Polarization measurements in STAR

Takafumi Niida for the STAR Collaboration

Wayne State University

Workshop on Chirality, Vorticity, and Magnetic Field in HIC 2018, Florence

Vorticity in HIC

In non-central collisions, the initial collective longitudinal flow velocity depends on x .

Vorticity in HIC

In non-central collisions, the initial collective longitudinal flow velocity depends on x, which makes the initial angular momentum.

$$
\omega_{y}=\frac{1}{2}(\nabla \times v)_{y} \approx-\frac{1}{2} \frac{\partial v_{z}}{\partial x}
$$

Global Polarization

* Non-zero angular momentum transfers to polarization of particles
- Globally polarized quark-gluon plasma in non-central A+A collisions Z.-T. Liang and X.-N. Wang, PRL94, 102301 (2005)
- Polarized secondary particles in unpolarized high energy hadron-hadron collisions? S. Voloshin, nucl-th/0410089 (2004)

- spin-orbit coupling
$\circ \wedge$ and anti- \wedge 's spin are aligned with angular momentum \boldsymbol{L}
\rightarrow spin alignment by B-field
- \wedge 's spin anti-aligned along \boldsymbol{B} \& anti- \wedge 's spin aligned along \boldsymbol{B}
* \wedge has negative magnetic moment
* direction of \boldsymbol{B} is the same as \boldsymbol{L}

How to measure the polarization?

parity-violating decay of hyperons

In case of Λ 's decay, daughter proton preferentially decays in the direction of Λ 's spin (opposite for anti- Λ)

$$
\frac{d N}{d \Omega^{*}}=\frac{1}{4 \pi}\left(1+\alpha \mathbf{P}_{\boldsymbol{\Lambda}} \cdot \mathbf{p}_{\mathbf{p}}^{*}\right)
$$

$\alpha: \wedge$ decay parameter $(=0.642 \pm 0.013)$
$P_{\wedge}: \wedge$ polarization
p_{p} : proton momentum in \wedge rest frame

$\Lambda \rightarrow p+\pi^{+}$
(BR: 63.9\%, с $\tau \sim 7.9 \mathrm{~cm}$)
strong decay of vector mesons ->See talk by Aihong Tang
Deviation from $1 / 3$ in a diagonal element of spin density matrix, ρ oo. (e.g. $\phi->K^{+}+K^{-}, K^{*}->\pi+K$)

$$
\frac{d N}{d \cos \theta^{*}} \propto\left(1-\rho_{00}\right)+\left(3 \rho_{00}-1\right) \cos ^{2} \theta^{*}
$$

Measurement relative to R.P.

Projected onto transverse plane:

$$
P_{H}=\frac{8}{\pi \alpha} \frac{\left\langle\sin \left(\Psi_{1}-\phi_{p}^{*}\right)\right\rangle}{\operatorname{Res}\left(\Psi_{1}\right)} \operatorname{sgn}_{\Lambda}
$$

$\phi_{p}{ }^{*}: \phi$ of daughter proton in \wedge rest frame sgn^: 1 for \wedge, -1 for anti- \wedge

STAR, PRC76, 024915 (2007)

Solenoidal Tracker At RHIC (STAR)

BBC
\& Event plane determination

- ZDCSMD ($n>6.3$), BBC ($3.3<|n|<5$)

Tracking of charged particles

- TPC ($|n|<1$ and full azimuth)
- Particle identification
- TPC and TOF

\wedge reconstruction

- \wedge reconstruction
- identify daughters (π, p) with TPC and TOF and calculate the invariant mass
- use the information on decay topology to reduce the combinatorial background
- Background level to \wedge signal is below 30\%
- The number of $\wedge \mathrm{s}$ per event
o ~ 1.0 for $10-20 \%$ centrality at 200 GeV (raw counts, depends on centrality, efficiency, and cuts used)

Systematic uncertainties

Case of 200 GeV as an example

- Event plane determination: ~22\%
- Methods to extract the polarization signal: ~21\%
- Possible contribution from the background: ~13\%
- Topological cuts: <3\%
- Uncertainties of the decay parameter: $\sim 2 \%$ for $\wedge, \sim 9.6 \%$ for anti- \wedge
- Extraction of \wedge yield (BG estimate): <1\%

Also, the following studies were done to check if there is no experimental effect:

- Two different polarities of the magnetic field for TPC
- Acceptance effect
\square Different time period during the data taking
- Efficiency effect

First paper on \wedge polarization from STAR in 2007

Results were consistent with zero, giving an upper limit of 2%.
~10M events (from 2004 data) was not sufficient.

