), arXiv:1602.06580325

[hep-ph]326

[19] D. E. Kharzeev, J. Liao, S. A. Voloshin, and G. Wang, Prog.327

Part. Nucl. Phys. 88, 1 (2016), arXiv:1511.04050 [hep-ph]328

[20] L. Adamczyk et al. (STAR), Phys. Rev. C88, 014902 (2013),329

arXiv:1301.2348 [nucl-ex]330

[21] M. Anderson et al., Nucl. Instrum. Meth. A499, 659 (2003),331

arXiv:nucl-ex/0301015 [nucl-ex]332

[22] C. A. Whitten (STAR), Proceedings, 12th International Work-333

shop on Polarized ion sources, targets and polarimetry (PSTP334

2007), AIP Conf. Proc. 980, 390 (2008)335

[23] F. S. Bieser et al., Nucl. Instrum. Meth. A499, 766 (2003)336

[24] G. Agakishiev et al. (STAR), Phys. Rev. C85, 014901 (2012),337

arXiv:1109.5446 [nucl-ex]338

[25] L. Adamczyk et al. (STAR), Phys. Rev. Lett. 112, 162301339

(2014), arXiv:1401.3043 [nucl-ex]340

[26] S. A. Voloshin and T. Niida, (2016), arXiv:1604.04597 [nucl-341

th]342

[27] B. I. Abelev et al. (STAR), Phys. Rev. C76, 024915 (2007),343

arXiv:0705.1691 [nucl-ex]344

[28] R.-h. Fang, L.-g. Pang, Q. Wang, and X.-n. Wang, (2016),345

arXiv:1604.04036 [nucl-th]346

[29] According to calculations [28], the effect of the finite baryon347

chemical potential on the average (over all momenta) hyperon348

polarization should be not more than a few percent.349

[30] R. Armenteros et al., Nucl. Phys. B21, 15 (1970)350

[31] M. H. Cha and J. Sucher, Phys. Rev. 140, B668 (1965)351

[32] M. Huang et al. (HyperCP), Phys. Rev. Lett. 93, 011802 (2004)352

[33] S. A. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998), [Prog.353

Part. Nucl. Phys.41,225(1998)], arXiv:nucl-th/9803035 [nucl-354

th]355

[34] S. Wheaton and J. Cleymans, Comput. Phys. Commun. 180, 84356

(2009), arXiv:hep-ph/0407174 [hep-ph]357

[35] S. Wheaton and M. Hauer, Phys. Part. Nucl. Lett. 8, 869 (2011)358

[36] L. D. Landau and E. M. Lifshits, Statistical Physics (Pergamon359

Press, 1969)360

[37] A. Vilenkin, Phys. Rev. D21, 2260 (1980)361

[38] F. Becattini and F. Piccinini, Annals Phys. 323, 2452 (2008),362

arXiv:0710.5694 [nucl-th]363

[39] C. d. C. Barros, Jr. and Y. Hama, Phys. Lett. B699, 74 (2011),364

arXiv:0712.3447 [hep-ph]365

[40] C. C. Barros, Jr., Proceedings, 14th International Conference366

on Strangeness in Quark Matter (SQM 2013), J. Phys. Conf.367

Ser. 509, 012056 (2014)368

[41] L. P. Csernai, D. J. Wang, M. Bleicher, and H. Stcker, Phys.369

Rev. C90, 021904 (2014)370

[42] M. I. Baznat, K. K. Gudima, A. S. Sorin, and O. V. Teryaev,371

Phys. Rev. C93, 031902 (2016), arXiv:1507.04652 [nucl-th]372

[43] D. E. Kharzeev, L. D. McLerran, and H. J. Warringa, Nucl.373

Phys. A803, 227 (2008), arXiv:0711.0950 [hep-ph]374

[44] V. Skokov, A. Yu. Illarionov, and V. Toneev, Int. J. Mod. Phys.375

A24, 5925 (2009), arXiv:0907.1396 [nucl-th]376

[45] V. Voronyuk, V. D. Toneev, W. Cassing, E. L. Bratkovskaya,377

V. P. Konchakovski, and S. A. Voloshin, Phys. Rev. C83,378

054911 (2011), arXiv:1103.4239 [nucl-th]379

[46] U. Gursoy, D. Kharzeev, and K. Rajagopal, Phys. Rev. C89,380

054905 (2014), arXiv:1401.3805 [hep-ph]381

[47] K. Tuchin, Int. J. Mod. Phys. E23, 1430001 (2014)382

[48] L. McLerran and V. Skokov, Nucl. Phys. A929, 184 (2014),383

arXiv:1305.0774 [hep-ph]384

[49] STAR Collaboration, STAR Note 0598,385

https://drupal.star.bnl.gov/STAR/starnotes/public/sn0598386

[50] S. A. Voloshin, A. M. Poskanzer, and R. Snellings, (2008),387

arXiv:0809.2949 [nucl-ex]388

406 Page 8 of 14 Eur. Phys. J. C (2015) 75 :406

the Riemann problems at cell interfaces [30]. It is therefore
important to check whether the code is not introducing, for
a given resolution, numerical errors which are larger than
the effects induced by the physics. We refer to the global
numerical errors generically as numerical viscosity.

We have thus calculated the T -vorticity for different physi-
cal viscosities (in fact η/s ratios), in order to provide an upper
bound for the numerical viscosity of ECHO-QGP in the ideal
mode. The mean value of the T -vorticity is shown in Fig. 5
and its extrapolation to zero occurs when |η/s| ! 0.002
which is a very satisfactory value, comparable with the one
obtained in Ref. [4]. The good performance is due to the use
of high-order reconstruction methods that are able to com-
pensate for the highly diffusive two-wave Riemann solver
employed [3].

5 Directed flow, angular momentum, and thermal
vorticity

With the initial conditions reported at the end of Sect. 3
we have calculated the directed flow of pions (both charged

Fig. 5 Mean of the absolute values of "µν/T 2 components at
the freeze-out hypersurface as a function of η/s. Note that the
"xη,"yη,"τη have been multiplied by 1/τ . Upper panel log scale.
Lower panel magnification of the region around zero viscosity

states) at the freeze-out and compared it with the STAR data
for charged particles collected in the centrality interval 40–
80 % [22]. Directed flow is an important observable for sev-
eral reasons. Recently, it has been studied at lower energy [31]
with a hybrid fluid-transport model (see also Ref. [32]). At√
sNN = 200 GeV, it has been calculated with an ideal 3+ 1

D hydro code first by Bozek and Wyskiel [18]. Herein, we
extend the calculation to the viscous regime.

The amount of generated directed flow at the freeze-out
depends, of course, on the initial conditions, particularly on
the parameter ηm (see Sect. 3), as shown in Fig. 6. The
directed flow also depends on η/s as shown in Fig. 7 and
could then be used to measure the viscosity of the QCD
plasma along with other azimuthal anisotropy coefficients.
It should be pointed out that, apparently, the directed flow
can be reproduced by our hydrodynamical calculation only
for −3 < y < 3.

The dependence of v1(y) on ηm and η/s makes it possible
to adjust the ηm parameter for a given η/s value. This adjust-
ment cannot be properly called a precision fit because, as
we have mentioned in the Introduction, several effects in the

Fig. 6 Directed flow of pions for different values of ηm parameter with
η/s = 0.1 compared with STAR data [22]

Fig. 7 Directed flow of pions for different values of η/s with ηm = 2.0
compared with STAR data [22]
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the Riemann problems at cell interfaces [30]. It is therefore
important to check whether the code is not introducing, for
a given resolution, numerical errors which are larger than
the effects induced by the physics. We refer to the global
numerical errors generically as numerical viscosity.

We have thus calculated the T -vorticity for different physi-
cal viscosities (in fact η/s ratios), in order to provide an upper
bound for the numerical viscosity of ECHO-QGP in the ideal
mode. The mean value of the T -vorticity is shown in Fig. 5
and its extrapolation to zero occurs when |η/s| ! 0.002
which is a very satisfactory value, comparable with the one
obtained in Ref. [4]. The good performance is due to the use
of high-order reconstruction methods that are able to com-
pensate for the highly diffusive two-wave Riemann solver
employed [3].

5 Directed flow, angular momentum, and thermal
vorticity

With the initial conditions reported at the end of Sect. 3
we have calculated the directed flow of pions (both charged

Fig. 5 Mean of the absolute values of "µν/T 2 components at
the freeze-out hypersurface as a function of η/s. Note that the
"xη,"yη,"τη have been multiplied by 1/τ . Upper panel log scale.
Lower panel magnification of the region around zero viscosity

states) at the freeze-out and compared it with the STAR data
for charged particles collected in the centrality interval 40–
80 % [22]. Directed flow is an important observable for sev-
eral reasons. Recently, it has been studied at lower energy [31]
with a hybrid fluid-transport model (see also Ref. [32]). At√
sNN = 200 GeV, it has been calculated with an ideal 3+ 1

D hydro code first by Bozek and Wyskiel [18]. Herein, we
extend the calculation to the viscous regime.

The amount of generated directed flow at the freeze-out
depends, of course, on the initial conditions, particularly on
the parameter ηm (see Sect. 3), as shown in Fig. 6. The
directed flow also depends on η/s as shown in Fig. 7 and
could then be used to measure the viscosity of the QCD
plasma along with other azimuthal anisotropy coefficients.
It should be pointed out that, apparently, the directed flow
can be reproduced by our hydrodynamical calculation only
for −3 < y < 3.

The dependence of v1(y) on ηm and η/s makes it possible
to adjust the ηm parameter for a given η/s value. This adjust-
ment cannot be properly called a precision fit because, as
we have mentioned in the Introduction, several effects in the

Fig. 6 Directed flow of pions for different values of ηm parameter with
η/s = 0.1 compared with STAR data [22]

Fig. 7 Directed flow of pions for different values of η/s with ηm = 2.0
compared with STAR data [22]
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the Riemann problems at cell interfaces [30]. It is therefore
important to check whether the code is not introducing, for
a given resolution, numerical errors which are larger than
the effects induced by the physics. We refer to the global
numerical errors generically as numerical viscosity.

We have thus calculated the T -vorticity for different physi-
cal viscosities (in fact η/s ratios), in order to provide an upper
bound for the numerical viscosity of ECHO-QGP in the ideal
mode. The mean value of the T -vorticity is shown in Fig. 5
and its extrapolation to zero occurs when |η/s| ! 0.002
which is a very satisfactory value, comparable with the one
obtained in Ref. [4]. The good performance is due to the use
of high-order reconstruction methods that are able to com-
pensate for the highly diffusive two-wave Riemann solver
employed [3].

5 Directed flow, angular momentum, and thermal
vorticity

With the initial conditions reported at the end of Sect. 3
we have calculated the directed flow of pions (both charged

Fig. 5 Mean of the absolute values of "µν/T 2 components at
the freeze-out hypersurface as a function of η/s. Note that the
"xη,"yη,"τη have been multiplied by 1/τ . Upper panel log scale.
Lower panel magnification of the region around zero viscosity

states) at the freeze-out and compared it with the STAR data
for charged particles collected in the centrality interval 40–
80 % [22]. Directed flow is an important observable for sev-
eral reasons. Recently, it has been studied at lower energy [31]
with a hybrid fluid-transport model (see also Ref. [32]). At√
sNN = 200 GeV, it has been calculated with an ideal 3+ 1

D hydro code first by Bozek and Wyskiel [18]. Herein, we
extend the calculation to the viscous regime.

The amount of generated directed flow at the freeze-out
depends, of course, on the initial conditions, particularly on
the parameter ηm (see Sect. 3), as shown in Fig. 6. The
directed flow also depends on η/s as shown in Fig. 7 and
could then be used to measure the viscosity of the QCD
plasma along with other azimuthal anisotropy coefficients.
It should be pointed out that, apparently, the directed flow
can be reproduced by our hydrodynamical calculation only
for −3 < y < 3.

The dependence of v1(y) on ηm and η/s makes it possible
to adjust the ηm parameter for a given η/s value. This adjust-
ment cannot be properly called a precision fit because, as
we have mentioned in the Introduction, several effects in the

Fig. 6 Directed flow of pions for different values of ηm parameter with
η/s = 0.1 compared with STAR data [22]

Fig. 7 Directed flow of pions for different values of η/s with ηm = 2.0
compared with STAR data [22]
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the Riemann problems at cell interfaces [30]. It is therefore
important to check whether the code is not introducing, for
a given resolution, numerical errors which are larger than
the effects induced by the physics. We refer to the global
numerical errors generically as numerical viscosity.

We have thus calculated the T -vorticity for different physi-
cal viscosities (in fact η/s ratios), in order to provide an upper
bound for the numerical viscosity of ECHO-QGP in the ideal
mode. The mean value of the T -vorticity is shown in Fig. 5
and its extrapolation to zero occurs when |η/s| ! 0.002
which is a very satisfactory value, comparable with the one
obtained in Ref. [4]. The good performance is due to the use
of high-order reconstruction methods that are able to com-
pensate for the highly diffusive two-wave Riemann solver
employed [3].

5 Directed flow, angular momentum, and thermal
vorticity

With the initial conditions reported at the end of Sect. 3
we have calculated the directed flow of pions (both charged

Fig. 5 Mean of the absolute values of "µν/T 2 components at
the freeze-out hypersurface as a function of η/s. Note that the
"xη,"yη,"τη have been multiplied by 1/τ . Upper panel log scale.
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states) at the freeze-out and compared it with the STAR data
for charged particles collected in the centrality interval 40–
80 % [22]. Directed flow is an important observable for sev-
eral reasons. Recently, it has been studied at lower energy [31]
with a hybrid fluid-transport model (see also Ref. [32]). At√
sNN = 200 GeV, it has been calculated with an ideal 3+ 1

D hydro code first by Bozek and Wyskiel [18]. Herein, we
extend the calculation to the viscous regime.

The amount of generated directed flow at the freeze-out
depends, of course, on the initial conditions, particularly on
the parameter ηm (see Sect. 3), as shown in Fig. 6. The
directed flow also depends on η/s as shown in Fig. 7 and
could then be used to measure the viscosity of the QCD
plasma along with other azimuthal anisotropy coefficients.
It should be pointed out that, apparently, the directed flow
can be reproduced by our hydrodynamical calculation only
for −3 < y < 3.

The dependence of v1(y) on ηm and η/s makes it possible
to adjust the ηm parameter for a given η/s value. This adjust-
ment cannot be properly called a precision fit because, as
we have mentioned in the Introduction, several effects in the

Fig. 6 Directed flow of pions for different values of ηm parameter with
η/s = 0.1 compared with STAR data [22]

Fig. 7 Directed flow of pions for different values of η/s with ηm = 2.0
compared with STAR data [22]
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Good description of directed flow  
requires accounting for vorticity!

v1 ⌘ cos(�� RP)

According to this naive “extrapolation” yield  
polarization at LHC about 1/3 of that 
at highest RHIC energy

But, the directed flow has different components…  
“tilt”, ‘dipole flow”… 
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distribution as:890

d3n

d2pT dy
= J0(pT , y). (A.1)

A small “tilt” in xz plane by an angle γ leads to a change891

in the x component of the momentum ∆px = γpz =892

γpT / cos(θ) = γpT sinh η, where η is the pseudorapid-893

ity. Then the particle distribution in a tilted coordinate894

system would read895

J ≈ J0 +
∂J0
∂pT

∂pT
∂px

∆px

= J0

(
1 +

∂ ln J0
∂pT

cosφ pT γ sinh η

)
. (A.2)

From here one gets896

v1(pT ) =
1

2
γ pT sinh η

∂ ln J0
∂pT

. (A.3)

Heavier particle spectra usually have less steep depen-897

dence on pT , which would lead to the mass dependence898

of v1(pT ) – particles with large mass would have smaller899

v1 at a given pT . Integrating over pT , and using pT weight900

for ⟨px⟩ calculation leads to the following ratio of slopes:901

1

pT

d⟨px⟩
dη

dv1
dη

=
1

pT

〈
p2T

∂ ln Jo
∂pT

〉

〈
pT

∂ ln Jo
∂pT

〉 . (A.4)

For both, the exponential form of J0(pT ) (approximately902

describing the spectra of light particles) and the Gaussian903

form (better suited for description of protons), this ratio904

equals to 1.5.905
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FIG. 5. (Color online) Charged particle “conventional” (left) and “fluctuation” (right) components of directed flow v1 and
momentum shift ⟨px⟩/⟨pT ⟩ as a function of η in 10%-40% centrality for Cu+Au, Au+Au, and Pb+Pb collisions. Thick solid
and dashed lines show the hydrodynamic model calculations with η/s=0.08 and 0.16, respectively, for Cu+Au collisions [31].
Thin lines in the left panel show a linear fit to the data.

not reproduce neither the magnitude of the directed flow485

nor its pseudorapidity dependence.486

The even component of directed flow, veven1 , in Au+Au487

does not depend on pseudorapidity (within error-bars)488

and is very similar in magnitude to veven1 in Pb+Pb col-489

lision at LHC energies. The pevenx in both Au+Au and490

Pb+Pb collisions is consistent with zero, which indicates491

zero net transverse momentum in the systems. This492

agrees with the expectation that the even component of493

v1 originates from event-by-event fluctuations of the ini-494

tial density. The magnitude of vfluc1 in Cu+Au is larger495

than that of veven1 in Au+Au. This would be due either to496

larger initial density fluctuations in Cu+Au collisions or497

to stronger correlations between the spectator and dipole498

fluctuation planes.499

The results presented in Figs. 4–5, and in particular a500

positive intercept of v1(η) and negative intercept of ⟨px⟩,501

are consistent with a picture of directed flow in Cu+Au502

collisions as a superposition of that from a tilted source503

(shifted in rapidity to the system center-of-mass rapid-504

ity) and dipole flow due to non-zero average density gra-505

dients. Compared to the v1(η) dependence in symmetric506

collisions, the first mechanism shifts the function toward507

negative rapidities, and the second moves the entire func-508

tion up (note that the Cu nucleus is defined as the pro-509

jectile) as shown in Fig. 1(a-b). This picture receives fur-510

ther support from the study of the centrality dependence511

of the corresponding slopes and intercepts presented in512

Fig. 6. Very similar slopes of v1 and ⟨px⟩/⟨pT ⟩ would be513

a natural consequence of a tilted source. The intercepts514

of ⟨px⟩ follow very closely the shift in rapidity center-of-515

mass of the system shown with the solid line in Fig. 6(b),516

which was calculated by a Monte-Carlo Glauber model517

based on the ratio of Au and Cu participant nucleons,518

yCM ∼ 1

2
ln(NAu

part/N
Cu
part). (12)

The centrality dependence of v1 intercept (more exactly,519

in this picture the difference in v1 and ⟨px⟩ intercepts)520

in Fig. 6(d) would be mostly determined by the decorre-521

lations between the dipole flow direction, Ψ1.3, and the522

reaction (spectator) planes.523524

The slopes of vodd(conv)1 and ⟨pconvx ⟩/⟨pT ⟩, Fig. 5, agree525

within 10% both in Au+Au and Cu+Au collisions. In526

Pb+Pb collisions the v1 slope is almost a factor of two527

larger than that of ⟨pconvx ⟩/⟨pT ⟩. This clearly indicates528

that both mechanisms, “tilted source” (for which one529

would expect the slope of ⟨pconvx ⟩/⟨pT ⟩ to be about 50%530

larger than that of vodd(conv)1 , see Appendix), and ini-531

tial density asymmetries (for which ⟨pconvx ⟩ = 0), play532

a significant role in formation of the directed flow even533

in symmetric collisions. The relative contribution of the534
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FIG. 6. (Color online) Slopes and intercepts of ⟨px⟩/⟨pT ⟩(η) and v1(η) as a function of centrality in Cu+Au collisions at
√
sNN

= 200 GeV. The solid line shows the center-of-mass rapidity in Cu+Au collisions calculated by Cu and Au participants in a
Glauber model. Open boxes show systematic uncertainties.

