Lambda polarization in peripheral heavy ion collisions

Laszlo Pal Csernai, Yilong Xie, Dujuan Wang, Marcus Bleicher, Horst Stoecker

Workshop on Chirality, Vorticity and Magnetic Field in Heavy Ion Collisions, 19-22 March 2018, Galileo Galilei Institute, Firenze

PIChydro

Pb+Pb 1.38+1.38 A TeV, b= 70 % of b_max

Lagrangian fluid cells, moving, ~ 5 mill.

MIT Bag m. EoS

FO at T ~ 200 MeV, but calculated much longer, until pressure is zero for 90% of the cells.

Structure and asymmetries of init. state are maintained in nearly perfect expansion.

Periheral Collisions - Initial State

y

ίu_b

U_b

Z

Initial State – Peripheral reactions

Magas, Csernai, Strottman (2001), (2002)

- Yang-Mills flux tube model for longitudinal streaks
- String tension is decreasing at the periphery
- Initial shear & vorticity is present

4

Shear & Turbulence → KHI

L.P. Csernai^{1,2,3}, D.D. Strottman^{2,3}, and Cs. Anderlik⁴ PHYSICAL REVIEW C **85**, 054901 (2012)

Kelvin – Helmholtz Instability

PICR Hydro (2012)

Present parton kinetic models - HIJING, AMPT, PACIAE

Different space-time configurations

[Long-Gang Pang, Hannah Petersen, Guang-You Qin, Victor Roy and Xin-Nian Wang, 27 September - 3 October **2015**, Kobe, Japan; and Long-Gang Pang, Hannah Petersen, Guang-You Qin, Victor Roy, Xin-Nian Wang, arXiv: **15**11.04131]

0.15

0,10

0.05

7

0

Present parton kinetic models - HIJING, AMPT, PATHIA

Different space-time configurations

[Wei-Tian Deng, and Xu-Guang Huang, arXiv: 1609.01801]

8

Consequences – vorticity (2013):

- Will be similar to the **2001-2** I.S. in (t,z) coordinates
- More compact \rightarrow vorticity may survive better
- The earlier results will remain qualitatively similar:

Fig. 3 The vorticity calculated in the reaction (xz) plane at t = 0.17 fm/c after the start of fluid dynamical evolution.

Fig. 4. The dominant y component of the observable polarization, $\Pi_0(p)$ in the Λ 's rest frame.

The initial rotation can lead to observable **vorticity** (Fig. 3), and polarization (Fig. 4): Leading vorticity term. The initial angular momentum can be transferred to the **polarization** at final state, via <u>spin-orbit coupling or equipartition</u>.

> [L. P. Csernai, et al, PRC **87**, 034906 **(2013)**] [F. Becattini, et al. PRC **88**, 034905 **(2013)**]

Consequences:

Based on Ref. [Becattini, **2013**], Λ polarization can be calculated as:

$$\Pi(p) = \frac{\hbar\epsilon}{8m} \frac{\int dV n_F(x,p) (\nabla \times \beta)}{\int dV n_F(x,p)} \qquad \qquad \text{Vorticity, 1st} \\ + \frac{\hbar p}{8m} \times \frac{\int dV n_F(x,p) (\partial_t \beta + \nabla \beta^0)}{\int dV n_F(x,p)} \qquad \qquad \text{Expansion, 2nd}$$

where $\beta^{\mu}(x) = [1/T(x)]u^{\mu}(x)$ is the inverse temperature four-vector field. Then thermal vorticity is $\omega = \nabla \times \beta$.

The polarization 3-vector in the rest frame of particle can be found by Lorentz-boosting the above four-vector:

$$\Pi_0(p) = \Pi(p) - \frac{p}{p^0(p^0 + m)} \Pi(p) \cdot p ,$$

[F. Becattini, L.P. Csernai, and D.J. Wang, Phys. Rev. C 88, 034905 (2013)]

Y. L. Xie,¹ M. Bleicher,^{2,3} H. Stöcker,^{2,3} D. J. Wang,⁴ and L. P. Csernai¹

 Λ polarization in peripheral collisions at moderately relativistic energies

Consequences:

PHYSICAL REVIEW C 94, 054907 (2016)

Fig. 6 The first (left) and second (right) term of the dominant *y* component of the Λ polarization for momentum vectors in the transverse plane at $p_z = 0$, for the FAIR U+U reaction at 8.0 GeV

- The y component is dominant, is up to \sim 20%, as we can compare it with x and z components later.
- 1st & 2nd terms are opposite direction. Result into a relatively smaller value of global polarization.

Consequences

/ c.m. !

• y

Ζ

(b)

X

(d)

X

⊗z

y

Fig. 7 The first (left) and second (right) terms of the x(up) and y(down) components of the Λ polarization for momentum vectors in the transverse plane at pz = 0,for the FAIR U+U reaction at 8.0 GeV [Xie, Bleicher, Stoecker, Wang, Csernai,

PRC 94, 054907 (2016).]

At the highest energies / Rel. Hydro.

FIG. 2. Map of longitudinal component of polarization of midrapidity A from a hydrodynamic calculation corresponding to 20%-50% central Au-Au collisions at $\sqrt{s_{NN}} = 200$ GeV (left) and 20%–50% central Pb-Pb collisions at $\sqrt{s_{NN}} = 2760$ GeV (right).