\wedge global polarization vs $\sqrt{ } \mathrm{SNN}_{\mathrm{N}}$

- Positive signals in $\sqrt{ } \mathrm{S}_{\mathrm{NN}}=7.7-39 \mathrm{GeV}$
o indication of thermal vorticity!

$$
\omega_{T}=\frac{1}{2}(\nabla \times \mathbf{v}) / T
$$

- $\mathrm{P}_{\mathrm{H}}(\Lambda)<\mathrm{P}_{\mathrm{H}}($ anti- $\wedge)$ systematically

For small thermal vorticity,

$$
\begin{aligned}
& P_{\Lambda} \simeq \frac{1}{2} \frac{\omega}{T}+\frac{\mu_{\Lambda} B}{T} \\
& P_{\bar{\Lambda}} \simeq \frac{1}{2} \frac{\omega}{T}-\frac{\mu_{\Lambda} B}{T}
\end{aligned}
$$

Becattini, Karpenko, Lisa, Upsal, and Voloshin, PRC95.054902 (2017)

- implying a contribution from B-field ->More details in Mike Lisa's talk

Revisiting 200 GeV

T. Niida, Workshop on Chirality, Vorticity, and Magnetic Field 2018

- Previous STAR results at 200 GeV were consistent with zero
\rightarrow Can we see the signal when using recent data with more statistics?
- 2007 publication
- year 2004 data ~10M events
- Recent preliminary study
- year 2010 data ~200M events
- year 2011 data $\sim 350 \mathrm{M}$ events
- year 2014 data ~1B events

Let's revisit 200 GeV with
~150 times more events!

\wedge global polarization vs $\sqrt{ } \mathrm{sNN}^{\mathrm{N}}$

vHLLE+UrQMD: Y. Karpenko and F. Becattini, EPJC(2017)77:213 AMPT: H. Li et al., Phys. Rev. C 96, 054908 (2017)

- Observed finite signal at $\sqrt{ } \mathrm{S}_{\mathrm{NN}}=200 \mathrm{GeV}$
$P_{H}(\Lambda)[\%]=0.277 \pm 0.040$ (stat) $\pm_{0.049}^{0.039}$ (sys)
$P_{H}(\bar{\Lambda})[\%]=0.240 \pm 0.045$ (stat) $\pm_{0.045}^{0.061}$ (sys)
0~15\% dilution of the signal due to feed-down effect (model-dependent estimation)
- Following the trend of BES data and close to viscoushydro+UrQMD and AMPT predictions in all energies
- No significant difference between Λ and anti- \wedge

Go to differential measurements

- Any centrality dependence?
- Any рт dependence?
- Any rapidity dependence?
- Anything else we expect?

Let's look at Pн more differentially for 200 GeV !

Centrality dependence

- Slightly increasing in more peripheral events
- qualitatively consistent with AMPT calculations
- Not clear if there is a saturation or decrease in most peripheral

рт dependence

3D viscous hydro-model
F. Becattini and I. Karpenko, PRL120.012302 (2018)

口No significant p_{T} dependence, as expected from the initial angular momentum of the system
-Qualitatively agrees with hydrodynamic model. Initial conditions affect the magnitude and dependency on $\mathrm{P}_{\text {т }}$

η dependence

vHLLE+UrQMD,
Karpenko and Becattini, EPJC(2017)77:213

η

- No significant η dependence
- a smaller shear flow structure at mid-rapidity than at forward (backward) rapidity due to baryon transparency at higher energy
- More interesting at lower energies or at the LHC energy for forward rapidity

Azimuthal angle dependence

* Correction on EP resolution (for x -axis) is not applied here
- Larger signal in in-plane than that in out-of-plane direction

Azimuthal angle dependence

$(3+1) \mathrm{D}$ vicious hydro + AMPT IC L.-G. Pang, QM17

* Correction on EP resolution (for x-axis) is not applied here
- Larger signal in in-plane than that in out-of-plane direction
- Similar trend to the hydrodynamic calculation

^ polarization vs charge asymmetry?

- \wedge polarization may have a contribution from the axial current J_{5} induced by B-field (Chiral Separation Effect), S. Schlichting and S. Voloshin, in preparation
- Use charge asymmetry Ach instead of μ_{v} what's the expectation? true for u-quark but also for \wedge ?

$$
\mu_{\mathrm{v}} / T \propto \frac{\left\langle N_{+}-N_{-}\right\rangle}{\left\langle N_{+}+N_{-}\right\rangle}=A_{\mathrm{ch}}
$$

Charge asymmetry dependence

naive expectation?