“tilted source” mechanism is about 2/3 at the RHIC top535

collision energies decreasing to ∼1/3 at LHC energies.536

From the centrality dependence of slopes shown in Fig. 6537

one can conclude that the relative contribution of the538

tilted source mechanism is largest in peripheral collisions539

(where the ⟨pconvx ⟩/⟨pT ⟩ slope is approximately 1.5 times540

larger than that of vodd(conv)1 ) and smallest in central col-541

lisions. This dependence might be due to the stronger542

decorrelation between spectator and dipole flow planes543

in peripheral collisions.544545

Figure 7 shows the even (fluctuation) components of v1546

and ⟨px⟩ as a function of centrality. veven1 for Au+Au has547

a weak centrality dependence and is consistent with veven1548

for Pb+Pb except in most peripheral collisions. Further-549

more, pevenx in both Au+Au and Pb+Pb are consistent550

with zero. This may indicate that the dipole-like fluc-551

tuation in the initial state has little dependence on the552

system size and collision energy. vfluc1 and ⟨px⟩fluc for553

Cu+Au has a larger magnitude than in symmetric colli-554

sions over the entire centrality range; it is smallest in the555

30%-40% centrality bin.556557

The reference angle of dipole flow can be represented558

by Ψ1,3, but veven1 (vfluc1 ) are the projections of dipole flow559

onto the spectator planes. Therefore, the measured even560

(or fluctuation) components of v1 should be decreased by561

a factor ⟨cos(Ψ1,3−ΨSP)⟩. Such a “resolution” effect may562

also lead to larger veven1 and non-zero pevenx in Cu+Au563

collisions due to the difference in correlation of the Cu564

and Au spectator planes to Ψ1,3.565

The pT dependence of vconv1 and vfluc1 in Cu+Au col-566

lisions was studied for different collision centralities, as567

shown in Fig. 8. The vconv1 exhibits a sign change around568

pT = 1 GeV/c and its magnitude at both low and high pT569

becomes smaller for peripheral collisions. Such central-570

ity dependence in Cu+Au vconv1 can be due to a change571

in the correlation between the angle of the initial den-572

sity asymmetry and the direction of spectator deflection.573

The correlation becomes largest at an impact parameter574

of 5 fm (which corresponds approximately to 10%-20%575

centrality) and decreases in more peripheral collisions as576

discussed in Ref. [8]. Similar pT and centrality dependen-577

cies were observed in vfluc1 although there is a difference578

in sign between vconv1 and vfluc1 . An event-by-event vis-579

cous hydrodynamical model calculation is also compared580

to the vconv1 for the 20%-30% centrality bin in Cu+Au581

collisions. As seen in Fig. 8, the model overpredicts the582

data in its magnitude for the entire pT region.583

The odd and even components of directed flow, vodd1584

and veven1 , in Au+Au collisions are also compared in the585

same centrality windows, where vodd1 was measured by586

1
hp

T

i
d hp

x

i
d⌘ ⇡ 1.5↵

ts

dv1
d⌘ 9

1− 0 1

 1v

0.002−

0

0.002

0.004
}SPΨ{1Bozek v

/s=0.08η /s=0.16η

(a)

 η1− 0 1

 〉 Tp〈/〉 xp〈

0.002−

0

0.002 linear fit
Cu+Au
Au+Au
Pb+Pb

(b)

1− 0.5− 0 0.5 1

 1v

0.001−

0

0.001

0.002
    >0.15 GeV/c

T
p  ALICE 10-60%, 

   <5 GeV/c
T

0.15<p  Au+Au 10-40%, 

    <5 GeV/c
T

0.15<p  Cu+Au 10-40%, 

odd   even

conv   fluc

(c)

 η1− 0.5− 0 0.5 1

 〉 Tp〈/〉 xp〈

0.001−

0

0.001

0.002 open box: systematic uncertainties

(d)

FIG. 5. (Color online) Charged particle “conventional” (left) and “fluctuation” (right) components of directed flow v1 and
momentum shift ⟨px⟩/⟨pT ⟩ as a function of η in 10%-40% centrality for Cu+Au, Au+Au, and Pb+Pb collisions. Thick solid
and dashed lines show the hydrodynamic model calculations with η/s=0.08 and 0.16, respectively, for Cu+Au collisions [31].
Thin lines in the left panel show a linear fit to the data.

not reproduce neither the magnitude of the directed flow485

nor its pseudorapidity dependence.486

The even component of directed flow, veven1 , in Au+Au487

does not depend on pseudorapidity (within error-bars)488

and is very similar in magnitude to veven1 in Pb+Pb col-489

lision at LHC energies. The pevenx in both Au+Au and490

Pb+Pb collisions is consistent with zero, which indicates491

zero net transverse momentum in the systems. This492

agrees with the expectation that the even component of493

v1 originates from event-by-event fluctuations of the ini-494

tial density. The magnitude of vfluc1 in Cu+Au is larger495

than that of veven1 in Au+Au. This would be due either to496

larger initial density fluctuations in Cu+Au collisions or497

to stronger correlations between the spectator and dipole498

fluctuation planes.499

The results presented in Figs. 4–5, and in particular a500

positive intercept of v1(η) and negative intercept of ⟨px⟩,501

are consistent with a picture of directed flow in Cu+Au502

collisions as a superposition of that from a tilted source503

(shifted in rapidity to the system center-of-mass rapid-504

ity) and dipole flow due to non-zero average density gra-505

dients. Compared to the v1(η) dependence in symmetric506

collisions, the first mechanism shifts the function toward507

negative rapidities, and the second moves the entire func-508

tion up (note that the Cu nucleus is defined as the pro-509

jectile) as shown in Fig. 1(a-b). This picture receives fur-510

ther support from the study of the centrality dependence511

of the corresponding slopes and intercepts presented in512

Fig. 6. Very similar slopes of v1 and ⟨px⟩/⟨pT ⟩ would be513

a natural consequence of a tilted source. The intercepts514

of ⟨px⟩ follow very closely the shift in rapidity center-of-515

mass of the system shown with the solid line in Fig. 6(b),516

which was calculated by a Monte-Carlo Glauber model517

based on the ratio of Au and Cu participant nucleons,518

yCM ∼ 1

2
ln(NAu

part/N
Cu
part). (12)

The centrality dependence of v1 intercept (more exactly,519

in this picture the difference in v1 and ⟨px⟩ intercepts)520

in Fig. 6(d) would be mostly determined by the decorre-521

lations between the dipole flow direction, Ψ1.3, and the522

reaction (spectator) planes.523524

The slopes of vodd(conv)1 and ⟨pconvx ⟩/⟨pT ⟩, Fig. 5, agree525

within 10% both in Au+Au and Cu+Au collisions. In526

Pb+Pb collisions the v1 slope is almost a factor of two527

larger than that of ⟨pconvx ⟩/⟨pT ⟩. This clearly indicates528

that both mechanisms, “tilted source” (for which one529

would expect the slope of ⟨pconvx ⟩/⟨pT ⟩ to be about 50%530

larger than that of vodd(conv)1 , see Appendix), and ini-531

tial density asymmetries (for which ⟨pconvx ⟩ = 0), play532

a significant role in formation of the directed flow even533

in symmetric collisions. The relative contribution of the534

! For mid-central collisions (20% - 40%) tilted source  
contribution is about 2/3, its fraction increases in 
more peripheral collisions. 

!  This is also consistent with decreasing the intercepts  
difference 

! At LHC energies “ts” contribution is significantly smaller
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…”mechanism”: “spin-orbit” vs “chiral” 
(see O. Teryaev’s talk) … and magnetic field induced axial current 

Chiral Magnetic effect (CME) - 
separation of the electric charge along B

Chiral Vortical effect (CVE) - separation  
of the baryon charge along vorticity

Chiral Separation Effect (CSE) - separation 
 of the axial charge along the magnetic field

In common: chiral anomalous transport 
determined by the chiral (axial) quantum  
anomaly

J5 = 1
2⇡2µ(Qe)B

J = (Qe) 1
2⇡2µ5(Qe)B

[32] D. Kharzeev, R. D. Pisarski, and M. H. G. Tytgat, Possibility of spontaneous parity violation
in hot QCD, Phys. Rev. Lett. 81 (1998) 512–515, [hep-ph/9804221].

[33] K. Buckley, T. Fugleberg, and A. Zhitnitsky, Can theta vacua be created in heavy ion
collisions?, Phys. Rev. Lett. 84 (2000) 4814–4817, [hep-ph/9910229].

[34] D. Kharzeev and A. Zhitnitsky, Charge separation induced by P-odd bubbles in QCD matter,
Nucl. Phys. A797 (2007) 67–79, [arXiv:0706.1026].

[35] D. E. Kharzeev, Topologically induced local P and CP violation in QCD x QED, Annals
Phys. 325 (2010) 205–218, [arXiv:0911.3715].

[36] D. E. Kharzeev, J. Liao, S. A. Voloshin, and G. Wang, Chiral magnetic and vortical effects in
high-energy nuclear collisionsâĂŤA status report, Prog. Part. Nucl. Phys. 88 (2016) 1–28,
[arXiv:1511.04050].

[37] E. Witten, Dyons of Charge e theta/2 pi, Phys. Lett. B86 (1979) 283–287.

[38] M. Bordag, G. L. Klimchitskaya, U. Mohideen, and V. M. Mostepanenko, Advances in the
Casimir effect, Int. Ser. Monogr. Phys. 145 (2009) 1–768.

[39] A. R. Zhitnitsky, Dynamical Casimir Effect in a small compact manifold for the Maxwell
vacuum, Phys. Rev. D91 (2015), no. 10 105027, [arXiv:1501.07603].

[40] A. R. Zhitnitsky, Maxwell Theory on a Compact Manifold as a Topologically Ordered System,
Phys. Rev. D88 (2013), no. 10 105029, [arXiv:1308.1960].

[41] A. R. Zhitnitsky, Topological order and Berry connection for the Maxwell Vacuum on a
four-torus, Phys. Rev. D90 (2014), no. 10 105007, [arXiv:1407.3804].

[42] K.-T. Chen and P. A. Lee, Topological insulator and the ✓ vacuum in a system without
boundaries, Phys. Rev. B 83 (Mar, 2011) 125119.

[43] M. Tsubota, K. Inagaki, T. Matsuura, and S. Tanda, Aharonov-Bohm effect in
charge-density wave loops with inherent temporal current switching, EPL (Europhysics
Letters) 97 (Mar., 2012) 57011, [arXiv:0906.5206].

[44] J. J. Hudson, D. M. Kara, I. J. Smallman, B. E. Sauer, M. R. Tarbutt, and E. A. Hinds,
Improved measurement of the shape of the electron, Nature 473 (2011) 493–496.

[45] ACME Collaboration, J. Baron et al., Order of Magnitude Smaller Limit on the Electric
Dipole Moment of the Electron, Science 343 (2014) 269–272, [arXiv:1310.7534].

[46] J. M. Pendlebury et al., Revised experimental upper limit on the electric dipole moment of
the neutron, Phys. Rev. D92 (2015), no. 9 092003, [arXiv:1509.04411].

[47] Y. Yao and A. R. Zhitnitsky, Aharonov-Bohm phases and Dynamical Casimir Effect in a
quantum LC circuit, arXiv:1605.01411.

[48] K. von Klitzing, The quantized hall effect, Rev. Mod. Phys. 58 (Jul, 1986) 519–531.

[49] H. L. Stormer, D. C. Tsui, and A. C. Gossard, The fractional quantum hall effect, Rev. Mod.
Phys. 71 (Mar, 1999) S298–S305.

[50] M. Büttiker, Y. Imry, and R. Landauer, Josephson behavior in small normal
one-dimensional rings, Physics Letters A 96 (July, 1983) 365–367.

[51] V. Chandrasekhar, R. A. Webb, M. J. Brady, M. B. Ketchen, W. J. Gallagher, and
A. Kleinsasser, Magnetic response of a single, isolated gold loop, Phys. Rev. Lett. 67 (Dec,
1991) 3578–3581.

– 24 –

Can be: 
net baryon number, 
electric charge, 
net strangeness

J = 1
2⇡2µ5(µ!)

J5 =
⇣

µ2+µ2
5

4⇡2 + T 2

12

⌘
!

Anomalous chiral effects
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Chiral Separation Effect (CSE) - separation 
 of the axial charge along the magnetic field J5 = 1

2⇡2µ(Qe)B
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Fig. 2. (Color online) Illustration of the chiral separation effect. To be specific, the illustration is for just one kind of right-handed (RH) quarks (with Q > 0)
and their antiquarks (with Q < 0) and for the case of µ > 0 (i.e. more quarks than antiquarks). For left-handed (LH) quarks (and anti-quarks) the LH
quarks’ current is generated in the opposite direction but their contribution to the axial current EJ5 would be the same as that of RH quarks. For µ < 0 the
current will flip direction.

assume a CME-induced electric current (Qe)EJ = (Qe)�5EB. To probe the existence of such a current we turn on an arbitrarily
small auxiliary electric field E

E k E
B and examine the energy changing rate of the system. The straightforward electrodynamic

way of computation ‘‘counts’’ the work per unit time (i.e. power) done by such an electric field P = R
E
x

E
J · EE = R

E
x

[(Qe)�5]EE · EB.
Alternatively for this systemof chiral fermions, the (electromagnetic) chiral anomaly suggests the generation of axial charges
at the rate dQ5/dt = R

E
x

CAEE · E
B with CA = (Qe)2/(2⇡2) the universal anomaly coefficient. Now a nonzero axial chemical

potential µ5 6= 0 implies an energy cost for creating each unit of axial charge, thus the energy changing rate via anomaly
counting would give the power P = µ5(dQ5/dt) = R

E
x

[CAµ5]EE · E
B. These reasonings therefore lead to the following

identification:
Z

E
x

[(Qe)�5]EE · E
B =

Z

E
x

[CAµ5]EE · E
B (8)

for any auxiliary E
E field. Thus the �5 must take the universal value CAµ5

Qe = Qe
2⇡2 µ5 that is completely fixed by the chiral

anomaly.
The transport phenomenon in Eq. (4) bears a distinctive feature that is intrinsically different from Eq. (7). The chiral

magnetic conductivity �5 is a T -even transport coefficient while the usual conductivity � is T -odd [26]. That is, the CME
current can be generated as an equilibrium current without producing entropy, while the usual conducting current is
necessarily dissipative.

2.2. The chiral separation effect

By reminding ourselves of the axial counterpart in Eq. (5) of the vector current, which we have discussed so far, it may be
natural to ask: could axial current also be generated under certain circumstances in response to external probe fields? The
answer is positive. A complementary transport phenomenon to the CME has been found and named the Chiral Separation
Effect (CSE) [61,62]:

E
J5 = �sEB. (9)

It states that an axial current is generated along an external E
B field, with its magnitude in proportion to the system’s

(nonzero) vector chemical potential µ as well as the field magnitude. The coefficient (which may be called the CSE
conductivity) is given by �s = Qe

2⇡2 µ.
Intuitively the CSE may be understood in the following way, as illustrated in Fig. 2. The magnetic field leads to a spin

polarization (i.e. ‘‘magnetization’’) effect, with hEsi / (Qe)EB. This effect implies that the positively charged quarks have their
spins preferably aligned along the E

B field direction, while the negatively charged anti-quarks have their spins oppositely
aligned. NowRHquarks and antiquarks (with Ep k Es)will have opposite averagemomentum hEpi / hEsi / (Qe)EB, i.e. withmore
RH quarks/antiquarks moving in the direction parallel/antiparallel to E

B. Furthermore with nonzero µ 6= 0 (e.g. considering
µ > 0) there would then be a net current of RH quarks/antiquarksEJR / hEpi(nQ � nQ̄ ) / (Qe)µE

B. The LH quarks/antiquarks
would form an opposite current EJL / �(Qe)µE

B but contribute the same as the RH quarks/antiquarks to form together an
axial current along the magnetic field: EJ5 / (Qe)µE

B.
It is instructive to recast (4) and (9) in terms of the RH and LH currents EJR/L, as follows:

E
JR/L = E

J ± E
J5

2
= ±�R/LEB (10)

with �R/L = Qe
4⇡2 µR/L. The above has the simple interoperation as the CME separately for the purely right-handed and purely

left-handedWeyl fermions: note the sign difference in the RH/LH cases. It reveals that the CME and the CSE are two sides of

J5 / µvB

RH#
#
LH�

p� spin�B*field�

µv/T / hN+ �N�i
hN+ +N�i

µv/T / hNK+ �NK�i
hNK+ +NK�i

Ach�

PH�
Λ?�
<PH>�

or

Can be: 
net baryon number, 
electric charge, 
net strangeness

S. Schlichting and SV, in preparation
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Fig. 2. (Color online) Illustration of the chiral separation effect. To be specific, the illustration is for just one kind of right-handed (RH) quarks (with Q > 0)
and their antiquarks (with Q < 0) and for the case of µ > 0 (i.e. more quarks than antiquarks). For left-handed (LH) quarks (and anti-quarks) the LH
quarks’ current is generated in the opposite direction but their contribution to the axial current EJ5 would be the same as that of RH quarks. For µ < 0 the
current will flip direction.

assume a CME-induced electric current (Qe)EJ = (Qe)�5EB. To probe the existence of such a current we turn on an arbitrarily
small auxiliary electric field E

E k E
B and examine the energy changing rate of the system. The straightforward electrodynamic

way of computation ‘‘counts’’ the work per unit time (i.e. power) done by such an electric field P = R
E
x

E
J · EE = R

E
x

[(Qe)�5]EE · EB.
Alternatively for this systemof chiral fermions, the (electromagnetic) chiral anomaly suggests the generation of axial charges
at the rate dQ5/dt = R

E
x

CAEE · E
B with CA = (Qe)2/(2⇡2) the universal anomaly coefficient. Now a nonzero axial chemical

potential µ5 6= 0 implies an energy cost for creating each unit of axial charge, thus the energy changing rate via anomaly
counting would give the power P = µ5(dQ5/dt) = R

E
x

[CAµ5]EE · E
B. These reasonings therefore lead to the following

identification:
Z

E
x

[(Qe)�5]EE · E
B =

Z

E
x

[CAµ5]EE · E
B (8)

for any auxiliary E
E field. Thus the �5 must take the universal value CAµ5

Qe = Qe
2⇡2 µ5 that is completely fixed by the chiral

anomaly.
The transport phenomenon in Eq. (4) bears a distinctive feature that is intrinsically different from Eq. (7). The chiral

magnetic conductivity �5 is a T -even transport coefficient while the usual conductivity � is T -odd [26]. That is, the CME
current can be generated as an equilibrium current without producing entropy, while the usual conducting current is
necessarily dissipative.

2.2. The chiral separation effect

By reminding ourselves of the axial counterpart in Eq. (5) of the vector current, which we have discussed so far, it may be
natural to ask: could axial current also be generated under certain circumstances in response to external probe fields? The
answer is positive. A complementary transport phenomenon to the CME has been found and named the Chiral Separation
Effect (CSE) [61,62]:

E
J5 = �sEB. (9)

It states that an axial current is generated along an external E
B field, with its magnitude in proportion to the system’s

(nonzero) vector chemical potential µ as well as the field magnitude. The coefficient (which may be called the CSE
conductivity) is given by �s = Qe

2⇡2 µ.
Intuitively the CSE may be understood in the following way, as illustrated in Fig. 2. The magnetic field leads to a spin

polarization (i.e. ‘‘magnetization’’) effect, with hEsi / (Qe)EB. This effect implies that the positively charged quarks have their
spins preferably aligned along the E

B field direction, while the negatively charged anti-quarks have their spins oppositely
aligned. NowRHquarks and antiquarks (with Ep k Es)will have opposite averagemomentum hEpi / hEsi / (Qe)EB, i.e. withmore
RH quarks/antiquarks moving in the direction parallel/antiparallel to E

B. Furthermore with nonzero µ 6= 0 (e.g. considering
µ > 0) there would then be a net current of RH quarks/antiquarksEJR / hEpi(nQ � nQ̄ ) / (Qe)µE

B. The LH quarks/antiquarks
would form an opposite current EJL / �(Qe)µE

B but contribute the same as the RH quarks/antiquarks to form together an
axial current along the magnetic field: EJ5 / (Qe)µE

B.
It is instructive to recast (4) and (9) in terms of the RH and LH currents EJR/L, as follows:

E
JR/L = E

J ± E
J5

2
= ±�R/LEB (10)

with �R/L = Qe
4⇡2 µR/L. The above has the simple interoperation as the CME separately for the purely right-handed and purely

left-handedWeyl fermions: note the sign difference in the RH/LH cases. It reveals that the CME and the CSE are two sides of

J5 / µvB

RH#
#
LH�

p� spin�B*field�

µv/T / hN+ �N�i
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or

1/2 of the CMW phenomenon
Difficulties: vs charge - Lambda is neutral 
                                    (but Xi not!)  
                   vs net kaons - low sensitivity to muV
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Fig. 2. (Color online) Illustration of the chiral separation effect. To be specific, the illustration is for just one kind of right-handed (RH) quarks (with Q > 0)
and their antiquarks (with Q < 0) and for the case of µ > 0 (i.e. more quarks than antiquarks). For left-handed (LH) quarks (and anti-quarks) the LH
quarks’ current is generated in the opposite direction but their contribution to the axial current EJ5 would be the same as that of RH quarks. For µ < 0 the
current will flip direction.

assume a CME-induced electric current (Qe)EJ = (Qe)�5EB. To probe the existence of such a current we turn on an arbitrarily
small auxiliary electric field E

E k E
B and examine the energy changing rate of the system. The straightforward electrodynamic

way of computation ‘‘counts’’ the work per unit time (i.e. power) done by such an electric field P = R
E
x

E
J · EE = R

E
x

[(Qe)�5]EE · EB.
Alternatively for this systemof chiral fermions, the (electromagnetic) chiral anomaly suggests the generation of axial charges
at the rate dQ5/dt = R

E
x

CAEE · E
B with CA = (Qe)2/(2⇡2) the universal anomaly coefficient. Now a nonzero axial chemical

potential µ5 6= 0 implies an energy cost for creating each unit of axial charge, thus the energy changing rate via anomaly
counting would give the power P = µ5(dQ5/dt) = R

E
x

[CAµ5]EE · E
B. These reasonings therefore lead to the following

identification:
Z

E
x

[(Qe)�5]EE · E
B =

Z

E
x

[CAµ5]EE · E
B (8)

for any auxiliary E
E field. Thus the �5 must take the universal value CAµ5

Qe = Qe
2⇡2 µ5 that is completely fixed by the chiral

anomaly.
The transport phenomenon in Eq. (4) bears a distinctive feature that is intrinsically different from Eq. (7). The chiral

magnetic conductivity �5 is a T -even transport coefficient while the usual conductivity � is T -odd [26]. That is, the CME
current can be generated as an equilibrium current without producing entropy, while the usual conducting current is
necessarily dissipative.