Slopes of Λ and anti- \wedge seem to be different. Possibly a contribution from the axial current?

Local vorticity from elliptic flow?

F. Becattini and I. Karpenko, PRL120.012302 (2018) S. Voloshin, arXiv:1710.08934

Stronger flow in in-plane than in out-of-plane could make local polarization along beam axis!

Local vorticity from elliptic flow?

F. Becattini and I. Karpenko, PRL120.012302 (2018) S. Voloshin, arXiv:1710.08934

Stronger flow in in-plane than in out-of-plane could make local polarization along beam axis!
S. Voloshin, arXiv:1710.08934 Blast-wave parameterization

$$
\begin{aligned}
& \begin{array}{l}
r_{\max }=R\left[1-a \cos \left(2 \phi_{s}\right)\right], \\
\rho_{t}=\rho_{t, \max }\left[r / r_{\max }\left(\phi_{s}\right)\right]\left[1+b \cos \left(2 \phi_{s}\right)\right] \approx \rho_{t, \max }(r / R)\left[1+(a+b) \cos \left(2 \phi_{s}\right)\right] . \\
\underline{\omega_{z}}=1 / 2(\nabla \times \mathbf{v})_{z} \approx \\
\\
\\
\\
\\
\left(\rho_{t, n \max } / R\right) \underline{\text { an: spatial anisotropy, bn: flow anisotropy }_{\sin \left(n \phi_{s}\right)\left[b_{n}-a_{n}\right]}}
\end{array} .
\end{aligned}
$$

Quadruple or sine structure of ω_{z} is expected.

Local vorticity from elliptic flow?

F. Becattini and I. Karpenko, PRL120.012302 (2018) S. Voloshin, arXiv:1710.08934

Stronger flow in in-plane than in out-of-plane could make local polarization along beam axis!
θ_{p} : polar angle of daughter proton in Λ rest frame $P_{H}^{z} \sim\left\langle\cos \left(\theta_{p}^{*}\right)\right\rangle$

- z-component of polarization
- No need for the $1^{\text {st_order }}$ EP (just need the $2^{\text {nd-order }}$ EP)

Polarization along beam direction

* Effect of Ψ_{2} resolution is not corrected here.

Only the magnitude of the oscillation is affected.

$$
P_{H}^{z} \sim\left\langle\cos \left(\theta_{p}^{*}\right)\right\rangle
$$

- Applied acceptance correction so that average of ω_{y} over $\Delta \phi$ should be zero due to symmetry

As expected from the elliptic flow, the sine structure can be seen!

STAIR
 Polarization along beam direction

* Effect of Ψ_{2} resolution is not corrected here. Only the magnitude of the oscillation is affected.
$P_{H}^{z} \sim\left\langle\cos \left(\theta_{p}^{*}\right)\right\rangle$
out-of-plane

F. Becattini and I. Karpenko, PRL.120.012302 (2018)
- Different trend to hydrodynamic model.
- Depends on the relation between flow and spatial anisotropy according to BW
$\omega_{z}=1 / 2(\nabla \times \mathbf{v})_{z} \approx\left(\rho_{t, n \max } / R\right) \sin \left(n \phi_{s}\right)\left[b_{n}-a_{n}\right]$. an: spatial anisotropy, bn: flow anisotropy

Summary

- First observation of \wedge global polarization at $\sqrt{ } \mathrm{SNN}=7.7-39 \mathrm{GeV}$
- Preliminary studies show non-zero signals at $\sqrt{ } \mathrm{SNN}_{\mathrm{NN}}=200 \mathrm{GeV}$
- Indicating a thermal vorticity of the medium in non-central heavy-ion collisions, of the order of a few percent
- Centrality and azimuthal angle dependence were observed and no significant dependence on pt^{2} and η.
- A hint of charge-asymmetry dependence ($\sim 2 \sigma$ level) with a possible relation to the axial current induced by B-field
- Local vorticity along the beam direction
- Sine structure of the polarization along the beam direction was observed, as expected from the elliptic flow
- More detailed study is ongoing