2.2. The chiral separation effect

By reminding ourselves of the axial counterpart in Eq. (5) of the vector current, which we have discussed so far, it may be
natural to ask: could axial current also be generated under certain circumstances in response to external probe fields? The
answer is positive. A complementary transport phenomenon to the CME has been found and named the Chiral Separation
Effect (CSE) [61,62]:

E
J5 = �sEB. (9)

It states that an axial current is generated along an external E
B field, with its magnitude in proportion to the system’s

(nonzero) vector chemical potential µ as well as the field magnitude. The coefficient (which may be called the CSE
conductivity) is given by �s = Qe

2⇡2 µ.
Intuitively the CSE may be understood in the following way, as illustrated in Fig. 2. The magnetic field leads to a spin

polarization (i.e. ‘‘magnetization’’) effect, with hEsi / (Qe)EB. This effect implies that the positively charged quarks have their
spins preferably aligned along the E

B field direction, while the negatively charged anti-quarks have their spins oppositely
aligned. NowRHquarks and antiquarks (with Ep k Es)will have opposite averagemomentum hEpi / hEsi / (Qe)EB, i.e. withmore
RH quarks/antiquarks moving in the direction parallel/antiparallel to E

B. Furthermore with nonzero µ 6= 0 (e.g. considering
µ > 0) there would then be a net current of RH quarks/antiquarksEJR / hEpi(nQ � nQ̄ ) / (Qe)µE

B. The LH quarks/antiquarks
would form an opposite current EJL / �(Qe)µE

B but contribute the same as the RH quarks/antiquarks to form together an
axial current along the magnetic field: EJ5 / (Qe)µE

B.
It is instructive to recast (4) and (9) in terms of the RH and LH currents EJR/L, as follows:

E
JR/L = E

J ± E
J5

2
= ±�R/LEB (10)

with �R/L = Qe
4⇡2 µR/L. The above has the simple interoperation as the CME separately for the purely right-handed and purely

left-handedWeyl fermions: note the sign difference in the RH/LH cases. It reveals that the CME and the CSE are two sides of

J5 / µvB
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#
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… and asymmetric collisions  
(CuAu, dAu, pPb,…) =>                  !�

… and radial flow+longitudunal(y) =>                      
   
                        + anisotropic flow  => 

!�

!�(�)

!

x

y
z-direction — Cu beam ! / �̂

Small off-center (impact parameter) will lead  
to “circular” vorticity on average

dAu, pPb, etc…
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FIG. 2. Left: Schematic illustration of the quadrupole pat-
tern of !

y

generated from @

z

v? in the reaction plane, where
the vorticity is along the �y direction (⌦) in the xz > 0
quadrants and the y direction (�) in the xz < 0 quadrants.
Right: A three dimensional view of the circular structure of
the transverse vorticity !? = (!

x

,!

y

).

where r and z are the transverse radius and the longitudi-
nal coordinate, and e

r

is the unit vector along the radial
direction in the transverse plane. Then from Eq. (1), the
transverse vorticity filed !? = (!

x

,!

y

) is given by

!? =
1

2
@

z

v?(r, z)e�, (11)

where e
�

= (� sin�, cos�, 0) is the unit vector along the
azimuthal direction with � being the azimuthal angle
with respect to the x-axis. If the fluid is the Bjorken-
type with the longitudinal boost invariance that v? is in-
dependent of z, then !? is zero. However, in realistic col-
lisions the longitudinal boost invariance is violated since
the matter is not uniformly distributed in space, which
can give rise to a nonzero vorticity. Note that the energy
or matter is mostly deposited at z = 0, the pressure-
driven transverse velocity v? should be the largest at
z = 0 and decrease with |z| as shown in Fig. 2(a). Then
with the gradients @v?/@|z| < 0, one can see that !?
in Eq. (11) has a circular structure: !? is along �e

�

(clockwise) and e
�

(counter-clockwise) in the z > 0 and
z < 0 regions respectively as shown in Fig. 2(b). In terms
of the components !

x

and !

y

, they have the quadrupole
structures: !

x

> 0 (!
x

< 0) in the yz > 0 (yz < 0)
quadrants and !

y

> 0 (!
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< 0) in the xz < 0 (xz > 0)
quadrants.

In the numerical calculations with the AMPT model,
we have observed the circular pattern of the transverse
vorticity. Fig. 3 shows the distribution of !? = (!

x

,!

y

)
as functions of x and y at two values of space-time rapid-
ity ⌘

s

= �1, 1 where ⌘
s

= (1/2) log[(t+ z)/(t� z)]. Here
the vorticity field is shown at the time t = 5 fm/c in 20-
30% central Au+Au collisions at

p
sNN = 200 GeV for

instance. We see that !? has a circular structure with
opposite orientations in the ⌘

s

> 0 and ⌘

s

< 0 regions.
The behavior that the magnitude of !? increases with
the transverse radius r can be understood by the increase
of v?(r, z) with r.

Besides the transverse component !?, the longitudinal

FIG. 3. The distribution of the transverse vorticity !? =
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) in the transverse plane at longitudinal positions ⌘
s

=
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= 1 (right) at time t = 5 fm/c in 20-30%
central Au+Au collisions at
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sNN = 200 GeV. The color
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also has a non-vanishing local distribution.
Due to the anisotropic flow, v? in non-central collisions
is not along the radial direction e
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, this gives rise to the
inequality of @
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, and then a non-vanishing !
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are along the opposite directions in the regions sin(2�) >
0 and sin(2�) < 0 [10, 33].
In experiments, one can measure the local ⇤ polariza-

tion to probe the quadrupole pattern of the vorticity field.
Due to the collective expansion of the fireball, the space
information of the vorticity field can be reflected by the
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DISCUSSIONS

In this section, we show the numerical results of the lo-
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are along the opposite directions in the regions sin(2�) >
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tion to probe the quadrupole pattern of the vorticity field.
Due to the collective expansion of the fireball, the space
information of the vorticity field can be reflected by the
local ⇤ polarization as functions of �
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and Y , where �
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is the azimuthal angle of ⇤’s momentum with respect to
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, to
the leading order of the Fourier decomposition, we ex-
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are all positive, and sign(Y ) denotes the sign of Y coming
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> 0
and ⌘
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IV. NUMERICAL RESULTS AND
DISCUSSIONS

In this section, we show the numerical results of the lo-
cal ⇤ polarization using the string-melting version of the
AMPT model [35] as the event generator. In this model,
the collision participants are converted to partons which
are allowed to interact by two-body elastic scatterings. In
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We study the local structure of the vorticity field and the ⇤ polarization in Au+Au collisions in the
energy range

p
sNN = 7.7-200 GeV and Pb+Pb collisions at

p
sNN = 2760 GeV using A Multi-Phase

Transport (AMPT) model. We focus on the vorticity field arising from the non-uniform expansion of
the fireball, which gives the circular structure of the transverse vorticity !? = (!

x

,!

y

) around the
z-direction as well as the quadrupole pattern of the longitudinal vorticity !

z

in the transverse plane.
As a consequence, the three components of the polarization vector P = (P

x

, P

y

, P

z

) for ⇤ hyperons
show harmonic behaviors as sign(Y ) sin�

p

, �sign(Y ) cos�
p

and � sin(2�
p

), where �

p

and Y are the
azimuthal angle and rapidity in momentum space. These patterns of the local ⇤ polarization are
expected to be tested in future experiments.

I. INTRODUCTION

In non-central heavy-ion collisions, huge orbital angu-
lar momenta and vorticity fields are produced in strongly
coupled quark gluon plasma (sQGP). They can lead to
the hadron polarization and spin alignment through spin-
orbit couplings [1–4] or spin-vorticity couplings [5–8], see
Refs. [9–11] for recent reviews. The vorticity-related ef-
fects also include some chiral transport phenomena such
as the chiral vortical e↵ect [12] and the chiral vortical
wave [13] as well as a change of the QCD phase digram
[14–17].

The study of the global polarization was initially moti-
vated by the fact that a huge orbital angular momentum
(OAM) is produced in non-central heavy-ion collisions as
shown in Fig. 1(a). Although such an OAM does not
make the sQGP rotating as a rigid body, it can manifest
itself as an initial longitudinal shear flow @

x

v

z

> 0 in the
fireball as shown in Fig. 1(b). Then a vorticity field is
generated and points to the direction of the global OAM
(�y direction) in average and leads to the global polar-
ization of hadrons along the same direction.

Recently, the global polarization of ⇤ hyperons in rel-
ativistic heavy-ion collisions has been measured by the
STAR collaboration [18] through their weak decays. The
average vorticity of the sQGP has been extracted to be
of order ! ⇠ 1021 s�1, the highest that has ever been
found in nature. Both hydrodynamic models [19, 20]
and transport models [21–23] have been used to calculate
the vorticity-induced global polarization of ⇤ hyperons,
whose results are in good agreement with experimental
data. For other model calculations of vorticity fields and
polarizations, see Refs. [24–32].

One feature of the global polarization is that it de-
creases with collisional energies in the range of 7.7 to 200
GeV [18]. In a previous paper by some of us [21], we
pointed out that the global polarization is related to the
fireball’s tilted shape in the reaction plane. Due to the
faster longitudinal expansion at higher energies, the fire-
ball or the matter distribution shows a less tilted shape
in mid-rapidity, and thus the net vorticity and the global
polarization are almost vanishing. Such an energy depen-
dence of the tilted shape can also be seen by the rapidity

x

y �z(a)

�⌦

J

z

x �y(b)

FIG. 1. Illustration of non-central heavy-ion collisions in (a)
the transverse plane and (b) the reaction plane. Two nuclei
at (x = ±b/2, y = 0) move along ±z direction respectively.
The global OAM and the net vorticity is along �y direction.

slope of the directed flow dv1/d⌘ [10].
The global polarization is an average e↵ect over the

whole volume of the fireball within the detector’s accep-
tance, so it reflects the global or net vorticity which is
along the global OAM. However the local vorticity field
has much richer information than the global one. In the
numerical simulations [21, 23, 27–29], it is observed that
!

y

shows a quadrupole pattern in the reaction plane (xz
plane): !

y

is negative and positive in the regions xz > 0
and xz < 0 respectively. This novel structure is mainly
due to that the transverse velocity |v

x

| decreases with ra-
pidity or @|v

x

|/@|z| < 0 [29]. In addition to the pattern of
!

y

, a similar quadrupole structure of !
z

also exists in the
transverse plane [10, 33, 34] since the transverse velocity
v? = (v

x

, v

y

) is not exactly along the radial direction e
r

due to the fireball’s elliptic shape in the transverse plane.
In this paper, we give a systematic analysis of the pat-

terns of the fluid velocity and vorticity in the fireball
produced in heavy-ion collisions. We find that all com-
ponents, !

x

, !
y

and !

z

, have quadrupole patterns in the
yz, xz and xy plane respectively. These quadrupole pat-
terns all arise from the fireball expansion not related to
the OAM. In order to probe the quadrupole pattern of
the vorticity field, one can separate the whole momen-
tum space into di↵erent regions and measure the aver-
age ⇤ polarization in each region separately. Through
the numerical simulation with A Multi-Phase Transport
(AMPT) model, we find that the quadrupole patterns of
vorticity fields can lead to a sizable local ⇤ polarization
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Figure 14: (color online) Magnitude (panel a) and components (panels b,c,d) of the polarization vector of the ⇤ hyperon in its
rest frame.

stringent test of numerical implementations of Israel-Stewart
theory in Bjorken coordinates.

We have found that the magnitude of the 1/⌧ x � ⌘ com-
ponent of the thermal vorticity at freezeout can be as large as
5⇥10�2 and yet its mean value is not large enough to produce
a polarization of ⇤ hyperons much larger than 1%, which is a
consistently lower estimate in comparison with other recent
calculations based on di↵erent initial conditions. We have
found that the magnitude of directed flow, at this energy, has
an interestingly sizeable dependence on both the shear viscos-
ity and the longitudinal energy density profile asymmetry pa-
rameter ⌘m which in turn governs the amount of initial angular
momentum retained by the plasma.

The fact that in 3+1D the plasma needs to have an initial an-
gular momentum in order to reproduce the observed directed
flow raises the question whether the Bjorken initial condition
u⌘ = 0 is a compelling one or, instead, the same angular mo-
mentum can be obtained with a non trivial u⌘ and with a suit-
able change of the energy density profile. For a testing pur-

pose, we have run ECHO-QGP with an initial profile:

u⌘ =
1
⌧

tanh Ax sinh(ybeam � |⌘|) (36)

which meets the causality constraint (see Appendix B). It is
found that the directed flow is very sensitive to an initial u⌘.
For a small positive value of the parameter A = 5⇥ 10�4 fm�1

corresponding to a Jy = 3.32 ⇥ 103, keeping all other parame-
ters fixed, the directed flow exhibits two slight wiggles around
midrapidity (see fig. 15) which are not seen in the data. For
a very small negative value of the parameter A = �5 ⇥ 10�4

fm�1, corresponding to Jy = 3.08 ⇥ 103, the directed flow in-
creases while approximately keeping the same shape as for
A = 0 around midrapidity. However, more detailed studies
are needed to determine whether a non-vanishing initial flow
velocity is compatible with the experimental observables.

We plan to extend this kind of calculation to di↵erent cen-
tralities, di↵erent energies and with initial state fluctuations in
order to determine the possibly best conditions for vorticity
formation in relativistic nuclear collisions.
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We present a quantitative study of vorticity formation in peripheral ultrarelativistic heavy ion collisions atp
sNN = 200 GeV by using the ECHO-QGP numerical code, implementing relativistic dissipative hydrodynam-

ics in the causal Israel-Stewart framework in 3+1 dimensions with an initial Bjorken flow profile. We consider
and discuss di↵erent definitions of vorticity which are relevant in relativistic hydrodynamics. After demonstrat-
ing the excellent capabilities of our code, which proves to be able to reproduce Gubser flow up to 8 fm/c, we
show that, with the initial conditions needed to reproduce the measured directed flow in peripheral collisions
corresponding to an average impact parameter b = 11.6 fm and with the Bjorken flow profile for a viscous Quark
Gluon Plasma with ⌘/s = 0.1 fixed, a vorticity of the order of some 10�2 c/fm can develop at freezeout. The
ensuing polarization of ⇤ baryons does not exceed 1.4% at midrapidity. We show that the amount of developed
directed flow is sensitive to both the initial angular momentum of the plasma and its viscosity.

I. INTRODUCTION

The hydrodynamical model has by now become a paradigm
for the study of the QCD plasma formed in nuclear colli-
sions at ultrarelativistic energies. There has been a consider-
able advance in hydrodynamics modeling and calculations of
these collisions over the last decade. Numerical simulations
in 2+1D [1] and in 3+1 D [2–7] including viscous corrections
are becoming the new standard in this field and existing codes
are also able to handle initial state fluctuations.

An interesting issue is the possible formation of vorticity in
peripheral collisions [8–10]. Indeed, the presence of vortic-
ity may provide information about the (mean) initial state of
the hydrodynamical evolution which cannot be achieved oth-
erwise, and it is related to the onset of peculiar physics in the
plasma at high temperature, such as the chiral vortical e↵ect
[11]. Furthermore, it has been shown that vorticity gives rise
to polarization of particles in the final state, so that e.g. ⇤
baryon polarization - if measurable - can be used to detect
it [12, 13]. Finally, as we will show, numerical calculation
of vorticity can be used to make stringent tests of numerical
codes, as the T-vorticity (see sect. II for the definition) is ex-
pected to vanish throughout under special initial conditions in
the ideal case.

Lately, vorticity has been the subject of investigations in
refs. [9, 10] with peculiar initial conditions in cartesian coor-
dinates, ideal fluid approximation and isochronous freezeout.
Instead, in this work, we calculate di↵erent kinds of vortic-
ity with our 3+1D ECHO-QGP 1 code [3], including dissi-
pative relativistic hydrodynamics in the Israel-Stewart formu-
lation with Bjorken initial conditions for the flow (i.e. with

1 The code is publicly available at the web site http://theory.fi.infn.it/echoqgp

ux = uy = u⌘ = 0), henceforth denoted as BIC. It should be
pointed out from the very beginning that the purpose of this
work is to make a general assessment of vorticity at top RHIC
energy and not to provide a precision fit to all the available
data. Therefore, our calculations do not take into account ef-
fects such as viscous corrections to particle distribution at the
freezeout and initial state fluctuations, that is we use smooth
initial conditions obtained averaging over many events.

A. Notations

In this paper we use the natural units, with ~ = c = K = 1.
The Minkowskian metric tensor is diag(1,�1,�1,�1); for the
Levi-Civita symbol we use the convention ✏0123 = 1.
We will use the relativistic notation with repeated indices as-
sumed to be summed over, however contractions of indices
will be sometimes denoted with dots, e.g. u · T · u ⌘ uµT µ⌫u⌫.
The covariant derivative is denoted as dµ (hence d�gµ⌫ = 0),
the exterior derivative by d, whereas @µ is the ordinary deriva-
tive.

II. VORTICITIES IN RELATIVISTIC HYDRODYNAMICS

Unlike in classical hydrodynamics, where vorticity is the
curl of the velocity field v, several vorticities can be defined
in relativistic hydrodynamics which can be useful in di↵erent
applications (see also the review [14]).
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Figure 14: (color online) Magnitude (panel a) and components (panels b,c,d) of the polarization vector of the ⇤ hyperon in its
rest frame.

stringent test of numerical implementations of Israel-Stewart
theory in Bjorken coordinates.

We have found that the magnitude of the 1/⌧ x � ⌘ com-
ponent of the thermal vorticity at freezeout can be as large as
5⇥10�2 and yet its mean value is not large enough to produce
a polarization of ⇤ hyperons much larger than 1%, which is a
consistently lower estimate in comparison with other recent
calculations based on di↵erent initial conditions. We have
found that the magnitude of directed flow, at this energy, has
an interestingly sizeable dependence on both the shear viscos-
ity and the longitudinal energy density profile asymmetry pa-
rameter ⌘m which in turn governs the amount of initial angular
momentum retained by the plasma.

The fact that in 3+1D the plasma needs to have an initial an-
gular momentum in order to reproduce the observed directed
flow raises the question whether the Bjorken initial condition
u⌘ = 0 is a compelling one or, instead, the same angular mo-
mentum can be obtained with a non trivial u⌘ and with a suit-
able change of the energy density profile. For a testing pur-

pose, we have run ECHO-QGP with an initial profile:

u⌘ =
1
⌧

tanh Ax sinh(ybeam � |⌘|) (36)

which meets the causality constraint (see Appendix B). It is
found that the directed flow is very sensitive to an initial u⌘.
For a small positive value of the parameter A = 5⇥ 10�4 fm�1

corresponding to a Jy = 3.32 ⇥ 103, keeping all other parame-
ters fixed, the directed flow exhibits two slight wiggles around
midrapidity (see fig. 15) which are not seen in the data. For
a very small negative value of the parameter A = �5 ⇥ 10�4

fm�1, corresponding to Jy = 3.08 ⇥ 103, the directed flow in-
creases while approximately keeping the same shape as for
A = 0 around midrapidity. However, more detailed studies
are needed to determine whether a non-vanishing initial flow
velocity is compatible with the experimental observables.

We plan to extend this kind of calculation to di↵erent cen-
tralities, di↵erent energies and with initial state fluctuations in
order to determine the possibly best conditions for vorticity
formation in relativistic nuclear collisions.

A study of vorticity formation in high energy nuclear collisions
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We present a quantitative study of vorticity formation in peripheral ultrarelativistic heavy ion collisions atp
sNN = 200 GeV by using the ECHO-QGP numerical code, implementing relativistic dissipative hydrodynam-

ics in the causal Israel-Stewart framework in 3+1 dimensions with an initial Bjorken flow profile. We consider
and discuss di↵erent definitions of vorticity which are relevant in relativistic hydrodynamics. After demonstrat-
ing the excellent capabilities of our code, which proves to be able to reproduce Gubser flow up to 8 fm/c, we
show that, with the initial conditions needed to reproduce the measured directed flow in peripheral collisions
corresponding to an average impact parameter b = 11.6 fm and with the Bjorken flow profile for a viscous Quark
Gluon Plasma with ⌘/s = 0.1 fixed, a vorticity of the order of some 10�2 c/fm can develop at freezeout. The
ensuing polarization of ⇤ baryons does not exceed 1.4% at midrapidity. We show that the amount of developed
directed flow is sensitive to both the initial angular momentum of the plasma and its viscosity.

I. INTRODUCTION

The hydrodynamical model has by now become a paradigm
for the study of the QCD plasma formed in nuclear colli-
sions at ultrarelativistic energies. There has been a consider-
able advance in hydrodynamics modeling and calculations of
these collisions over the last decade. Numerical simulations
in 2+1D [1] and in 3+1 D [2–7] including viscous corrections
are becoming the new standard in this field and existing codes
are also able to handle initial state fluctuations.

An interesting issue is the possible formation of vorticity in
peripheral collisions [8–10]. Indeed, the presence of vortic-
ity may provide information about the (mean) initial state of
the hydrodynamical evolution which cannot be achieved oth-
erwise, and it is related to the onset of peculiar physics in the
plasma at high temperature, such as the chiral vortical e↵ect
[11]. Furthermore, it has been shown that vorticity gives rise
to polarization of particles in the final state, so that e.g. ⇤
baryon polarization - if measurable - can be used to detect
it [12, 13]. Finally, as we will show, numerical calculation
of vorticity can be used to make stringent tests of numerical
codes, as the T-vorticity (see sect. II for the definition) is ex-
pected to vanish throughout under special initial conditions in
the ideal case.

Lately, vorticity has been the subject of investigations in
refs. [9, 10] with peculiar initial conditions in cartesian coor-
dinates, ideal fluid approximation and isochronous freezeout.
Instead, in this work, we calculate di↵erent kinds of vortic-
ity with our 3+1D ECHO-QGP 1 code [3], including dissi-
pative relativistic hydrodynamics in the Israel-Stewart formu-
lation with Bjorken initial conditions for the flow (i.e. with

1 The code is publicly available at the web site http://theory.fi.infn.it/echoqgp

ux = uy = u⌘ = 0), henceforth denoted as BIC. It should be
pointed out from the very beginning that the purpose of this
work is to make a general assessment of vorticity at top RHIC
energy and not to provide a precision fit to all the available
data. Therefore, our calculations do not take into account ef-
fects such as viscous corrections to particle distribution at the
freezeout and initial state fluctuations, that is we use smooth
initial conditions obtained averaging over many events.

A. Notations

In this paper we use the natural units, with ~ = c = K = 1.
The Minkowskian metric tensor is diag(1,�1,�1,�1); for the
Levi-Civita symbol we use the convention ✏0123 = 1.
We will use the relativistic notation with repeated indices as-
sumed to be summed over, however contractions of indices
will be sometimes denoted with dots, e.g. u · T · u ⌘ uµT µ⌫u⌫.
The covariant derivative is denoted as dµ (hence d�gµ⌫ = 0),
the exterior derivative by d, whereas @µ is the ordinary deriva-
tive.

II. VORTICITIES IN RELATIVISTIC HYDRODYNAMICS

Unlike in classical hydrodynamics, where vorticity is the
curl of the velocity field v, several vorticities can be defined
in relativistic hydrodynamics which can be useful in di↵erent
applications (see also the review [14]).
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Figure 14: (color online) Magnitude (panel a) and components (panels b,c,d) of the polarization vector of the ⇤ hyperon in its
rest frame.

stringent test of numerical implementations of Israel-Stewart
theory in Bjorken coordinates.

We have found that the magnitude of the 1/⌧ x � ⌘ com-
ponent of the thermal vorticity at freezeout can be as large as
5⇥10�2 and yet its mean value is not large enough to produce
a polarization of ⇤ hyperons much larger than 1%, which is a
consistently lower estimate in comparison with other recent
calculations based on di↵erent initial conditions. We have
found that the magnitude of directed flow, at this energy, has
an interestingly sizeable dependence on both the shear viscos-
ity and the longitudinal energy density profile asymmetry pa-
rameter ⌘m which in turn governs the amount of initial angular
momentum retained by the plasma.

The fact that in 3+1D the plasma needs to have an initial an-
gular momentum in order to reproduce the observed directed
flow raises the question whether the Bjorken initial condition
u⌘ = 0 is a compelling one or, instead, the same angular mo-
mentum can be obtained with a non trivial u⌘ and with a suit-
able change of the energy density profile. For a testing pur-

pose, we have run ECHO-QGP with an initial profile:

u⌘ =
1
⌧

tanh Ax sinh(ybeam � |⌘|) (36)

which meets the causality constraint (see Appendix B). It is
found that the directed flow is very sensitive to an initial u⌘.
For a small positive value of the parameter A = 5⇥ 10�4 fm�1

corresponding to a Jy = 3.32 ⇥ 103, keeping all other parame-
ters fixed, the directed flow exhibits two slight wiggles around
midrapidity (see fig. 15) which are not seen in the data. For
a very small negative value of the parameter A = �5 ⇥ 10�4

fm�1, corresponding to Jy = 3.08 ⇥ 103, the directed flow in-
creases while approximately keeping the same shape as for
A = 0 around midrapidity. However, more detailed studies
are needed to determine whether a non-vanishing initial flow
velocity is compatible with the experimental observables.

We plan to extend this kind of calculation to di↵erent cen-
tralities, di↵erent energies and with initial state fluctuations in
order to determine the possibly best conditions for vorticity
formation in relativistic nuclear collisions.
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We present a quantitative study of vorticity formation in peripheral ultrarelativistic heavy ion collisions atp
sNN = 200 GeV by using the ECHO-QGP numerical code, implementing relativistic dissipative hydrodynam-

ics in the causal Israel-Stewart framework in 3+1 dimensions with an initial Bjorken flow profile. We consider
and discuss di↵erent definitions of vorticity which are relevant in relativistic hydrodynamics. After demonstrat-
ing the excellent capabilities of our code, which proves to be able to reproduce Gubser flow up to 8 fm/c, we
show that, with the initial conditions needed to reproduce the measured directed flow in peripheral collisions
corresponding to an average impact parameter b = 11.6 fm and with the Bjorken flow profile for a viscous Quark
Gluon Plasma with ⌘/s = 0.1 fixed, a vorticity of the order of some 10�2 c/fm can develop at freezeout. The
ensuing polarization of ⇤ baryons does not exceed 1.4% at midrapidity. We show that the amount of developed
directed flow is sensitive to both the initial angular momentum of the plasma and its viscosity.

I. INTRODUCTION

The hydrodynamical model has by now become a paradigm
for the study of the QCD plasma formed in nuclear colli-
sions at ultrarelativistic energies. There has been a consider-
able advance in hydrodynamics modeling and calculations of
these collisions over the last decade. Numerical simulations
in 2+1D [1] and in 3+1 D [2–7] including viscous corrections
are becoming the new standard in this field and existing codes
are also able to handle initial state fluctuations.

An interesting issue is the possible formation of vorticity in
peripheral collisions [8–10]. Indeed, the presence of vortic-
ity may provide information about the (mean) initial state of
the hydrodynamical evolution which cannot be achieved oth-
erwise, and it is related to the onset of peculiar physics in the
plasma at high temperature, such as the chiral vortical e↵ect
[11]. Furthermore, it has been shown that vorticity gives rise
to polarization of particles in the final state, so that e.g. ⇤
baryon polarization - if measurable - can be used to detect
it [12, 13]. Finally, as we will show, numerical calculation
of vorticity can be used to make stringent tests of numerical
codes, as the T-vorticity (see sect. II for the definition) is ex-
pected to vanish throughout under special initial conditions in
the ideal case.

Lately, vorticity has been the subject of investigations in
refs. [9, 10] with peculiar initial conditions in cartesian coor-
dinates, ideal fluid approximation and isochronous freezeout.
Instead, in this work, we calculate di↵erent kinds of vortic-
ity with our 3+1D ECHO-QGP 1 code [3], including dissi-
pative relativistic hydrodynamics in the Israel-Stewart formu-
lation with Bjorken initial conditions for the flow (i.e. with

1 The code is publicly available at the web site http://theory.fi.infn.it/echoqgp

ux = uy = u⌘ = 0), henceforth denoted as BIC. It should be
pointed out from the very beginning that the purpose of this
work is to make a general assessment of vorticity at top RHIC
energy and not to provide a precision fit to all the available
data. Therefore, our calculations do not take into account ef-
fects such as viscous corrections to particle distribution at the
freezeout and initial state fluctuations, that is we use smooth
initial conditions obtained averaging over many events.

A. Notations

In this paper we use the natural units, with ~ = c = K = 1.
The Minkowskian metric tensor is diag(1,�1,�1,�1); for the
Levi-Civita symbol we use the convention ✏0123 = 1.
We will use the relativistic notation with repeated indices as-
sumed to be summed over, however contractions of indices
will be sometimes denoted with dots, e.g. u · T · u ⌘ uµT µ⌫u⌫.
The covariant derivative is denoted as dµ (hence d�gµ⌫ = 0),
the exterior derivative by d, whereas @µ is the ordinary deriva-
tive.

II. VORTICITIES IN RELATIVISTIC HYDRODYNAMICS

Unlike in classical hydrodynamics, where vorticity is the
curl of the velocity field v, several vorticities can be defined
in relativistic hydrodynamics which can be useful in di↵erent
applications (see also the review [14]).
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diFerrara,Via
Saragat1,I-44100

Ferrara,Italy
5IN

FN
-

Sezione
di

Ferrara,
Via

Saragat
1,

I-44100
Ferrara,

Italy
6IN

FN
-

Sezione
di

Torino,
Via

P.
G

iuria
1,

I-10125
Torino,

Italy
7IN

AF
-

O
sservatorio

Astrofisico
di

Arcetri,
L.go

E.Ferm
i

5,
I-50125

Firenze,
Italy

8Indian
Institute

of
Technology

G
andhinagar,

Ahm
edabad-382424,

G
ujrat,

India
(D

ated:A
ugust18,2015)

W
e

presenta
quantitative

study
of

vorticity
form

ation
in

peripheralultrarelativistic
heavy

ion
collisions

at
p

sN
N
=

200
G

eV
by

using
the

EC
H

O
-Q

G
P

num
ericalcode,im

plem
enting

relativistic
dissipative

hydrodynam
-

ics
in

the
causalIsrael-Stew

artfram
ew

ork
in

3
+

1
dim

ensions
w

ith
an

initialB
jorken

flow
profile.W

e
consider

and
discuss

di↵erentdefinitions
ofvorticity

w
hich

are
relevantin

relativistic
hydrodynam

ics.A
fterdem

onstrat-
ing

the
excellentcapabilities

of
our

code,w
hich

proves
to

be
able

to
reproduce

G
ubser

flow
up

to
8

fm
/c,w

e
show

that,w
ith

the
initialconditions

needed
to

reproduce
the

m
easured

directed
flow

in
peripheralcollisions

corresponding
to

an
average

im
pactparam

eterb
=

11.6
fm

and
w

ith
the

B
jorken

flow
profile

fora
viscousQ

uark
G

luon
Plasm

a
w

ith
⌘/s
=

0.1
fixed,a

vorticity
of

the
order

of
som

e
10 �

2
c/fm

can
develop

atfreezeout.
The

ensuing
polarization

of
⇤

baryons
does

notexceed
1.4%

atm
idrapidity.W

e
show

thatthe
am

ountofdeveloped
directed

flow
is

sensitive
to

both
the

initialangularm
om

entum
ofthe

plasm
a

and
its

viscosity.

I.
IN

TR
O

D
U

C
TIO

N

The
hydrodynam

icalm
odelhasby

now
becom

e
a

paradigm
for

the
study

of
the

Q
C

D
plasm

a
form

ed
in

nuclear
colli-

sions
atultrarelativistic

energies.
There

has
been

a
consider-

able
advance

in
hydrodynam

ics
m

odeling
and

calculations
of

these
collisions

over
the

lastdecade.
N

um
ericalsim

ulations
in

2
+

1D
[1]and

in
3
+

1
D

[2–7]including
viscouscorrections

are
becom

ing
the

new
standard

in
thisfield

and
existing

codes
are

also
able

to
handle

initialstate
fluctuations.

A
n

interesting
issue

isthe
possible

form
ation

ofvorticity
in

peripheralcollisions
[8–10].

Indeed,the
presence

of
vortic-

ity
m

ay
provide

inform
ation

aboutthe
(m

ean)
initialstate

of
the

hydrodynam
icalevolution

w
hich

cannotbe
achieved

oth-
erw

ise,and
itis

related
to

the
onsetofpeculiarphysics

in
the

plasm
a

athigh
tem

perature,such
as

the
chiralvorticale↵ect

[11].
Furtherm

ore,ithas
been

show
n

thatvorticity
gives

rise
to

polarization
of

particles
in

the
final

state,
so

that
e.g.

⇤
baryon

polarization
-

if
m

easurable
-

can
be

used
to

detect
it

[12,13].
Finally,

as
w

e
w

ill
show

,
num

erical
calculation

of
vorticity

can
be

used
to

m
ake

stringenttests
of

num
erical

codes,as
the

T-vorticity
(see

sect.II
for

the
definition)

is
ex-

pected
to

vanish
throughoutunderspecialinitialconditions

in
the

idealcase.
Lately,

vorticity
has

been
the

subject
of

investigations
in

refs.[9,10]w
ith

peculiarinitialconditions
in

cartesian
coor-

dinates,idealfluid
approxim

ation
and

isochronous
freezeout.

Instead,
in

this
w

ork,
w

e
calculate

di↵erent
kinds

of
vortic-

ity
w

ith
our

3
+

1D
EC

H
O

-Q
G

P
1

code
[3],

including
dissi-

pative
relativistic

hydrodynam
ics

in
the

Israel-Stew
artform

u-
lation

w
ith

B
jorken

initialconditions
for

the
flow

(i.e.
w

ith

1
The

code
ispublicly

available
atthe

w
eb

site
http://theory.fi.infn.it/echoqgp

u
x
=

u
y
=

u
⌘
=

0),henceforth
denoted

as
B

IC
.Itshould

be
pointed

outfrom
the

very
beginning

thatthe
purpose

of
this

w
ork

isto
m

ake
a

generalassessm
entofvorticity

attop
R

H
IC

energy
and

not
to

provide
a

precision
fit

to
all

the
available

data.
Therefore,ourcalculations

do
nottake

into
accountef-

fects
such

as
viscous

corrections
to

particle
distribution

atthe
freezeoutand

initialstate
fluctuations,thatis

w
e

use
sm

ooth
initialconditions

obtained
averaging

overm
any

events.

A
.

N
otations

In
this

paperw
e

use
the

naturalunits,w
ith
~
=

c
=

K
=

1.
The

M
inkow

skian
m

etric
tensoris

diag(1,�
1,�

1,�
1);forthe

Levi-C
ivita

sym
bolw

e
use

the
convention

✏
0123
=

1.
W

e
w

illuse
the

relativistic
notation

w
ith

repeated
indices

as-
sum

ed
to

be
sum

m
ed

over,
how

ever
contractions

of
indices

w
illbe

som
etim

es
denoted

w
ith

dots,e.g.u·T
·u
⌘

u
µ T
µ
⌫u
⌫ .

The
covariantderivative

is
denoted

as
d
µ

(hence
d
� g
µ
⌫
=

0),
the

exteriorderivative
by

d,w
hereas

@
µ

isthe
ordinary

deriva-
tive.

II.
V

O
R

TIC
ITIES

IN
R

ELATIV
ISTIC

H
Y

D
R

O
D

Y
N

A
M

IC
S

U
nlike

in
classical

hydrodynam
ics,

w
here

vorticity
is

the
curlof

the
velocity

field
v,severalvorticities

can
be

defined
in

relativistic
hydrodynam

ics
w

hich
can

be
usefulin

di↵erent
applications

(see
also

the
review

[14]).
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What is the time evolution? Increasing with time?

Results - see next talk. 
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p(T, µi,B,!) / exp[(�E + µiQi + µ ·B+ ! · J)/T ]

Nonrelativistic statistical mechanics

Global hyperon polarization at local thermodynamic equilibrium with vorticity,

magnetic field and feed-down

Francesco Becattini,1 Iurii Karpenko,2 Michael Annan Lisa,3 Isaac Upsal,3 and Sergei A. Voloshin4

1Dipartimento di Fisica, Universita‘ di Firenze, and INFN, Sezione di Firenze, Florence, Italy
2INFN, Sezione di Firenze, Florence, Italy

3Physics Department, The Ohio State University, Columbus, Ohio 43210, USA
4Wayne State University, Detroit, Michigan 48201, USA

The system created in ultrarelativistic nuclear collisions is known to behave as an almost ideal
liquid. In non-central collisions, due to the large orbital momentum, such a system might be the fluid
with the highest vorticity ever created under laboratory conditions. Particles emerging from such
a highly vorticous fluid are expected to be globally polarized with their spins on average pointing
along the system angular momentum. Vorticity-induced polarization is the same for particles and
antiparticles, but the intense magnetic field generated in these collisions may lead to the splitting
in polarization. In this paper we outline the thermal approach to the calculation of the global
polarization phenomenon for particles with spin and we discuss the details of the experimental
study of this phenomenon, estimating the e↵ect of feed-down. A general formula is derived for the
polarization transfer in two-body decays and, particularly, for strong and electromagnetic decays.
We find that accounting for such e↵ects is crucial when extracting vorticity and magnetic field from
the experimental data.

PACS numbers: 25.75.Ld, 25.75.Gz, 05.70.Fh

I. INTRODUCTION

Heavy ion collisions at ultrarelativistic energies create
a strongly interacting system characterized by extremely
high temperature and energy density. For a large fraction
of its lifetime the system shows strong collective e↵ects
and can be described by relativistic hydrodynamics. In
particular, the large elliptic flow observed in such colli-
sions, indicate that the system is strongly coupled, with
extremely low viscosity to entropy ratio [1]. From the
very success of the hydrodynamic description, one can
also conclude that the system might possess an extremely
high vorticity, likely the highest ever made under the lab-
oratory conditions.

A simple estimate of the non-relativistic vorticity, de-
fined as

! =
1

2
r⇥ v, (1)

1 can be made based on a very schematic picture of the
collision depicted in Fig. 1. As the projectile and target
spectators move in opposite direction with the velocity
close to the speed of light, the z component of the collec-
tive velocity in the system close to the projectile specta-
tors and that close to the target spectators are expected
to be di↵erent. Assuming that this di↵erence is a frac-
tion of the speed of light, e.g. 0.1 (in units of the speed of
light), and that the transverse size of the system is about
5 fm, one concludes that the vorticity in the system is of
the order 0.02 fm�1 ⇡ 1022 s�1.

1
sometimes the vorticity is defined without the factor 1/2; we use

the definition that gives the vorticity of the fluid rotating as a

whole with a constant angular velocity ⌦, to be ! = ⌦

FIG. 1. Schematic view of the collision. Arrows indicate the
flow velocity field. The +ŷ direction is out of the page; both
the orbital angular momentum and the magnetic field point
into the page.

In relativistic hydrodynamics, several extensions of the
non-relativistic vorticity defined above can be introduced
(see ref. [2] for a review). As we will see below, the
appropriate relativistic quantity for the study of global
polarization is the thermal vorticity:

$µ⌫ =
1

2
(@⌫�µ � @µ�⌫) (2)

where � = (1/T )u is the four-temperature vector, u be-
ing the hydrodynamic velocity and T the proper temper-
ature. At an approximately constant temperature, the
thermal vorticity can be roughly estimated by $ ⇠ !/T
which, for typical conditions, appears to be of the order
of a percent by using the above estimated vorticity and
the temperature T ⇠ 100 MeV.
Vorticity plays a very important role in the system

evolution. Accounting for vorticity might be the only
way to quantitatively describe the rapidity dependence
of directed flow [3, 4], which, at present, can not be de-
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r-tem
p
eratu

re
vector,

u
b
e-

in
g
th
e
h
y
d
ro
d
y
n
am

ic
velo

city
an

d
T

th
e
p
rop

er
tem

p
er-

atu
re.

A
t
an

ap
p
rox

im
ately

con
stan

t
tem

p
eratu

re,
th
e

th
erm

al
vorticity

can
b
e
rou

gh
ly

estim
ated

b
y
$

⇠
!
/
T

w
h
ich

,
for

ty
p
ical

con
d
ition

s,
ap

p
ears

to
b
e
of

th
e
ord

er
of

a
p
ercen

t
b
y
u
sin

g
th
e
ab

ove
estim

ated
vorticity

an
d

th
e
tem

p
eratu

re
T

⇠
100

M
eV

.
V
orticity

p
lay

s
a
very

im
p
ortan

t
role

in
th
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b
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where  (1)
EP is the first harmonic (directed flow) event

plane (e.g. determined by the deflection of projectile

spectators) and R
(1)
EP is the corresponding event plane

resolution (see Ref. [11] for the discussion of the detector
acceptance e↵ects).

It should be pointed out that in relativistic heavy ion
collisions the electromagnetic field may also play a role
in determining the polarization of produced particles. If
we keep the assumption of local thermodynamic equilib-
rium, one can apply the formulae (30), (31). However,
as yet, it is not clear if the spin degrees of freedom will
respond to a variation of thermal vorticity as quickly as
to a variation of the electromagnetic field. If the relax-
ation times were sizeably di↵erent, one would estimate
thermal vorticity and magnetic field from the measured
polarization (see Section VI) at di↵erent times in the pro-
cess. The magnetic moments of particles and antiparti-
cles have opposite signs, so the e↵ect of the electromag-
netic field is a splitting in global polarization of particles
and antiparticles. Particularly, the ⇤ magnetic moment
is µ⇤ ⇡ �0.61µN = �0.61e/(2mp) [33] and, under the
assumption above, one can take advantage of a di↵er-
ence in the polarization of primary ⇤s and ⇤̄s (i.e. those
emitted directly at hadronization) to estimate the (mean
comoving) magnetic field:

eB ⇡ ��P primmpT/0.61 (34)

where mp is the proton mass, and �P prim ⌘ P prim
⇤ �

P prim

⇤
is the di↵erence in polarization of primary ⇤ and

⇤. An (absolute) di↵erence in the polarization of pri-
mary ⇤’s of of 0.1% then would correspond to a mag-
netic field of the order of ⇠ 10�2m2

⇡, well within the
range of theoretical estimates [36–38]. However, we warn
that equation 34 should not be applied to experimental
measurements without a detailed accounting for polar-
ized feed-down e↵ects, which are discussed in Section VI.

Finally, we note that a small di↵erence between ⇤ and
⇤̄ polarization could also be due to the finite baryon
chemical potential making the factor (1�nF ) in eq. (20)
di↵erent for particles and antiparticles; this Fermi statis-
tics e↵ect might be relevant only at low collision energies.

V. SPIN ALIGNMENT OF VECTOR MESONS

The global polarization of vector mesons, such as � or
K⇤, can be accessed via the so-called spin alignment [39,
40]. Parity is conserved in the strong decays of those
particles and, as a consequence, the daughter particle
distribution is the same for the states Sz = ±1. In fact,
it is di↵erent for the state Sz = 0, and this fact can be
used to determine a polarization of the parent particle.
By referring to eq. (12), in the thermal approach the
deviation of the probability for the state Sz = 0 from
1/3, is only of the second order in $:

p0 =
1

1 + 2 cosh$c
⇡ 1

3 +$2
c

⇡ 1

3
(1�$2

c/3), (35)

Decay C
parity-conserving: 1/2+ ! 1/2+ 0� �1/3
parity-conserving: 1/2� ! 1/2+ 0� 1
parity-conserving: 3/2+ ! 1/2+ 0� 1/3
parity-conserving: 3/2� ! 1/2+ 0� �1/5

⌅0 ! ⇤+ ⇡0 +0.900
⌅� ! ⇤+ ⇡� +0.927
⌃0 ! ⇤+ � -1/3

TABLE I. Polarization transfer factors C (see eq. (36)) for
important decays X ! ⇤(⌃)⇡

which could make this measurement di�cult. Similarly
di�cult will be the detection of the global polarization
with the help of other strong decay channels, e.g. pro-
posed in Ref. [41].