Outlook

- Isobaric collisions and Au+Au 27 GeV in 2018 (Just started last week!)
o ~1B events for each with EPD (better EP resolution)
- Any splitting of \wedge and anti- \wedge ? Any difference btw $\mathrm{Ru}+\mathrm{Ru}$ and $\mathrm{Zr}+\mathrm{Zr}$?
- Beam Energy Scan II (2019-2020?)
- 7.7-19.6 GeV (10 times larger events than BES I) + Fixed target program with iTPC and eTOF (wider η coverage)

Chiral vortical effect

$$
\vec{J}_{5}=\left[\frac{1}{2 \pi^{2}}\left(\mu^{2}+\mu_{5}^{2}\right)+\frac{1}{6} T^{2}\right] \vec{\omega}
$$

Observed polarization may get an offset from CVE

Effect of non-zero chemical potential?

Non-zero chemical potential makes difference in polarization between Λ and anti- Λ, but the effect seems to be small.

Extracted vorticity

T. Niida, Workshop on Chirality, Vorticity, and Magnetic Field 2018

- Vorticity

$$
\begin{aligned}
\omega & =\left(P_{\Lambda}+P_{\bar{\Lambda}}\right) k_{B} T / \hbar \\
& \sim 0.02-0.09 \mathrm{fm}^{-1} \\
& \sim 0.6-2.7 \times 10^{22} \mathrm{~s}^{-1}
\end{aligned}
$$

$$
\text { (for } \mathrm{T}=160 \mathrm{MeV} \text {) }
$$

FIG. 12. Averaged vorticity $\left\langle\omega_{y}\right\rangle$ from the AMPT model as a function of time at varied beam energy $\sqrt{s_{N N}}$ for fixed impact parameter $b=7 \mathrm{fm}$. The solid curves are from a fitting formula (see text for details).

Extracted magnetic field

T. Niida, Workshop on Chirality, Vorticity, and Magnetic Field 2018

- Magnetic field

$$
\begin{aligned}
B & =\left(P_{\Lambda}-P_{\bar{\Lambda}}\right) k_{B} T / \mu_{\mathrm{N}} \\
& \sim 5.0 \times 10^{13}[\text { Tesla }] \text { (for } \mathrm{T}=160 \mathrm{MeV} \text {) }
\end{aligned}
$$

- Though the data are consistent with zero, this could be a possible direct probe of B-field

Lifetime of B-field is unknown. Important for theoretical prediction of CME.

Λ global polarization vs $\sqrt{S_{N N}}$

- Positive signals in $\sqrt{ } \mathrm{S}_{\mathrm{NN}}=7.7-62.4 \mathrm{GeV}$
o indication of thermal vorticity!
- Why smaller signal in higher energy?
- Initial angular momentum is largest at high energy, but…

Karpenko and Becattini, EPJC(2017)77:213

- Smaller shear flow structure at mid- n due to baryon transparency

Feed-down effect

- Only $\sim 25 \%$ of measured Λ and anti- \wedge are primary, while $\sim 60 \%$ are feed-down from $\Sigma^{*} \rightarrow \wedge \pi, \Sigma^{0} \rightarrow \wedge r, \equiv \rightarrow \wedge \pi$
- Polarization of parent particle R is transferred to its daughter \wedge

$$
\begin{aligned}
& \mathbf{S}_{\Lambda}^{*}=C \mathbf{S}_{R}^{*} \quad\left\langle S_{y}\right\rangle \propto \frac{S(S+1)}{3} \omega
\end{aligned}
$$

Becattini, Karpenko, Lisa, Upsal, and Voloshin,
$f_{\wedge R}$: fraction of Λ originating from parent R PRC95.054902 (2017)
$C_{\wedge R}$: coefficient of spin transfer from parent R to Λ
S_{R} : parent particle's spin
μ_{R} : magnetic moment of particle R
~15\% dilution of primary \wedge polarization (model-dependent)

Go to the LHC energy

- ALICE preliminary results are consistent with zero, but it seems to follow the global trend
$P_{H}(\Lambda)[\%]=-0.08 \pm 0.10$ (stat) ± 0.04 (syst) $P_{H}(\bar{\Lambda})[\%]=0.05 \pm 0.10$ (stat) ± 0.03 (syst)

ALICE preliminary
M. Konyushikhin, QCD Chirality Workshop 2017

- Need at least ~50 times larger statistics for meaningful results
vHLLE+UrQMD: Y. Karpenko and F. Becattini, EPJC(2017)77:213
AMPT: H. Li et al., Phys. Rev. C 96, 054908 (2017)