VI. ACCOUNTING FOR DECAYS

According to eq. (30) (or, in the non-relativistic limit,
equations 14-17), the polarization of primary ⇤ hyper-
ons provides a measurement of the (comoving) thermal
vorticity and the (comoving) magnetic field of the sys-
tem that emits them. However, only a fraction of all
detected ⇤ and ⇤̄ hyperons are produced directly at the
hadronization stage and are thus primary. Indeed, a large
fraction thereof stems from decays of heavier particles
and one should correct for feed-down from higher-lying
resonances when trying to extract information about the
vorticity and the magnetic field from the measurement of
polarization. Particularly, the most important feed-down
channels involve the strong decays of ⌃⇤ ! ⇤ + ⇡, the
electromagnetic decay ⌃0 ! ⇤ + �, and the weak decay
⌅! ⇤+ ⇡.
When polarized particles decay, their daughters are

themselves polarized because of angular momentum con-
servation. The amount of polarization which is inherited
by the daughter particle, or transferred from the parent
to the daughter, in general depends on the momentum
of the daughter in the rest frame of the parent. As long
as one is interested in the mean, momentum-integrated,
spin vector in the rest frame, a simple linear rule applies
(see Appendix A), that is:

S

⇤
D = CS

⇤
P (36)

where P is the parent particle, D the daughter and C
a coe�cient whose expression (see Appendix A) may or
may not depend on the dynamical amplitudes. In many
two-body decays, the conservation laws constrain the fi-
nal state to such an extent that the coe�cient C is inde-
pendent of the dynamical matrix elements. This happens,
e.g., in the strong decay ⌃⇤(1385) ! ⇤⇡ and the electro-
magnetic ⌃0 ! ⇤� decay, whereas it does not in ⌅! ⇤⇡
decays, which is a weak decay.
If the decay products have small momenta com-

pared to their masses, one would expect that the spin

S ⇡ S(S+1)
3

!
T
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Nonrelativistic statistical mechanics

Global hyperon polarization at local thermodynamic equilibrium with vorticity,

magnetic field and feed-down
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The system created in ultrarelativistic nuclear collisions is known to behave as an almost ideal
liquid. In non-central collisions, due to the large orbital momentum, such a system might be the fluid
with the highest vorticity ever created under laboratory conditions. Particles emerging from such
a highly vorticous fluid are expected to be globally polarized with their spins on average pointing
along the system angular momentum. Vorticity-induced polarization is the same for particles and
antiparticles, but the intense magnetic field generated in these collisions may lead to the splitting
in polarization. In this paper we outline the thermal approach to the calculation of the global
polarization phenomenon for particles with spin and we discuss the details of the experimental
study of this phenomenon, estimating the e↵ect of feed-down. A general formula is derived for the
polarization transfer in two-body decays and, particularly, for strong and electromagnetic decays.
We find that accounting for such e↵ects is crucial when extracting vorticity and magnetic field from
the experimental data.

PACS numbers: 25.75.Ld, 25.75.Gz, 05.70.Fh

I. INTRODUCTION

Heavy ion collisions at ultrarelativistic energies create
a strongly interacting system characterized by extremely
high temperature and energy density. For a large fraction
of its lifetime the system shows strong collective e↵ects
and can be described by relativistic hydrodynamics. In
particular, the large elliptic flow observed in such colli-
sions, indicate that the system is strongly coupled, with
extremely low viscosity to entropy ratio [1]. From the
very success of the hydrodynamic description, one can
also conclude that the system might possess an extremely
high vorticity, likely the highest ever made under the lab-
oratory conditions.

A simple estimate of the non-relativistic vorticity, de-
fined as

! =
1

2
r⇥ v, (1)

1 can be made based on a very schematic picture of the
collision depicted in Fig. 1. As the projectile and target
spectators move in opposite direction with the velocity
close to the speed of light, the z component of the collec-
tive velocity in the system close to the projectile specta-
tors and that close to the target spectators are expected
to be di↵erent. Assuming that this di↵erence is a frac-
tion of the speed of light, e.g. 0.1 (in units of the speed of
light), and that the transverse size of the system is about
5 fm, one concludes that the vorticity in the system is of
the order 0.02 fm�1 ⇡ 1022 s�1.

1
sometimes the vorticity is defined without the factor 1/2; we use

the definition that gives the vorticity of the fluid rotating as a

whole with a constant angular velocity ⌦, to be ! = ⌦

FIG. 1. Schematic view of the collision. Arrows indicate the
flow velocity field. The +ŷ direction is out of the page; both
the orbital angular momentum and the magnetic field point
into the page.

In relativistic hydrodynamics, several extensions of the
non-relativistic vorticity defined above can be introduced
(see ref. [2] for a review). As we will see below, the
appropriate relativistic quantity for the study of global
polarization is the thermal vorticity:

$µ⌫ =
1

2
(@⌫�µ � @µ�⌫) (2)

where � = (1/T )u is the four-temperature vector, u be-
ing the hydrodynamic velocity and T the proper temper-
ature. At an approximately constant temperature, the
thermal vorticity can be roughly estimated by $ ⇠ !/T
which, for typical conditions, appears to be of the order
of a percent by using the above estimated vorticity and
the temperature T ⇠ 100 MeV.
Vorticity plays a very important role in the system

evolution. Accounting for vorticity might be the only
way to quantitatively describe the rapidity dependence
of directed flow [3, 4], which, at present, can not be de-
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where  (1)
EP is the first harmonic (directed flow) event

plane (e.g. determined by the deflection of projectile

spectators) and R
(1)
EP is the corresponding event plane

resolution (see Ref. [11] for the discussion of the detector
acceptance e↵ects).

It should be pointed out that in relativistic heavy ion
collisions the electromagnetic field may also play a role
in determining the polarization of produced particles. If
we keep the assumption of local thermodynamic equilib-
rium, one can apply the formulae (30), (31). However,
as yet, it is not clear if the spin degrees of freedom will
respond to a variation of thermal vorticity as quickly as
to a variation of the electromagnetic field. If the relax-
ation times were sizeably di↵erent, one would estimate
thermal vorticity and magnetic field from the measured
polarization (see Section VI) at di↵erent times in the pro-
cess. The magnetic moments of particles and antiparti-
cles have opposite signs, so the e↵ect of the electromag-
netic field is a splitting in global polarization of particles
and antiparticles. Particularly, the ⇤ magnetic moment
is µ⇤ ⇡ �0.61µN = �0.61e/(2mp) [33] and, under the
assumption above, one can take advantage of a di↵er-
ence in the polarization of primary ⇤s and ⇤̄s (i.e. those
emitted directly at hadronization) to estimate the (mean
comoving) magnetic field:

eB ⇡ ��P primmpT/0.61 (34)

where mp is the proton mass, and �P prim ⌘ P prim
⇤ �

P prim

⇤
is the di↵erence in polarization of primary ⇤ and

⇤. An (absolute) di↵erence in the polarization of pri-
mary ⇤’s of of 0.1% then would correspond to a mag-
netic field of the order of ⇠ 10�2m2

⇡, well within the
range of theoretical estimates [36–38]. However, we warn
that equation 34 should not be applied to experimental
measurements without a detailed accounting for polar-
ized feed-down e↵ects, which are discussed in Section VI.

Finally, we note that a small di↵erence between ⇤ and
⇤̄ polarization could also be due to the finite baryon
chemical potential making the factor (1�nF ) in eq. (20)
di↵erent for particles and antiparticles; this Fermi statis-
tics e↵ect might be relevant only at low collision energies.

V. SPIN ALIGNMENT OF VECTOR MESONS

The global polarization of vector mesons, such as � or
K⇤, can be accessed via the so-called spin alignment [39,
40]. Parity is conserved in the strong decays of those
particles and, as a consequence, the daughter particle
distribution is the same for the states Sz = ±1. In fact,
it is di↵erent for the state Sz = 0, and this fact can be
used to determine a polarization of the parent particle.
By referring to eq. (12), in the thermal approach the
deviation of the probability for the state Sz = 0 from
1/3, is only of the second order in $:

p0 =
1

1 + 2 cosh$c
⇡ 1

3 +$2
c

⇡ 1

3
(1�$2

c/3), (35)

Decay C
parity-conserving: 1/2+ ! 1/2+ 0� �1/3
parity-conserving: 1/2� ! 1/2+ 0� 1
parity-conserving: 3/2+ ! 1/2+ 0� 1/3
parity-conserving: 3/2� ! 1/2+ 0� �1/5

⌅0 ! ⇤+ ⇡0 +0.900
⌅� ! ⇤+ ⇡� +0.927
⌃0 ! ⇤+ � -1/3

TABLE I. Polarization transfer factors C (see eq. (36)) for
important decays X ! ⇤(⌃)⇡

which could make this measurement di�cult. Similarly
di�cult will be the detection of the global polarization
with the help of other strong decay channels, e.g. pro-
posed in Ref. [41].

VI. ACCOUNTING FOR DECAYS

According to eq. (30) (or, in the non-relativistic limit,
equations 14-17), the polarization of primary ⇤ hyper-
ons provides a measurement of the (comoving) thermal
vorticity and the (comoving) magnetic field of the sys-
tem that emits them. However, only a fraction of all
detected ⇤ and ⇤̄ hyperons are produced directly at the
hadronization stage and are thus primary. Indeed, a large
fraction thereof stems from decays of heavier particles
and one should correct for feed-down from higher-lying
resonances when trying to extract information about the
vorticity and the magnetic field from the measurement of
polarization. Particularly, the most important feed-down
channels involve the strong decays of ⌃⇤ ! ⇤ + ⇡, the
electromagnetic decay ⌃0 ! ⇤ + �, and the weak decay
⌅! ⇤+ ⇡.
When polarized particles decay, their daughters are

themselves polarized because of angular momentum con-
servation. The amount of polarization which is inherited
by the daughter particle, or transferred from the parent
to the daughter, in general depends on the momentum
of the daughter in the rest frame of the parent. As long
as one is interested in the mean, momentum-integrated,
spin vector in the rest frame, a simple linear rule applies
(see Appendix A), that is:

S

⇤
D = CS

⇤
P (36)

where P is the parent particle, D the daughter and C
a coe�cient whose expression (see Appendix A) may or
may not depend on the dynamical amplitudes. In many
two-body decays, the conservation laws constrain the fi-
nal state to such an extent that the coe�cient C is inde-
pendent of the dynamical matrix elements. This happens,
e.g., in the strong decay ⌃⇤(1385) ! ⇤⇡ and the electro-
magnetic ⌃0 ! ⇤� decay, whereas it does not in ⌅! ⇤⇡
decays, which is a weak decay.
If the decay products have small momenta com-

pared to their masses, one would expect that the spin
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Fig. 4. (Left) The global polarization of ⇤ from AMPT model for 2 di↵erent impact parameters b = 7 fm and 9 fm (approximating
20 � 50% collisions). (Right) The model data comparison for with and without feed-down contribution from ⌃ decay.
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J5 = 1
2⇡2µ(Qe)B J = (Qe) 1

2⇡2µ5(Qe)B

and longitudinal diffusion constants determined by qf, eB,
and T. In this Letter we consider the propagation of u and d
flavored CMWs, since there is no net density of strange
quarks in the plasma. The full flavor symmetry Uð2Þf
contains Uð1Þu #Uð1Þd which defines independent Uð1Þ
flavor symmetries of u and d quarks. Considering the same
triangle anomalies leading to CME and CSE that now
involve each of these Uð1Þ symmetries, one obtains

j f
V;A ¼ qf

Nce

2!2 "
f
A;VB; (4)

where "f are chemical potentials of Uð1Þf. From the
results of [25] and (4) we then derive Nf independent

CMWs of flavored chiral charge densities j0;fL;R with veloc-
ities given by

vf
# ¼ qf

NceB

4!2

!
@"f

L

@j0;fL

"
% qf

NceB$
f

4!2 : (5)

We obtain vf
# and Df

L from the computation in Ref. [25]
performed in the framework of the Sakai-Sugimoto model
in the large Nc quenched approximation. Each quark of
flavor f interacts with the magnetic field of effective
magnitude qfeB; we replace eB with qfeB in the argu-
ments of v# and DL as functions of eB:

vf
# ¼ v#ðeB ! qfeBÞ; Df

L ¼ DLðeB ! qfeBÞ: (6)

We evaluate the densities of u and d flavors at the time of
the plasma creation in the Au-Au collisions, and introduce
the corresponding initial chemical potentials "u

V þ"d
V ¼

2"B=3. The shape of the initial ‘‘almond’’ of QCD matter
produced in a heavy ion collision is taken by using the
phenomenologically successful Kharzeev-Levin-Nardi
(KLN) model [28] based on parton saturation and kT
factorization. Au-Au collisions have been simulated, with
realistic Woods-Saxon nuclear densities. The axial chemi-
cal potentials at the initial time are set to zero.

We then solve the CMW equation numerically and find
that it generates the separation of chiral charge, as shown in
Fig. 1—the quark-gluon plasma acquires a ‘‘chiral dipole
moment’’.

We evaluate the electric charge distribution by super-
imposing the waves of different flavors weighted by their
charges,

j0e ¼
X

f

qfðj0;fL þ j0;fR Þ: (7)

The resulting distribution is shown in Fig. 2; for clarity, we
have subtracted the charge density distribution without
the CMW. As argued above qualitatively, the quark-gluon
plasma indeed acquires an electric quadrupole moment.
The poles of the produced fireball (pointing outside of the
reaction plane) acquire additional positive electric charge,
and the ‘‘equator’’ acquires additional negative charge. It is
very important to note that this pattern of charge separation

does not depend on the orientation of the magnetic field.
This means that the effect should survive even after the
event averaging.
From the electric quadrupole moment to charge-

dependent elliptic flow.—The expansion of the quark-gluon
plasma produced in heavy ion collisions is characterized
by a strong collective flow driven by the gradients of
pressure that transforms the spatial anisotropy of produced
matter into the momentum anisotropy of the produced
hadrons. Since the fireball of quark-gluon plasma pro-
duced in an off-central heavy ion collision has an elliptical
almondlike shape, the gradients of pressure make it expand
predominantly along the minor axis, i.e., in the reaction
plane—this is the ‘‘elliptic flow’’ (for a review, see [29]).
As a result, the electric quadrupole deformation of the
plasma described above will increase the elliptic flow of

FIG. 1 (color online). Chiral charge density in the plane trans-
verse to the beam axis. Magnetic field strength eB ¼ m2

!, life-
time of magnetic field % ¼ 10 fm, temperature T ¼ 165 MeV,
impact parameter b ¼ 3 fm.

FIG. 2 (color online). Electric charge density in the transverse
plane (background subtracted, see text). Same parameters as
in Fig. 1.
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The chiral magnetic wave is a gapless collective excitation of quark-gluon plasma in the presence of an

external magnetic field that stems from the interplay of chiral magnetic and chiral separation effects; it is

composed of the waves of the electric and chiral charge densities coupled by the axial anomaly. We

consider a chiral magnetic wave at finite baryon density and find that it induces the electric quadrupole

moment of the quark-gluon plasma produced in heavy ion collisions: the ‘‘poles’’ of the produced fireball

(pointing outside of the reaction plane) acquire additional positive electric charge, and the ‘‘equator’’

acquires additional negative charge. We point out that this electric quadrupole deformation lifts the

degeneracy between the elliptic flows of positive and negative pions leading to v2ð!þÞ< v2ð!$Þ, and
estimate the magnitude of the effect.

DOI: 10.1103/PhysRevLett.107.052303 PACS numbers: 12.38.Mh, 11.40.Ha, 25.75.Ag

Introduction.—The axial anomaly has been found to
induce the following two phenomena in the quark-gluon
plasma subjected to an external magnetic field: the chiral
magnetic effect (CME) and the chiral separation effect
(CSE). The CME is the phenomenon of electric charge
separation along the axis of the applied magnetic field in
the presence of a fluctuating topological charge [1–5]. The
CME in QCD coupled to electromagnetism assumes an
asymmetry between the densities of left- and right-handed
quarks, parametrized by an axial chemical potential"A. At
finite "A, an external magnetic field induces the vector
current ji ¼ !c#ic :

j V ¼ Nce

2!2 "AB; (1)

in our present convention the electric current is ejV .
Recently, the STAR [6,7] and PHENIX [8,9]

Collaborations at the Relativistic Heavy Ion Collider at
Brookhaven National Laboratory reported experimental
observation of charge asymmetry fluctuations possibly
providing evidence of the CME; this interpretation is still
under intense discussion (see, e.g., [10,11] and references
therein).

The CSE refers to the separation of chiral charge along
the axis of the external magnetic field at finite density of
vector charge (e.g., at finite baryon number density)
[12,13]. The resulting axial current is given by

j A ¼ Nce

2!2 "VB; (2)

where "V is the vector chemical potential. Both CME and
CSE effects have been proved robust in holographic QCD
models in a strong coupling regime [14–21] as well as in
lattice QCD computations [22,23]. The effects also persist
in relativistic hydrodynamics, as shown in Ref. [24].

Recently, two of us studied the properties of the chiral
magnetic wave (CMW) [25] stemming from the coupling
of the density waves of electric and chiral charge induced
by the axial anomaly in the presence of an external mag-
netic field; a related idea has been also discussed in [26].
The CMW is a gapless collective excitation; its existence is
a straightforward consequence of the relations of Eqs. (1)
and (2). Indeed, consider a local fluctuation of electric
charge density; according to Eq. (2) it induces a local
fluctuation of the axial-vector current. This fluctuation of
axial current in turn induces a local fluctuation of the axial
chemical potential, and thus according to Eq. (1) a fluc-
tuation of electric current. The resulting fluctuation of
electric charge density completes the cycle leading to the
CMW that combines the density waves of electric and
chiral charges.
The plasma created in heavy ion collisions possesses a

finite baryon density. The CSE [12,13,24] then implies
the separation of chiral charge: the ‘‘poles’’ of the fireball
acquire the chiral charges of opposite sign. The CME
current at the opposite poles then according to Eq. (1)
flows in opposite directions, as argued recently in [27].
In this Letter we will show that CMW induces a static
quadrupole moment of the electric charge density.
Chiral magnetic wave.—The CMW is a long wavelength

hydrodynamic mode of chiral charge densities; its
propagation in space-time along the direction of magnetic
field (denoted x1 here) is described by the following equa-
tion [25]:

ð@0 & @1v$ $DL@
2
1 $DT@

2
TÞj0L;R ¼ 0; (3)

where v$ is the wave velocity and DL (DT) is the longitu-
dinal (transverse) diffusion constant.
In the case of Nf quark flavors with electric charges qf

there will be Nf independent CMWs with the velocities
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and longitudinal diffusion constants determined by qf, eB,
and T. In this Letter we consider the propagation of u and d
flavored CMWs, since there is no net density of strange
quarks in the plasma. The full flavor symmetry Uð2Þf
contains Uð1Þu #Uð1Þd which defines independent Uð1Þ
flavor symmetries of u and d quarks. Considering the same
triangle anomalies leading to CME and CSE that now
involve each of these Uð1Þ symmetries, one obtains

j f
V;A ¼ qf

Nce

2!2 "
f
A;VB; (4)

where "f are chemical potentials of Uð1Þf. From the
results of [25] and (4) we then derive Nf independent

CMWs of flavored chiral charge densities j0;fL;R with veloc-
ities given by

vf
# ¼ qf

NceB

4!2

!
@"f

L

@j0;fL

"
% qf

NceB$
f

4!2 : (5)

We obtain vf
# and Df

L from the computation in Ref. [25]
performed in the framework of the Sakai-Sugimoto model
in the large Nc quenched approximation. Each quark of
flavor f interacts with the magnetic field of effective
magnitude qfeB; we replace eB with qfeB in the argu-
ments of v# and DL as functions of eB:

vf
# ¼ v#ðeB ! qfeBÞ; Df

L ¼ DLðeB ! qfeBÞ: (6)

We evaluate the densities of u and d flavors at the time of
the plasma creation in the Au-Au collisions, and introduce
the corresponding initial chemical potentials "u

V þ"d
V ¼

2"B=3. The shape of the initial ‘‘almond’’ of QCD matter
produced in a heavy ion collision is taken by using the
phenomenologically successful Kharzeev-Levin-Nardi
(KLN) model [28] based on parton saturation and kT
factorization. Au-Au collisions have been simulated, with
realistic Woods-Saxon nuclear densities. The axial chemi-
cal potentials at the initial time are set to zero.

We then solve the CMW equation numerically and find
that it generates the separation of chiral charge, as shown in
Fig. 1—the quark-gluon plasma acquires a ‘‘chiral dipole
moment’’.

We evaluate the electric charge distribution by super-
imposing the waves of different flavors weighted by their
charges,

j0e ¼
X

f

qfðj0;fL þ j0;fR Þ: (7)

The resulting distribution is shown in Fig. 2; for clarity, we
have subtracted the charge density distribution without
the CMW. As argued above qualitatively, the quark-gluon
plasma indeed acquires an electric quadrupole moment.
The poles of the produced fireball (pointing outside of the
reaction plane) acquire additional positive electric charge,
and the ‘‘equator’’ acquires additional negative charge. It is
very important to note that this pattern of charge separation

does not depend on the orientation of the magnetic field.
This means that the effect should survive even after the
event averaging.
From the electric quadrupole moment to charge-

dependent elliptic flow.—The expansion of the quark-gluon
plasma produced in heavy ion collisions is characterized
by a strong collective flow driven by the gradients of
pressure that transforms the spatial anisotropy of produced
matter into the momentum anisotropy of the produced
hadrons. Since the fireball of quark-gluon plasma pro-
duced in an off-central heavy ion collision has an elliptical
almondlike shape, the gradients of pressure make it expand
predominantly along the minor axis, i.e., in the reaction
plane—this is the ‘‘elliptic flow’’ (for a review, see [29]).
As a result, the electric quadrupole deformation of the
plasma described above will increase the elliptic flow of

FIG. 1 (color online). Chiral charge density in the plane trans-
verse to the beam axis. Magnetic field strength eB ¼ m2

!, life-
time of magnetic field % ¼ 10 fm, temperature T ¼ 165 MeV,
impact parameter b ¼ 3 fm.

FIG. 2 (color online). Electric charge density in the transverse
plane (background subtracted, see text). Same parameters as
in Fig. 1.
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negative hadrons, and decrease the elliptic flow of positive
hadrons, leading to vþ

2 < v"
2 as demonstrated in Fig. 3.

However, the large differences in the absorption cross
sections of antiprotons and protons, and of negative and
positive kaons in hadronic matter at finite baryon density,
are likely to mask or reverse this difference in the hadron
resonance ‘‘afterburner’’ phase of a heavy ion collision. On
the other hand, the smaller difference in the absorption
cross sections of negative and positive pions potentially
may make it possible to detect the electric quadrupole
moment of the plasma through the difference of elliptic
flows of pions, v2ð!þÞ< v2ð!"Þ.

The effect can be estimated by noting that a strong radial
flow aligns the momenta of the emitted hadrons along the
direction of the radial flow (see Fig. 3). The asymmetry of
the electric charge distribution in the expanding plasma is
then translated into the asymmetry in the azimuthal distri-
bution of the positive and negative hadrons:

Nþð"Þ " N"ð"Þ /
Z

j0eðR;"ÞRdR: (8)

This asymmetry has a 0th Fourier harmonic (monopole)
originating from a nonzero net charge density:

!# e ¼
Z

RdRd"j0e;B¼0ðR;"Þ: (9)

In addition there is a 2nd harmonic (quadrupole) of the
form 2qe cosð2"Þ due to the CMW contribution:

qe ¼
Z

RdRd" cosð2"Þ½j0eðR;"Þ " j0e;B¼0ðR;"Þ': (10)

The ratio of the two r ( 2qe
!#e
can be used to parametrize the

asymmetry in the azimuthal distributions of positive and
negative hadrons:

Nþð"Þ " N"ð"Þ ¼ ð !Nþ " !N"Þ½1" r cosð2"Þ'; (11)

where !N) are the multiplicities of positive and negative
hadrons. Therefore the hadron azimuthal distributions in-
cluding the ‘‘usual’’ elliptic flow are

dN)
d"

¼ N)½1þ 2v2 cosð2"Þ'

* !N)½1þ 2v2 cosð2"Þ + A)r cosð2"Þ': (12)

In the second line we assume that both v2 and the charge
asymmetry A) ( ð !Nþ " !N"Þ=ð !Nþ þ !N"Þ are small.
The elliptic flow therefore becomes charge dependent:

v)
2 ¼ v2 +

rA)
2

: (13)

The magnitude of the effect: Numerical simulation.—As
described above, we have computed the evolution of the
right and left chiral components of the u and d quarks
according to Eq. (3) (at zero rapidity) in a static plasma.
For simplicity, we assume the temperature to be uniform
within the almond. At the boundary of the plasma, the
chiral symmetry is broken and therefore we set v$ ¼ 0.
In the transverse (with respect to the magnetic field) direc-
tion, we assume a diffusion with a diffusion constant
DT estimated [25] as DT ¼ ð2!TÞ"1 within the Sakai-
Sugimoto model. The difference in the elliptic flows of
positive and negative pions is given, within our approxi-
mation, by Eq. (13). In Fig. 4 we present the ratio r ¼
2qe= !#e as a function of impact parameter b at different
times. In this computation we took the impact parameter
dependence of the magnetic field from [3], with the maxi-
mal value eBjmax ¼ m2

!. To convert this ratio into the
difference of the elliptic flows of positive and negative
pions according to Eq. (13), we also have to estimate the
electric charge asymmetry A) in the quark-gluon plasma
that varies between 0 and 1. We do this using the baryon
chemical potential and temperature at freeze-out extracted
[30] from the data and evaluating the yields of baryons
and charged mesons; for the energy of

ffiffiffi
s

p ¼ 11 GeV we

FIG. 3 (color online). Schematic demonstration of the CMW-
induced electric quadrupole deformation carried by strong
radial flow.

2 4 6 8
b fm

10 4

0.001

0.01

r

FIG. 4 (color online). The normalized electric quadrupole mo-
ment r, eBjmax ¼ m2

!, T ¼ 165 MeV.
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right and left chiral components of the u and d quarks
according to Eq. (3) (at zero rapidity) in a static plasma.
For simplicity, we assume the temperature to be uniform
within the almond. At the boundary of the plasma, the
chiral symmetry is broken and therefore we set v$ ¼ 0.
In the transverse (with respect to the magnetic field) direc-
tion, we assume a diffusion with a diffusion constant
DT estimated [25] as DT ¼ ð2!TÞ"1 within the Sakai-
Sugimoto model. The difference in the elliptic flows of
positive and negative pions is given, within our approxi-
mation, by Eq. (13). In Fig. 4 we present the ratio r ¼
2qe= !#e as a function of impact parameter b at different
times. In this computation we took the impact parameter
dependence of the magnetic field from [3], with the maxi-
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!. To convert this ratio into the
difference of the elliptic flows of positive and negative
pions according to Eq. (13), we also have to estimate the
electric charge asymmetry A) in the quark-gluon plasma
that varies between 0 and 1. We do this using the baryon
chemical potential and temperature at freeze-out extracted
[30] from the data and evaluating the yields of baryons
and charged mesons; for the energy of
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For a given sign of A, the difference in v2  
for positive and negative particles is 
uniquely predicted
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In section II, in the unnumbered equation after eq. (4), we reported the angular distribution of the proton momentum
dN/d⌦⇤ as a function of the polarization vector ⇧0. In our convention, which follows that of ref. [10], this vector
has a maximal magnitude of 1/2, i.e. the ⇤ spin, whereas the usual convention in particle physics has as maximal
magnitude 1, i.e. 100% polarization. Therefore, the correct formula for the angular distribution with ↵ = 0.647 reads:

1

N

dN

d⌦⇤ =
1

4⇡
(1 + 2↵⇧0 · p̂⇤)

In section II, below eq. (3), we erroneously stated that, because of parity symmetry, the integral term on the
right hand side of eq. (3) involving the time derivative of � and the gradient of �0 vanishes. In fact, because of the
non-invariance of the � four-vector under reflection (�0,�) ! (�0,��), the Fermi-Dirac distribution gets changed:

n
F

=
1

e�0
"��·p+µ/T + 1

! 1

e�0
"+�·p+µ/T + 1

and the second term on the right-hand-side of eq. (3) does contribute to the polarization vector. This additional term
vanishes in the non-relativistic limit of the flow k�k ⌧ �0 and of the particle as well (kpk ⌧ ").

Under the conditions explored in the paper and according to our calculations, initially the relative contribution of
the neglected term to ⇧0y in eq. (3) is small and positive. However, for later times, it increases and at 4.75 fm/c -
the time chosen for the stopping of the hydrodynamical regime - it overcomes the first term at high |p

x

| and small
|p

y

|. As a consequence, the overall pattern of the p
T

-dependence of ⇧0y(px, py) changes considerably with respect to
our previous calculation, with a maximal positive (i.e. opposite to the angular momentum, see fig. 1 in the paper)
polarization of 8% at high |p

x

| and small |p
y

| and a minimum at -6% (negative, i.e. along the angular momentum) at
high |p

y

| and small |p
x

| momenta, while the momentum average of the ⇧0y remains negative, see figure below.
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FIG. 1: (Color online) Replacement of figure 3. The y component (left panel) and the modulus of the polarization (right panel)

in the rest frame of the ⇤s as a function of momentum in the transverse plane (i.e., at pz = 0).

Note that in the corrected figure 3 above, we have plotted the polarization normalized to 1, that is 2⇧ with ⇧ as
in eq. (1), (3), (4).

L-G. Pang et al. / Nuclear Physics A 00 (2017) 1–4 3

Fig. 2. The rapidity and azimuthal angle distribution of ⇤ spin projected to y direction for Pb+Pb
p

sNN = 2.76 TeV (left), Au+Aup
sNN = 200 GeV (middle) and Au+Au

p
sNN = 62.4 GeV (right) collisions.

and generated during the fluid evolution. As shown in Fig. 2, the polarization are shifted to the �y direction
which is the direction of the global angular momentum. Locally, the azimuthal angle distribution for Py has
a cosine structure which indicates a vortex ring [10]. The helicity of the vortex ring is opposite for forward
and backward rapidity. The polarization at mid-rapidity shows a weaker azimuthal angle dependence. The
maximal magnitude of the polarization at 62.4 GeV is about 5 times that at 2.76 TeV.

Fig. 3. The rapidity and azimuthal angle distribution of⇤ spin projected to y direction Py for (1) with initial transverse flow, (2) without
initial transverse flow.

For comparison, we compute the local polarization of ⇤ by the CLVisc model with the initial trans-
verse flow vx and vy given by the energy-momentum tensor T µ⌫ of initial partons by the AMPT. With this
configuration, the deposited initial angular momenta are not only given by the matter asymmetry (between
x > 0 and x < 0) but also by the vx gradients along ⌘. As a result, the local polarization at � = 0 now has
the similar magnitude to that at � = ⇡ as shown in Fig. 3. This dramatic change indicates that the local
polarization of ⇤ hyperons around mid-rapidity may provide rigorous constraints on the initial transverse
flow.

3. Global ⇤ polarization from AMPT

We also compute the energy dependence of the global ⇤ polarization within the AMPT model. The
fluid velocity and vorticity field are computed from the event average of the four-momentum of all particles
in each space-time cell. We consider two impact parameters b = 7 fm and 9 fm at each specific collision
energy. The product of the vorticity field⌦zx and the⇤ distribution f⇤ is integrated over on the hyper-surface
to obtain the global ⇤ polarization. The numerical result with both primary ⇤ and feed-down contributions
agrees with experimental data semi-quantitatively. The energy dependence is investigated in details using
the distribution of f⇤ and ⌦zx. A visualization of these two quantities in the reaction plane indicates that the
angular momentum deposition at mid-rapidity is quite small for high beam energies, which is consistent with
the Bjorken scaling scenario. This scaling is broken for low beam energies with large asymmetry between
the forward and backward going participants, which gives rise to a tilted shape at the mid-rapidity, see Ref.
[15] for details.
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Abstract

We compute the fermion spin distribution in the vortical fluid created in o↵-central high energy heavy-ion collisions.
We employ the event-by-event (3+1)D viscous hydrodynamic model. The spin polarization density is proportional to
the local fluid vorticity in quantum kinetic theory. As a result of strong collectivity, the spatial distribution of the local
vorticity on the freeze-out hyper-surface strongly correlates to the rapidity and azimuthal angle distribution of fermion
spins. We investigate the sensitivity of the local polarization to the initial fluid velocity in the hydrodynamic model and
compute the global polarization of ⇤ hyperons by the AMPT model. The energy dependence of the global polarization
agrees with the STAR data.

Keywords: Vorticity, Polarization, Spin distribution and correlation

1. Introduction

Recently the STAR collaboration has measured the polarization of⇤ and ⇤̄ hyperons [1]. They observed
that (a) the global polarization decreases with collision energies; (b) the polarization for ⇤̄ is always bigger
than ⇤ at the same beam energy. These two features are very important to quantitatively constrain the
fluid vorticity of the strongly coupled quark-gluon plasma (sQGP) and the magnitude of the magnetic field
through the spin-vorticity and spin-magnetic coupling [2–4]. The measured beam energy dependence is
consistent with the predictions of the hydrodynamic or transport model [2, 5–10]. The di↵erence between
⇤ and ⇤̄ is caused by (1) pauli-blocking – it is more di�cult to polarize ⇤s than ⇤̄s when there are more
fermions than anti-fermions [11]; (2) the spin-magnetic coupling – it generates opposite contributions to ⇤
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In section II, in the unnumbered equation after eq. (4), we reported the angular distribution of the proton momentum
dN/d⌦⇤ as a function of the polarization vector ⇧0. In our convention, which follows that of ref. [10], this vector
has a maximal magnitude of 1/2, i.e. the ⇤ spin, whereas the usual convention in particle physics has as maximal
magnitude 1, i.e. 100% polarization. Therefore, the correct formula for the angular distribution with ↵ = 0.647 reads:
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d⌦⇤ =
1

4⇡
(1 + 2↵⇧0 · p̂⇤)

In section II, below eq. (3), we erroneously stated that, because of parity symmetry, the integral term on the
right hand side of eq. (3) involving the time derivative of � and the gradient of �0 vanishes. In fact, because of the
non-invariance of the � four-vector under reflection (�0,�) ! (�0,��), the Fermi-Dirac distribution gets changed:
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=
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e�0
"��·p+µ/T + 1
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and the second term on the right-hand-side of eq. (3) does contribute to the polarization vector. This additional term
vanishes in the non-relativistic limit of the flow k�k ⌧ �0 and of the particle as well (kpk ⌧ ").

Under the conditions explored in the paper and according to our calculations, initially the relative contribution of
the neglected term to ⇧0y in eq. (3) is small and positive. However, for later times, it increases and at 4.75 fm/c -
the time chosen for the stopping of the hydrodynamical regime - it overcomes the first term at high |p

x

| and small
|p

y

|. As a consequence, the overall pattern of the p
T

-dependence of ⇧0y(px, py) changes considerably with respect to
our previous calculation, with a maximal positive (i.e. opposite to the angular momentum, see fig. 1 in the paper)
polarization of 8% at high |p

x

| and small |p
y

| and a minimum at -6% (negative, i.e. along the angular momentum) at
high |p

y

| and small |p
x

| momenta, while the momentum average of the ⇧0y remains negative, see figure below.

FIG. 1: (Color online) Replacement of figure 3. The y component (left panel) and the modulus of the polarization (right panel)

in the rest frame of the ⇤s as a function of momentum in the transverse plane (i.e., at pz = 0).

Note that in the corrected figure 3 above, we have plotted the polarization normalized to 1, that is 2⇧ with ⇧ as
in eq. (1), (3), (4).
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3.4 Reconstruction of φ

The φ-meson was reconstructed via its hadronic decay channel: φ → K+ +K− (branching

ratio 48.9%) [72]. The selections applied for the decay products were identical to those of

primary K±, described in section 3.2. The φ-meson yield was extracted from the invariant

mass (minv) reconstructed from the unlike-sign kaon pairs.

The combinatorial background was evaluated using the like-sign kaon pairs in each

pT and centrality interval. The like-sign background minv distribution is normalised to

the corresponding distribution of unlike-sign pairs in the region above the φ-meson mass

(1.04 < minv < 1.09GeV/c2). An example of an invariant mass distribution before the

like-sign subtraction for 0.6 < pT < 1.2GeV/c is given in figure 2 (c) for the 10–20%

centrality interval of Pb-Pb collisions. The remaining background was estimated using a

third-order polynomial.

These invariant mass distributions were then fitted with a relativistic Breit-Wigner

distribution, describing the signal in the mass peak. The v2(pT) results for the φ-meson

are reported for |y| < 0.5 and 0.6 < pT < 6.0GeV/c for the centrality intervals covering

the 10–60% of the inelastic cross section. For the 10% most central Pb-Pb collisions,

the extraction of the signal over the large combinatorial background resulted into large

uncertainties using the currently analysed data sample.

– 8 –

~ 15 M events

⌅ ! ⇤+ ⇡ ↵⌅ = �0.406± 0.013

http://file://localhost/users/voloshin/desktop/untitled.xcf


Chi2018, Galileo Galilei Institute,, Florence, Italy, 19-22 March 2018page S.A. Voloshin

Barnett and Einstein-de Haas effects

34

- 2 -

696 

Physics. - "Evpel'imental prooj of tlie e.1Jistence oj Ampèl'e's -
molecula1' CU7'7'ents." By Prof. A. EINSTl!.IN and Dl'. W. J. DE HAAS. 
(Comlllunicated by Prof. H. A. 

(Communicated in the meeting of April 23, 1915). 

W"hen it had been discovered by OBRSTED that magnetic actions 
are exerted not onIy by permanent lllagnets, but also by electric 
currents, there seemed to be two entirely different ways in which 
a lllagnetic field can be produred. This conception, however, conld 
hardly be considered as satisfactory and physicists soon tried to 
refer the two actions to one and the same cause. AMPÈRE succeeded 
in doing so by his celebrated hypothesis 0] rurrents circulating 
around tbe molecules without encountering any resistance. 

The same assulllption is made in tbe theory of electrons in tbe 
form e.g. in which it has been developed by H. A. LORENTZ, the 
only difference being that, like electric currents in general, the 
lllolecular currents are now J'egarded as a cil'culation of elementary 
charges or electrons. 

It cannot be denied tbat these views caIl forth some objections. 
One of these is even more serious than it was in AMPÈRE'S days; 
it is difficult to concei\'e a circulation of electricity free from all 
resistance and therefore continuing for ever. lndeed, according to 
MAXIDlLL'S equations circulating electrons must lose their energy 
by radiation; the molecules of a magnetic body wonld therefore 
gradually lose their magnetic moment. Nothing of the kind having 
ever been observed, the hypotbesis, seems' irreconcilable with a 
general validity of the fnndamental laws of electromagnetism_ 

Again, the law of CURIE-IJANGBVIN requires that tbe magnetic 
moment of a molecule shaLL be independent of the temperatul'e, and 
shall still exist at the absolnte zero. The energy of the revolving 
electrons would, therefore be a true zero point energy. In tbe 
opinion of many physicists however, the existence of an energy of 
tbis kind is. very improbable. 

Tt appears by these remarks that aftel' all as much may be said 
in favour of AMPÈRE'S hypothBsis as against it and that the question 
concerns important physical principles. We have therefore made 
the experiments here to be described. by wbich we have been able 
to' show that the magnetic moment of an Îl'on molerule is really 
due to, a circulation of electrons. 

The possibility of an experimental proof lies in tbe fact that every 
negative electl'on m a rlosed path has a moment of 
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§ 2. Consequence 0/ the existence 0/ a magnetic moment 
of momentum. 

(4) 

Any change of tIle moment of momentum .2ID? of a magnetized 
body gives rise to a couple 0 determined by tIle vector equation 

dm? dI 
& = - .2 di = 1,13.10-7 dt . . . (5) 

wh ere the numerical coefficient bas been deduced from the known 
e 

"alue of - for negative electrons. 
m 

It ,has been our aim to verifYI the relation expl'essed by (5). We 
I'lhall show in. the first place that the calcnlated effect is not too 
smail to be observed. Let the body be an iron cylinder with radius 
R, which can rotate about its vertical axis. 'Ve shall deduce from 
(5) the angular velocity w the cylinder acquil'es by the l'eversal of 
a longitudinal magnetisation, which we suppose to have tile satmu-
tion \'alue Is. Denoting by Q the moment of inertia 'Of the cylinder, 
and writing }. for (he above coefficient 1,13 . 10-7, we 

Qw = J&dt = 2J.Is . 
Now, if the satllration vaille of the magnetisation per cm 3 is 1000, 

Lvi 
which is not a high estimate, we have Is = - . 1000. The moment 7,8 
of inertia is Q = !; MR2, and we find for R = 0,1 cm 

w = 0,6 . 10-2, 

an angular velocity that can easily be observed. 

§ 3. DesC1'iption 0/ t!te met/wd. 
At first sight it seems that equation (5) may be tested in the 

following way. A soft iron cylinder C is sllspended by a thin wire 
D coinciding with the axis of tlte cylinder prolonged, the period of 
the torsional oscillatiolls being a few seconds. Let the cylinder C 
be surrounded by a coil K whose axis coincides with thnt of C. 
Then, on reversing a cunent in 1(, a rotation of C ollght to be 
obsei·ved. In reality, howe\'er, this simple method cannot be thought 
of. As the field of the roil wilI not be uniform the cylinder 
would probably show highly irl'eglliar motions rompletely masking 
the effect that is sought for. 

\ . 
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-
Ordi· y[j2 p 11 b 1-b2 11 1-b2 nates 

-
15 0,0911 0,812 1,32 0,120 

12 0,152 0,649 0,853 0,130 

9 0,221 0,488 0,560 0,124 

7 0,293 0,380 0,413 0,121 

5 0,403 0,271 0,280 0,114 

4 0,489 0,217 0,222 0,108 

3 0,618 0,163 0,165 0,0957 

The last column shows that fol' the gl'eatel', deviations, not less 

than 7 mm, the cu rve agl'ees satisfactorily with theol'y, 11 V 1 b
2 

b
2 

being sufficiently constant. If we pass on to smaller ol'dinates this 
<}uantity seems to decrease "e1'y rapidly. lL must be remarked llOW-

ever tlmt the small ordmates cannot be measul'ed with sufficient 
precision. We shal1 therefore use tbe first foul' ordinntes on1.1. The 
mean of the nllmbel's deduced from them is 

11 V 1 b
2

b, = 0,124. 

Fnrther it follows from the curve that 
1,85 

/a/ m= 145,4 = 0,320.10- 2• 

'rhe moment of inertia of the vibrating system was determined 
by meaburing the change of frequenC'y pl'oduced by tbe addition of 
a small moment of inertia, which is aC'curately lmown. 

We found 1) fol' it 
Q= 0,0126 

If now we take 1300 fol' the magnetization (calculated fl'om the 
hystel'esis curve of the material nnd the constants of the cad) we 
find for the maguetic moment of the cy linde!' 

Is = 470. 
With these numbel's equation (17) leads to the value 

1) h may be roentioned here tha t, as.,uroing a pure cylindl'ical form, we calcu· 
laled for the moment of inertia of the cylindel' wilhout the glass tube and the 
little mirror Q = 0,0102. 
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1 = 1,1. i 0-7, 

which agrees very wel! with tbe theoretical one 1,:13. 10-7• 

We must observe, however, that we cannot assign to onr measu-
rements a greater preci&ion than of 10%

, 

It seems to us th at wItbin these hmits the theoretICal conclusions 
have been fairly eonfirmed by OUl' obseryations .. 

The experiments bave been cal'rled out in tIle "Physlkalisch-Tech-
nische Reichsanstalt". We wan t to expr ess our thanks fOl" the appa-
mtus lnndly placed at our dIsposition. 

Physics. - "On a possible influence of the on 
saZar p/tenomena". By Prof. P. ZEEMAN. 

(Oommunicated lil the meeting of September 25, 1915). 

1 d(.l 
We shall prove, herf, that the pl'esence of the term - - -d of 

{J, J. _ 
LORENTZ in the expression fol' the FRESNEL coefficient (cf. also my 
paper Vol. 18, p. 398 of these Pl'oceedings) may give rise to a 
change in the propagation of light waves if in a moving, refracting 
medIUm a change of velocity OCClll"S. I suppose the medIUm to have 
everywhere the same density and to be flowlng with a veloei/y v 
parallel to the axis of X in a system of coordinates that is at rest WItll 
respect to the obsel'ver. ln the direction of the Z axis a velocIty 
gl'adient exists in sueh a way, that the veloci/y decl'eases with tbe 
distance to the X axis and becomes zero at the distance z -== 6. If 
now the incident lighfbeam (wtth a plane wave front) is parallel to 
the axis of X, tlle parts of the wave fronts wlllrh are neal' tlus 
axis will be more carried with the medIUm than those at a gteatel' 
distauce. The wave front wIll thus be rotated. 

If the velocity derl'eases linearly in thc direction of the Z axis 
the wavefront will remain plane. ln a time t the angle of rota/ion, 

E.U.t. 
(supposed to be small) rvill be a = whet'e E is tbe FRESNEL 

co€'fficient and where v and 6 have the a.bove mentlOned meanillg. 
More iu generfil we may cOl1sidel' an element of the wave ft'oni 

, du v 
alld then write dz for 6' Moreovel' mal' be expresserl as a fune-

tion of the velocity of light and the path thl'ough whieh the l'nys 
have travelled, so that we find 

El dv 
I!=--

IJ/tl d:: 

Proceedings Royal Acad. Amsterdam. Vol. XVIII. 

(1) 

46 

268

of torsion on any of the deflections observed in the experiments on rota-
tion must thus have been far less than the smallest readable quantity.
(36. As a result of all that precedes we are forced to the conclusion

that the rotation of a rod of steel' produces therein an intrinsic magnetic
intensity proportional to the angular velocity and acting in a direction
opposite to the intensity which would be produced by an electric current
flowing around the rod in the direction of rotation, as required by the
theory proposed in ($1 and 5.
To obtain the intrinsic magnetic intensity per unit speed it is now

necessary only to multiply half the mean differential deflection per unit
speed, given in )29, by the intrinsic intensity per unit deflection, Ho,
given in )ted. In this way we obtain

II mm. gauss gaussX 0.050 X I.26 X Io 5——= —3.I6 X Io —.(I3)
Ã 1".P.S. mm. r.p.s. '

Similarly, from $fa9 and x3, we obtain for the magnetic flux-density
per unit speed produced by the intrinsic intensity of rotation in the
central part of the rotor, the quantity

mm. maxwells &——', X o.o5o—X 7.7 X to-', ( per mm.1.P.S. cm.'
& maxwells &= —r.9 X to-' ], ( per r.p.s.cm.2

This quantity divided by 4m gives an approximate value of the in-
tensity of magnetization at the center of the rotor per unit speed, viz. ,

—I.5 X Io—' c.g.s. unit per r.p.s.
The magnitude of H/n given in equation (t3) as a result of the last

series of experiments is, within the experimental error, equal to one half
the maximum value computed in equation (9) on the assumption that
negative electrons alone are effective. The same is true of the result of
the earlier observations given in
$37. For the same intrinsic magnetic intensity of rotation and the

same material, the intensity of magnetization depends upon the shape
of the rotating body and is less for a sphere than for a long cylinder.

I In the experiments of Lebedew (Ann. der Phys. , 3g, xgxa, p. 84o) the magnetic effect
of rotating at high speed anyone of the several non-magnetic substances tried was nil, in con-
formity with the theory set forth in this paper. Lebedew's experiments were performed for a
different purpose from thatof this investigation, their object being to study the effect of cen-
trifugal electron displacement, and the data he gives are insufficient for an exact calculation of
the superior limit they give for the effect considered here. An approximate calculation, how-
ever, can be made and shows that the intensity of magnetization produced in Lebedew's non-
magnetic bodies was not greater than about one hundredth of the value here obtained for
steel, reduction being made to the same speed.
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rior be encouraged. No new methods are sug-
gested for securing these desirable enids, but
an excellent statement is made of reasons why
they should be sought.

Chapter VI. was originally written as a pro-
test against eugenics of the more rabid sort,
and even in its present somewhat modified
form presents a rather strong contrast to the
preceding chapter. It takes issue with the
fatalistic, mechanistic, view of development,
which would assign to heredity all the ills that
flesh is heir to, and would deprive the indi-
vidual of all ability to alter his career and
character or to deviate from the course which
fate had marked out for him in the constitu-
tion of his germ-plasm. This protest had at
the time and still has occasion and utility.
The book as a whole is an attempt to evaluate
biologically heredity and environment, to show
that both are indispensable, and accordingly
that nieither should be emphasized to the
neglect of the other. In this balanced view of
the two sets of ageiieies lies the peculiar merit
of this excellent book.

W. E. CASTLE

SPECIAL ARTICLES
MAGNETIZATION BY ROTATION

ABOUT six years ago I published in this jour-
nal a note in which it was shown that on the
modern theory of magnetism any magnetic
substance should become magnetized by a sort
of molecular gyroscopic process on being set
into rotation. Rotation slhould produce in any
substance an intrinsic magnetic intensity
parallel to the axis of rotation, proportional to
the angular velocity, and (like the magnetiza-
tion of the earth) directed oppositely to the
magnetic intensity which would be produced
by an electric current circulating around the
substance in the direction of rotation. If the
rotating body is magnetic, magnetization, pro-
portional to the intensity, should restult; other-
wise not (except to a very minute extent).

Preliminary experiments mentioned in the
note referred to appeared, though doubtfully,
to show the effect in question in the case of a
large iron rod rotated at a speed of about 90
revolutions per seconid. Later observations

made in much the same way, but with an at-
tempt at improvement in apparatus, failed to
confirm this result with any certainty; and
further investigation was postponed until
better facilities were available.

Recently I have made, again with Mirs.
Barnett's assistance, experiments which have
yielded definite and conclusive results. In the
final experiments two nearly similar rods of
steel shafting were mounted with their axes
horizontal and perpendicular to the magnetic
meridian, and two similar coils of insulated
wire were mounted about their centers. These
coils were connected in series with one another
and with a Grassot fluxmeter, and were oppo-
sitely wound so that any variations in the in-
tensity of the earth's field produced no effect on
the fluxmeter. One of the rods remained at rest;
while the other, mounted in a region in which
the earthYs magnetic intensity was compensated
by an electric current flowing in a very large
coil, was alternately rotated by an air motor
and brought to rest, the change of flux for
different speeds and different directions of ro-
tation being determined by the fluxmeter.
The fluxmeter was compensated for extraneous
electromotive forces, and was read by mirror
and scale to 0.1 mm. at the scale distance 8
meters. After all suspected sources of syste-
matic error were eliminated, an effect was
left corresponding precisely with that pre-
dicted by the above theory and inexplic-
able on any other theory hitherto proposed.
The intrinsic magnetic intensity of rota-
tion per unit speed, and the change of flux-
d*ensity at the center of the iron rod per unit
speed, were found to be 3.1 X 10-7 gauss/r.p.s.
and 1.9 X 10-5 maxwells/cm.2 per r.p.s., re-
spectively.
From experiments made for a different pur-

pose by Lebedew in 1912 it can be shown that
in non-magnetic suLbstances not more than a
minute fraction of the magnetization we have
observed in iron is produced at the same speed.

It is not, of course, possible to obtain iron
rods entirely free from magnetization, and ob-
servations were always mlade on changes of
residual flux. Together with the change of
flux proportional to the an-gular velocity, the
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nal a note in which it was shown that on the
modern theory of magnetism any magnetic
substance should become magnetized by a sort
of molecular gyroscopic process on being set
into rotation. Rotation slhould produce in any
substance an intrinsic magnetic intensity
parallel to the axis of rotation, proportional to
the angular velocity, and (like the magnetiza-
tion of the earth) directed oppositely to the
magnetic intensity which would be produced
by an electric current circulating around the
substance in the direction of rotation. If the
rotating body is magnetic, magnetization, pro-
portional to the intensity, should restult; other-
wise not (except to a very minute extent).

Preliminary experiments mentioned in the
note referred to appeared, though doubtfully,
to show the effect in question in the case of a
large iron rod rotated at a speed of about 90
revolutions per seconid. Later observations

made in much the same way, but with an at-
tempt at improvement in apparatus, failed to
confirm this result with any certainty; and
further investigation was postponed until
better facilities were available.

Recently I have made, again with Mirs.
Barnett's assistance, experiments which have
yielded definite and conclusive results. In the
final experiments two nearly similar rods of
steel shafting were mounted with their axes
horizontal and perpendicular to the magnetic
meridian, and two similar coils of insulated
wire were mounted about their centers. These
coils were connected in series with one another
and with a Grassot fluxmeter, and were oppo-
sitely wound so that any variations in the in-
tensity of the earth's field produced no effect on
the fluxmeter. One of the rods remained at rest;
while the other, mounted in a region in which
the earthYs magnetic intensity was compensated
by an electric current flowing in a very large
coil, was alternately rotated by an air motor
and brought to rest, the change of flux for
different speeds and different directions of ro-
tation being determined by the fluxmeter.
The fluxmeter was compensated for extraneous
electromotive forces, and was read by mirror
and scale to 0.1 mm. at the scale distance 8
meters. After all suspected sources of syste-
matic error were eliminated, an effect was
left corresponding precisely with that pre-
dicted by the above theory and inexplic-
able on any other theory hitherto proposed.
The intrinsic magnetic intensity of rota-
tion per unit speed, and the change of flux-
d*ensity at the center of the iron rod per unit
speed, were found to be 3.1 X 10-7 gauss/r.p.s.
and 1.9 X 10-5 maxwells/cm.2 per r.p.s., re-
spectively.
From experiments made for a different pur-

pose by Lebedew in 1912 it can be shown that
in non-magnetic suLbstances not more than a
minute fraction of the magnetization we have
observed in iron is produced at the same speed.

It is not, of course, possible to obtain iron
rods entirely free from magnetization, and ob-
servations were always mlade on changes of
residual flux. Together with the change of
flux proportional to the an-gular velocity, the

163

 o
n 

M
ar

ch
 2

1,
 2

01
7

ht
tp

://
sc

ie
nc

e.
sc

ie
nc

em
ag

.o
rg

/
D

ow
nl

oa
de

d 
fr

om
 

Second Series. October, rgzg Vol. VI.,¹.y
THE

MAGNETIZATION BY ROTATION. '

BY S. J. BARNETT.

ftI. In I909 it occurred to me, while thinking about the origin of
terrestrial magnetism, that a substance which is magnetic (and there-
fore, according to the ideas of Langevin and others, constituted of atomic
or molecular orbital systems with individual magnetic moments 6xed
in magnitude and differing in this from zero) must become magnetized
by a sort of molecular gyroscopic action on receiving an angular velocity.
Thus consider a cylinder of iron, with zero magnetic moment in its

initial state. If it is given an angular acceleration about its axis, each
individual system, which we may suppose for simplicity to consist of a
number of electrons revolving in fixed orbits with constant average
velocities .about an oppositely charged nucleus, will change its orienta-
tion in such a way as to contribute a minute angular momentum, and
therefore a minute magnetic moment, parallel to the axis of the cylinder.
This increment of angular momentum of each system is in the direction
of the axis of rotation, and the corresponding increment of the magnetic
moment is either in this direction or in the opposite direction according
as the particles in revolution are positive or negative. If the revolving
electrons are all negative, in conformity with most of the experimental
evidence, the cylinder will become magnetized in the direction. in which
it would be magnetized by an electric current flowing around it in a
direction opposite to that of the angular velocity imparted to it. This
corresponds to the direction of magnetization of the earth and the sun.
(2. Preliminary experiments made at the Tulane University of Louisi-

ana at the time this idea occurred to me appeared to show, ' though
doubtf'ully, a very minute e8ect of the sort in question, on the assumption
that the revolving electrons are negative, in the case of a steel rod about

I Revision of papers read before the Ohio Academy of Sciences, November, x9I4, and the
American Physical Society, November, x9I3, December, x9I4, and April, x9xS.

2 S. J. Barnett, Science, 30, I909, p. 4I3.

Vor..VI.
No. 4. MAGNZTIZA TION BF ROTA TION.

state is exactly the same as if the body were at rest and the system were
acted upon by a torque T"=—T' due to an extraneous magnetic Geld
with strength JI equal to the intrinsic magnetic intensity of rotation.
The complete expression for T" is known (and can readily be shown
from first principles) to be

T" = —T' = —~Q sin 0 —jgQ sin 0 cos 0,
where 8 denotes the excess of the moment of inertia of the system about
the axis of its orbital angular velocity co over the moment of inertia
about that diameter of the orbit making with AB the angle 90 —0. If
the orbit is circular

3'8 = mr' ——' mr' =—.2 2Q)

Eliminating 8 and 3f from (5), we get
m f Q7" = —y sin 0 2—0 ( x + —', —cos 0 ~

.
e i co

(6)

(7)

Dividing this expression by —p, sin 0, as in the case of an ordinary mag-
netic field, we get the intrinsic intensity of rotation:

m t, QH = 2 —II i t + —', —cos 8 i .e (8)

The values of 0 experimentally attainable are so small in comparison
with cu that the second term is negligible. If the orbit is not circular
we obtain for II an expression whose 6rst term is identical with that of
(8) and whose second term has the same order of magnitude as that of (8).
If we assume that e/m has the value ordinarily accepted for the negative

electron in slow motion, viz. , —x.7p X Io', and put Q = 2~v, where e
is the angular velocity in revolutions per second, we obtain for the in-
tensity per unit angular velocity

gauss
H/11 = —7,I X Io r.p.s. '

This is on the assumption that the negative electron alone is effective.
According to this, all substances would be acted upon by precisely the
same intensity for the same angular velocity.
If some or all of the positive ions also have orbital motions, propor-

tionality with angular velocity will evidently still exist, but the coefficient
of Q will be reduced in magnitude or even changed in sign, and the in-
tensities acting on different substances may differ for the same value of Q.

I This equation, as stated above, also follows immediately from Maxwell's equation for the
torque when the conditions here assumed are put in.

~ The erst term of this equation has been given previously by Einstein and, de Haas (1. c.),
but is incorrectly derived in their paper, equations for a molar magnet instead of a molecular
magnet being employed. All the terms of their equations reduce to zero unless the body
is originally magnetized.

To compare to Barnett’s results, 
multiply by 2𝝅
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Physics. - "Evpel'imental prooj of tlie e.1Jistence oj Ampèl'e's -
molecula1' CU7'7'ents." By Prof. A. EINSTl!.IN and Dl'. W. J. DE HAAS. 
(Comlllunicated by Prof. H. A. 

(Communicated in the meeting of April 23, 1915). 

W"hen it had been discovered by OBRSTED that magnetic actions 
are exerted not onIy by permanent lllagnets, but also by electric 
currents, there seemed to be two entirely different ways in which 
a lllagnetic field can be produred. This conception, however, conld 
hardly be considered as satisfactory and physicists soon tried to 
refer the two actions to one and the same cause. AMPÈRE succeeded 
in doing so by his celebrated hypothesis 0] rurrents circulating 
around tbe molecules without encountering any resistance. 

The same assulllption is made in tbe theory of electrons in tbe 
form e.g. in which it has been developed by H. A. LORENTZ, the 
only difference being that, like electric currents in general, the 
lllolecular currents are now J'egarded as a cil'culation of elementary 
charges or electrons. 

It cannot be denied tbat these views caIl forth some objections. 
One of these is even more serious than it was in AMPÈRE'S days; 
it is difficult to concei\'e a circulation of electricity free from all 
resistance and therefore continuing for ever. lndeed, according to 
MAXIDlLL'S equations circulating electrons must lose their energy 
by radiation; the molecules of a magnetic body wonld therefore 
gradually lose their magnetic moment. Nothing of the kind having 
ever been observed, the hypotbesis, seems' irreconcilable with a 
general validity of the fnndamental laws of electromagnetism_ 

Again, the law of CURIE-IJANGBVIN requires that tbe magnetic 
moment of a molecule shaLL be independent of the temperatul'e, and 
shall still exist at the absolnte zero. The energy of the revolving 
electrons would, therefore be a true zero point energy. In tbe 
opinion of many physicists however, the existence of an energy of 
tbis kind is. very improbable. 

Tt appears by these remarks that aftel' all as much may be said 
in favour of AMPÈRE'S hypothBsis as against it and that the question 
concerns important physical principles. We have therefore made 
the experiments here to be described. by wbich we have been able 
to' show that the magnetic moment of an Îl'on molerule is really 
due to, a circulation of electrons. 

The possibility of an experimental proof lies in tbe fact that every 
negative electl'on m a rlosed path has a moment of 
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§ 2. Consequence 0/ the existence 0/ a magnetic moment 
of momentum. 

(4) 

Any change of tIle moment of momentum .2ID? of a magnetized 
body gives rise to a couple 0 determined by tIle vector equation 

dm? dI 
& = - .2 di = 1,13.10-7 dt . . . (5) 

wh ere the numerical coefficient bas been deduced from the known 
e 

"alue of - for negative electrons. 
m 

It ,has been our aim to verifYI the relation expl'essed by (5). We 
I'lhall show in. the first place that the calcnlated effect is not too 
smail to be observed. Let the body be an iron cylinder with radius 
R, which can rotate about its vertical axis. 'Ve shall deduce from 
(5) the angular velocity w the cylinder acquil'es by the l'eversal of 
a longitudinal magnetisation, which we suppose to have tile satmu-
tion \'alue Is. Denoting by Q the moment of inertia 'Of the cylinder, 
and writing }. for (he above coefficient 1,13 . 10-7, we 

Qw = J&dt = 2J.Is . 
Now, if the satllration vaille of the magnetisation per cm 3 is 1000, 

Lvi 
which is not a high estimate, we have Is = - . 1000. The moment 7,8 
of inertia is Q = !; MR2, and we find for R = 0,1 cm 

w = 0,6 . 10-2, 

an angular velocity that can easily be observed. 

§ 3. DesC1'iption 0/ t!te met/wd. 
At first sight it seems that equation (5) may be tested in the 

following way. A soft iron cylinder C is sllspended by a thin wire 
D coinciding with the axis of tlte cylinder prolonged, the period of 
the torsional oscillatiolls being a few seconds. Let the cylinder C 
be surrounded by a coil K whose axis coincides with thnt of C. 
Then, on reversing a cunent in 1(, a rotation of C ollght to be 
obsei·ved. In reality, howe\'er, this simple method cannot be thought 
of. As the field of the roil wilI not be uniform the cylinder 
would probably show highly irl'eglliar motions rompletely masking 
the effect that is sought for. 

\ . 
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-
Ordi· y[j2 p 11 b 1-b2 11 1-b2 nates 

-
15 0,0911 0,812 1,32 0,120 

12 0,152 0,649 0,853 0,130 

9 0,221 0,488 0,560 0,124 

7 0,293 0,380 0,413 0,121 

5 0,403 0,271 0,280 0,114 

4 0,489 0,217 0,222 0,108 

3 0,618 0,163 0,165 0,0957 

The last column shows that fol' the gl'eatel', deviations, not less 

than 7 mm, the cu rve agl'ees satisfactorily with theol'y, 11 V 1 b
2 

b
2 

being sufficiently constant. If we pass on to smaller ol'dinates this 
<}uantity seems to decrease "e1'y rapidly. lL must be remarked llOW-

ever tlmt the small ordmates cannot be measul'ed with sufficient 
precision. We shal1 therefore use tbe first foul' ordinntes on1.1. The 
mean of the nllmbel's deduced from them is 

11 V 1 b
2

b, = 0,124. 

Fnrther it follows from the curve that 
1,85 

/a/ m= 145,4 = 0,320.10- 2• 

'rhe moment of inertia of the vibrating system was determined 
by meaburing the change of frequenC'y pl'oduced by tbe addition of 
a small moment of inertia, which is aC'curately lmown. 

We found 1) fol' it 
Q= 0,0126 

If now we take 1300 fol' the magnetization (calculated fl'om the 
hystel'esis curve of the material nnd the constants of the cad) we 
find for the maguetic moment of the cy linde!' 

Is = 470. 
With these numbel's equation (17) leads to the value 

1) h may be roentioned here tha t, as.,uroing a pure cylindl'ical form, we calcu· 
laled for the moment of inertia of the cylindel' wilhout the glass tube and the 
little mirror Q = 0,0102. 

- 17 -

711 
1 = 1,1. i 0-7, 

which agrees very wel! with tbe theoretical one 1,:13. 10-7• 

We must observe, however, that we cannot assign to onr measu-
rements a greater preci&ion than of 10%

, 

It seems to us th at wItbin these hmits the theoretICal conclusions 
have been fairly eonfirmed by OUl' obseryations .. 

The experiments bave been cal'rled out in tIle "Physlkalisch-Tech-
nische Reichsanstalt". We wan t to expr ess our thanks fOl" the appa-
mtus lnndly placed at our dIsposition. 

Physics. - "On a possible influence of the on 
saZar p/tenomena". By Prof. P. ZEEMAN. 

(Oommunicated lil the meeting of September 25, 1915). 

1 d(.l 
We shall prove, herf, that the pl'esence of the term - - -d of 

{J, J. _ 
LORENTZ in the expression fol' the FRESNEL coefficient (cf. also my 
paper Vol. 18, p. 398 of these Pl'oceedings) may give rise to a 
change in the propagation of light waves if in a moving, refracting 
medIUm a change of velocity OCClll"S. I suppose the medIUm to have 
everywhere the same density and to be flowlng with a veloei/y v 
parallel to the axis of X in a system of coordinates that is at rest WItll 
respect to the obsel'ver. ln the direction of the Z axis a velocIty 
gl'adient exists in sueh a way, that the veloci/y decl'eases with tbe 
distance to the X axis and becomes zero at the distance z -== 6. If 
now the incident lighfbeam (wtth a plane wave front) is parallel to 
the axis of X, tlle parts of the wave fronts wlllrh are neal' tlus 
axis will be more carried with the medIUm than those at a gteatel' 
distauce. The wave front wIll thus be rotated. 

If the velocity derl'eases linearly in thc direction of the Z axis 
the wavefront will remain plane. ln a time t the angle of rota/ion, 

E.U.t. 
(supposed to be small) rvill be a = whet'e E is tbe FRESNEL 

co€'fficient and where v and 6 have the a.bove mentlOned meanillg. 
More iu generfil we may cOl1sidel' an element of the wave ft'oni 

, du v 
alld then write dz for 6' Moreovel' mal' be expresserl as a fune-

tion of the velocity of light and the path thl'ough whieh the l'nys 
have travelled, so that we find 

El dv 
I!=--

IJ/tl d:: 

Proceedings Royal Acad. Amsterdam. Vol. XVIII. 

(1) 
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of torsion on any of the deflections observed in the experiments on rota-
tion must thus have been far less than the smallest readable quantity.
(36. As a result of all that precedes we are forced to the conclusion

that the rotation of a rod of steel' produces therein an intrinsic magnetic
intensity proportional to the angular velocity and acting in a direction
opposite to the intensity which would be produced by an electric current
flowing around the rod in the direction of rotation, as required by the
theory proposed in ($1 and 5.
To obtain the intrinsic magnetic intensity per unit speed it is now

necessary only to multiply half the mean differential deflection per unit
speed, given in )29, by the intrinsic intensity per unit deflection, Ho,
given in )ted. In this way we obtain

II mm. gauss gaussX 0.050 X I.26 X Io 5——= —3.I6 X Io —.(I3)
Ã 1".P.S. mm. r.p.s. '

Similarly, from $fa9 and x3, we obtain for the magnetic flux-density
per unit speed produced by the intrinsic intensity of rotation in the
central part of the rotor, the quantity

mm. maxwells &——', X o.o5o—X 7.7 X to-', ( per mm.1.P.S. cm.'
& maxwells &= —r.9 X to-' ], ( per r.p.s.cm.2

This quantity divided by 4m gives an approximate value of the in-
tensity of magnetization at the center of the rotor per unit speed, viz. ,

—I.5 X Io—' c.g.s. unit per r.p.s.
The magnitude of H/n given in equation (t3) as a result of the last

series of experiments is, within the experimental error, equal to one half
the maximum value computed in equation (9) on the assumption that
negative electrons alone are effective. The same is true of the result of
the earlier observations given in
$37. For the same intrinsic magnetic intensity of rotation and the

same material, the intensity of magnetization depends upon the shape
of the rotating body and is less for a sphere than for a long cylinder.

I In the experiments of Lebedew (Ann. der Phys. , 3g, xgxa, p. 84o) the magnetic effect
of rotating at high speed anyone of the several non-magnetic substances tried was nil, in con-
formity with the theory set forth in this paper. Lebedew's experiments were performed for a
different purpose from thatof this investigation, their object being to study the effect of cen-
trifugal electron displacement, and the data he gives are insufficient for an exact calculation of
the superior limit they give for the effect considered here. An approximate calculation, how-
ever, can be made and shows that the intensity of magnetization produced in Lebedew's non-
magnetic bodies was not greater than about one hundredth of the value here obtained for
steel, reduction being made to the same speed.
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rior be encouraged. No new methods are sug-
gested for securing these desirable enids, but
an excellent statement is made of reasons why
they should be sought.

Chapter VI. was originally written as a pro-
test against eugenics of the more rabid sort,
and even in its present somewhat modified
form presents a rather strong contrast to the
preceding chapter. It takes issue with the
fatalistic, mechanistic, view of development,
which would assign to heredity all the ills that
flesh is heir to, and would deprive the indi-
vidual of all ability to alter his career and
character or to deviate from the course which
fate had marked out for him in the constitu-
tion of his germ-plasm. This protest had at
the time and still has occasion and utility.
The book as a whole is an attempt to evaluate
biologically heredity and environment, to show
that both are indispensable, and accordingly
that nieither should be emphasized to the
neglect of the other. In this balanced view of
the two sets of ageiieies lies the peculiar merit
of this excellent book.

W. E. CASTLE

SPECIAL ARTICLES
MAGNETIZATION BY ROTATION

ABOUT six years ago I published in this jour-
nal a note in which it was shown that on the
modern theory of magnetism any magnetic
substance should become magnetized by a sort
of molecular gyroscopic process on being set
into rotation. Rotation slhould produce in any
substance an intrinsic magnetic intensity
parallel to the axis of rotation, proportional to
the angular velocity, and (like the magnetiza-
tion of the earth) directed oppositely to the
magnetic intensity which would be produced
by an electric current circulating around the
substance in the direction of rotation. If the
rotating body is magnetic, magnetization, pro-
portional to the intensity, should restult; other-
wise not (except to a very minute extent).

Preliminary experiments mentioned in the
note referred to appeared, though doubtfully,
to show the effect in question in the case of a
large iron rod rotated at a speed of about 90
revolutions per seconid. Later observations

made in much the same way, but with an at-
tempt at improvement in apparatus, failed to
confirm this result with any certainty; and
further investigation was postponed until
better facilities were available.

Recently I have made, again with Mirs.
Barnett's assistance, experiments which have
yielded definite and conclusive results. In the
final experiments two nearly similar rods of
steel shafting were mounted with their axes
horizontal and perpendicular to the magnetic
meridian, and two similar coils of insulated
wire were mounted about their centers. These
coils were connected in series with one another
and with a Grassot fluxmeter, and were oppo-
sitely wound so that any variations in the in-
tensity of the earth's field produced no effect on
the fluxmeter. One of the rods remained at rest;
while the other, mounted in a region in which
the earthYs magnetic intensity was compensated
by an electric current flowing in a very large
coil, was alternately rotated by an air motor
and brought to rest, the change of flux for
different speeds and different directions of ro-
tation being determined by the fluxmeter.
The fluxmeter was compensated for extraneous
electromotive forces, and was read by mirror
and scale to 0.1 mm. at the scale distance 8
meters. After all suspected sources of syste-
matic error were eliminated, an effect was
left corresponding precisely with that pre-
dicted by the above theory and inexplic-
able on any other theory hitherto proposed.
The intrinsic magnetic intensity of rota-
tion per unit speed, and the change of flux-
d*ensity at the center of the iron rod per unit
speed, were found to be 3.1 X 10-7 gauss/r.p.s.
and 1.9 X 10-5 maxwells/cm.2 per r.p.s., re-
spectively.
From experiments made for a different pur-

pose by Lebedew in 1912 it can be shown that
in non-magnetic suLbstances not more than a
minute fraction of the magnetization we have
observed in iron is produced at the same speed.

It is not, of course, possible to obtain iron
rods entirely free from magnetization, and ob-
servations were always mlade on changes of
residual flux. Together with the change of
flux proportional to the an-gular velocity, the
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left corresponding precisely with that pre-
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Second Series. October, rgzg Vol. VI.,¹.y
THE

MAGNETIZATION BY ROTATION. '

BY S. J. BARNETT.

ftI. In I909 it occurred to me, while thinking about the origin of
terrestrial magnetism, that a substance which is magnetic (and there-
fore, according to the ideas of Langevin and others, constituted of atomic
or molecular orbital systems with individual magnetic moments 6xed
in magnitude and differing in this from zero) must become magnetized
by a sort of molecular gyroscopic action on receiving an angular velocity.
Thus consider a cylinder of iron, with zero magnetic moment in its

initial state. If it is given an angular acceleration about its axis, each
individual system, which we may suppose for simplicity to consist of a
number of electrons revolving in fixed orbits with constant average
velocities .about an oppositely charged nucleus, will change its orienta-
tion in such a way as to contribute a minute angular momentum, and
therefore a minute magnetic moment, parallel to the axis of the cylinder.
This increment of angular momentum of each system is in the direction
of the axis of rotation, and the corresponding increment of the magnetic
moment is either in this direction or in the opposite direction according
as the particles in revolution are positive or negative. If the revolving
electrons are all negative, in conformity with most of the experimental
evidence, the cylinder will become magnetized in the direction. in which
it would be magnetized by an electric current flowing around it in a
direction opposite to that of the angular velocity imparted to it. This
corresponds to the direction of magnetization of the earth and the sun.
(2. Preliminary experiments made at the Tulane University of Louisi-

ana at the time this idea occurred to me appeared to show, ' though
doubtf'ully, a very minute e8ect of the sort in question, on the assumption
that the revolving electrons are negative, in the case of a steel rod about

I Revision of papers read before the Ohio Academy of Sciences, November, x9I4, and the
American Physical Society, November, x9I3, December, x9I4, and April, x9xS.

2 S. J. Barnett, Science, 30, I909, p. 4I3.

Vor..VI.
No. 4. MAGNZTIZA TION BF ROTA TION.

state is exactly the same as if the body were at rest and the system were
acted upon by a torque T"=—T' due to an extraneous magnetic Geld
with strength JI equal to the intrinsic magnetic intensity of rotation.
The complete expression for T" is known (and can readily be shown
from first principles) to be

T" = —T' = —~Q sin 0 —jgQ sin 0 cos 0,
where 8 denotes the excess of the moment of inertia of the system about
the axis of its orbital angular velocity co over the moment of inertia
about that diameter of the orbit making with AB the angle 90 —0. If
the orbit is circular

3'8 = mr' ——' mr' =—.2 2Q)

Eliminating 8 and 3f from (5), we get
m f Q7" = —y sin 0 2—0 ( x + —', —cos 0 ~

.
e i co

(6)

(7)

Dividing this expression by —p, sin 0, as in the case of an ordinary mag-
netic field, we get the intrinsic intensity of rotation:

m t, QH = 2 —II i t + —', —cos 8 i .e (8)

The values of 0 experimentally attainable are so small in comparison
with cu that the second term is negligible. If the orbit is not circular
we obtain for II an expression whose 6rst term is identical with that of
(8) and whose second term has the same order of magnitude as that of (8).
If we assume that e/m has the value ordinarily accepted for the negative

electron in slow motion, viz. , —x.7p X Io', and put Q = 2~v, where e
is the angular velocity in revolutions per second, we obtain for the in-
tensity per unit angular velocity

gauss
H/11 = —7,I X Io r.p.s. '

This is on the assumption that the negative electron alone is effective.
According to this, all substances would be acted upon by precisely the
same intensity for the same angular velocity.
If some or all of the positive ions also have orbital motions, propor-

tionality with angular velocity will evidently still exist, but the coefficient
of Q will be reduced in magnitude or even changed in sign, and the in-
tensities acting on different substances may differ for the same value of Q.

I This equation, as stated above, also follows immediately from Maxwell's equation for the
torque when the conditions here assumed are put in.

~ The erst term of this equation has been given previously by Einstein and, de Haas (1. c.),
but is incorrectly derived in their paper, equations for a molar magnet instead of a molecular
magnet being employed. All the terms of their equations reduce to zero unless the body
is originally magnetized.

To compare to Barnett’s results, 
multiply by 2𝝅

Expected

Measured
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Tilted source + dipole flow
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either as shadowing [11], or due to the difference in den-110

sity gradients in different directions within the transverse111

plane [12]. The first harmonic term, often called dipole112

flow after a dipole-like density asymmetry, contributes to113

directed flow. The sign of the dipole flow contribution is114

similar to that of “tilted source”. However the signifi-115

cant difference between the two is that the contribution116

to ⟨px⟩ from dipole flow is zero [13]. This fact can be used117

to disentangle the relative contributions to directed flow118

from the “tilted source” and initial density asymmetries.119

⟨px⟩dipole = 0 also leads to a characteristic vdipole1 (pT )120

shape which crosses zero at pT ∼ ⟨pT ⟩ [13].121

The fluctuations in the initial density distribution, in122

particular those leading to a dipole asymmetry in the123

transverse plane, lead to non-zero directed flow even at124

midrapidity [13]. The direction (azimuthal angle) of the125

initial dipole asymmetry, Ψdipole
1 , determines the direc-126

tion of flow. In a leading approximation, Ψdipole
1 can127

be given by Ψ1,3 = arctan(⟨r3 sinφ⟩/⟨r3 cosφ⟩) + π [13]128

where r and φ are the polar coordinates and a weighted129

average is taken over the overlap region of two nuclei,130

with the weight being the energy or entropy density. Ψ1,3131

points in the direction of the largest density gradient.132

Higher pT particles tend to be emitted in this direction,133

while lower pT particles are emitted in the opposite direc-134

tion to balance the momentum in the system. The sign135

of the average contribution to v1 is determined by the136

low pT particles. Very schematically, the modification137

to v1(η) for a particular fluctuation leading to positive138

dipole flow is shown in Fig. 1 (b).139

The fluctuations in the number of participating nucle-140

ons (quarks) in the projectile and target nuclei also lead141

to the change in rapidity of the “fireball” center-of-mass142

rapidity. In this case, the overall shape of v1(η) is un-143

changed, but is shifted to the direction of rapidity where144

more participants move than the opposite direction, as145

schematically indicated in Fig. 1 (c).146

Finally, we note that the tilt itself can also fluctuate.147

The fluctuation part of dipole flow is expected to depend148

weakly on pseudorapidity; as it originates in fluctuations149

it might have finite range in pseudorapidity. Dipole flow150

is found to be less sensitive to η/s [14] than v2 and v3,151

therefore it provides more constraint on the geometry152

and fluctuations of the system in the initial state.153

In Pb+Pb and Au+Au collisions the initial dipole-like154

asymmetry in the density distribution at mid-rapidity155

is caused purely by the fluctuations, while Cu+Au col-156

lisions have an intrinsic density asymmetry due to the157

asymmetric size of colliding nuclei. In addition to the158

directed flow of the tilted source (Fig. 1(a)), one might159

expect the dipole flow by the asymmetric density gradi-160

ent (Fig. 1(b)) and the center-of-mass shift in asymmet-161

ric collisions (Fig. 1(c)). Therefore it is of great inter-162

est to study the different components of directed flow in163

Cu+Au collisions to improve our understanding of the164

role of gradients in the initial density distributions and165

the hydrodynamic response to such an initial state.166

Experimentally, the directed flow is often studied with167

rapidity�
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spectator�
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rapidity�

v1�
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FIG. 1. (Color online) Cartoon illustrating different contri-
butions to the directed flow and their effect on v1(η) depen-
dence. Panel (a) shows the effect of the tilted source, while
panels (b) and (c) include additional effects of asymmetric
density distribution and asymmetry in size of colliding nuclei.
In panel (b) and (c), the dashed lines represent the effect of
the tilted source only and the solid lines represent the two
effects combined.

the first harmonic event plane determined by the spec-168

tator neutrons. By combining the measurements relative169

to the projectile, Ψp
SP, and target, Ψt

SP, spectator planes170

the ALICE collaboration reported the rapidity odd and171

even components of directed flow in Pb+Pb collisions at172 √
sNN = 2.76 TeV [15]:173

v1 = vodd1 + veven1 , (1)

vodd1 = (v1{Ψp
SP}− v1{Ψt

SP})/2, (2)

veven1 = (v1{Ψp
SP}+ v1{Ψt

SP})/2. (3)

Note that the “projectile” spectators define the forward174

direction and ⟨cos(Ψp
SP − Ψt

SP)⟩ < 0. A finite veven1 was175

observed with little if any rapidity dependence. It is be-176

lieved that the origin of this component is in finite cor-177

relations between the spectator flow and dipole flow at178

midrapidity. Such a correlation is expected to be weak,179

⟨cos(Ψp
SP − Ψ1,3)⟩ ≪ 1, which would explain the small180

magnitude of veven1 of the order of a few per mil.181

Following a similar approach to that of ALICE Col-182
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transverse plane, lead to non-zero directed flow even at124

midrapidity [13]. The direction (azimuthal angle) of the125

initial dipole asymmetry, Ψdipole
1 , determines the direc-126

tion of flow. In a leading approximation, Ψdipole
1 can127

be given by Ψ1,3 = arctan(⟨r3 sinφ⟩/⟨r3 cosφ⟩) + π [13]128

where r and φ are the polar coordinates and a weighted129

average is taken over the overlap region of two nuclei,130

with the weight being the energy or entropy density. Ψ1,3131

points in the direction of the largest density gradient.132

Higher pT particles tend to be emitted in this direction,133

while lower pT particles are emitted in the opposite direc-134

tion to balance the momentum in the system. The sign135

of the average contribution to v1 is determined by the136

low pT particles. Very schematically, the modification137

to v1(η) for a particular fluctuation leading to positive138

dipole flow is shown in Fig. 1 (b).139

The fluctuations in the number of participating nucle-140

ons (quarks) in the projectile and target nuclei also lead141

to the change in rapidity of the “fireball” center-of-mass142

rapidity. In this case, the overall shape of v1(η) is un-143

changed, but is shifted to the direction of rapidity where144

more participants move than the opposite direction, as145

schematically indicated in Fig. 1 (c).146

Finally, we note that the tilt itself can also fluctuate.147

The fluctuation part of dipole flow is expected to depend148

weakly on pseudorapidity; as it originates in fluctuations149

it might have finite range in pseudorapidity. Dipole flow150

is found to be less sensitive to η/s [14] than v2 and v3,151

therefore it provides more constraint on the geometry152

and fluctuations of the system in the initial state.153

In Pb+Pb and Au+Au collisions the initial dipole-like154

asymmetry in the density distribution at mid-rapidity155

is caused purely by the fluctuations, while Cu+Au col-156

lisions have an intrinsic density asymmetry due to the157

asymmetric size of colliding nuclei. In addition to the158

directed flow of the tilted source (Fig. 1(a)), one might159

expect the dipole flow by the asymmetric density gradi-160

ent (Fig. 1(b)) and the center-of-mass shift in asymmet-161

ric collisions (Fig. 1(c)). Therefore it is of great inter-162

est to study the different components of directed flow in163

Cu+Au collisions to improve our understanding of the164

role of gradients in the initial density distributions and165

the hydrodynamic response to such an initial state.166

Experimentally, the directed flow is often studied with167
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FIG. 1. (Color online) Cartoon illustrating different contri-
butions to the directed flow and their effect on v1(η) depen-
dence. Panel (a) shows the effect of the tilted source, while
panels (b) and (c) include additional effects of asymmetric
density distribution and asymmetry in size of colliding nuclei.
In panel (b) and (c), the dashed lines represent the effect of
the tilted source only and the solid lines represent the two
effects combined.

the first harmonic event plane determined by the spec-168

tator neutrons. By combining the measurements relative169

to the projectile, Ψp
SP, and target, Ψt

SP, spectator planes170

the ALICE collaboration reported the rapidity odd and171

even components of directed flow in Pb+Pb collisions at172 √
sNN = 2.76 TeV [15]:173

v1 = vodd1 + veven1 , (1)

vodd1 = (v1{Ψp
SP}− v1{Ψt

SP})/2, (2)

veven1 = (v1{Ψp
SP}+ v1{Ψt

SP})/2. (3)

Note that the “projectile” spectators define the forward174

direction and ⟨cos(Ψp
SP − Ψt

SP)⟩ < 0. A finite veven1 was175

observed with little if any rapidity dependence. It is be-176

lieved that the origin of this component is in finite cor-177

relations between the spectator flow and dipole flow at178

midrapidity. Such a correlation is expected to be weak,179

⟨cos(Ψp
SP − Ψ1,3)⟩ ≪ 1, which would explain the small180

magnitude of veven1 of the order of a few per mil.181

Following a similar approach to that of ALICE Col-182
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