Consequences FAIR

The modulus of polarization is very similar with the y component of polarization, both in magnitude and the structure. I. e. the other x and z components do not contribute to the polarization, which is in line with previous observations in this work and other papers.

Fig. 8 The y component (left) of polarization vector in center of mass frame and Λ 's rest frame. The right sub-figure are the modulus of the polarization in Λ 's rest frame. At FAIR, 8.0 GeV at time 2.5+4.75 fm/c.

Consequences NICA

Fig. 9 The y component (left) and the modulus (right) of the polarization for momentum vectors in the transverse plane at pz = 0, for the NICA Au+Au reaction at 9.3 GeV. The figure is in the Λ 's rest frame.

- Similarity between y component and modulus of Polarization, in magnitude and structure.
- Similarity between NICA and FAIR's polarization results.
- The net polarization is still negative, which means the first term is larger than the second term, at this time.

[Xie et al., PRC **94**, 054907 (**2016**)]

Consequences FAIR

Fig. 9 The y component (left) and the modulus (right) of the polarization for momentum vectors in the transverse plane at pz = 0, for the FAIR U+U reaction at 8.0 GeV, but at an earlier time t= 2.5+1.7 fm/c. The figure is in the Λ 's rest frame.

Initially, the first term is very dominant

Polarization and EbE c.m. determination

- Earlier EbE c.m. determination → increased V₁ by a factor of 2 [Cs.,E.,M., (2012)].
- Now polarization in x and z directions is symmetric in EbE c.m. frame!!!
- → integrated x & z polarizations vanish (except random fluct.)
- \rightarrow finding EbE c.m. is possible by
 - Minimizing integrated $\Pi_x \& \Pi_z$
 - Maximizing integrated $-\Pi_v$

Observable consequences

[Yilong Xie, Dujuan Wang, and Laszlo P. Csernai₁ PHYSICAL REVIEW C **95**, 031901(R) (2017)]

 Λ & anti- Λ polarization

[Xie et al., PRC 94, 054907 (2016).] FIG. 4. (Color online) The global polarization, $2\langle \Pi_{0y} \rangle_p$, in our PICR hydro-model (red circle) and STAR BES experiments (green triangle), at energies \sqrt{s} of 11.5GeV, 14.5GeV, 19.6GeV, 27GeV, 39GeV, 62.4GeV, and 200GeV. The red The experimental data were extracted from Ref[Mike Lisa], dropping the error bars.

Global Λ Polarization

[Global Λ hyperon polarization in nuclear collisions, STAR Collaboration Nature Letters -548, 62 (2017).]

- Positive \land signal \rightarrow positive vorticity
- First time non-zero signal observed!
- $\Lambda > \Lambda$ (?) \rightarrow magnetic coupling
- \bullet First measurement on φ meson spin alignment

arXiv:1701.06657

February 5-11

Alexander Schmah - Quark Matter 2017

Λ & Anti-Λ Coupling to Nucleons

Difference based on Hypernuclei: 1.0 – 1.5 MeV i.e. ~ 20% of nuclear binding energy !!!

Ξ ~ 20 Λ-hypernuclei ($T_{1/2} = 10^{-10}$ s) 1953-1995

FIG. 2 (color online). Spin-orbit splitting $\epsilon_A(nl_{l-1/2}) - \epsilon_A(nl_{l+1/2})$ in antineutron spectra of ¹⁶O and ²⁰⁸Pb versus the average energy of a pair of spin doublets. The vertical dashed line shows the continuum limit.

[ZhouSG-etal-PhysRevLett.91(2003)262501]

[SongCY-etal-IJMPE19(2010)2538]

Fig. 2. Spin-orbit splitting $\epsilon_A(nl_{l-1/2}) - \epsilon_A(nl_{l+1/2})$ in the spectra of anti-Lambda and anti-neutron in ¹⁶O versus the average energy of a pair of spin doublets. The vertical dashed line shows the continuum limit.

Initiative: new I.S. in τ, η coordinates -> x,y,z,t

Thus for each streak, *i*, we can get the origin of the $\tau = \tau_0$ hyperbola, $t_{i0} \& z_{i0}$.

Consequences – vorticity (2017):

- Vorticity is max. at the edges, at high +/-X
- Consequence of the Bjorken type model
- Contradicts to AMPT and parton cascade results of [Wei-Tian Deng, and Xu-Guang Huang, arXiv: 1609.01801], where max. is at x=0.

Consequences – vorticity (2017):

- Vorticity in x direction is max. at the edges, at high +/- y
- The two edges point to opposite directions, +/- x, i.e. cancel in total ω_x

Relativistic corrections in the new I.S. :

The time derivative $\partial_t \boldsymbol{\beta}$ is not included in the I.S. but the gradient term,

 $ablaeta^0$, has finite contribution (on au =0 hypersurface):

25

New Initial State – 2017/8

z-directed vorticity

- I.S.: $v_x \& v_y$ vanish everywhere, $\beta_x \& \beta_y$ too
- \rightarrow Initial $\omega_z = 0 \rightarrow$ init. class. $\Pi_z = 0$.
- (except surface effects)
- y-directed vorticity
- →Classical polarization, Π_y, is negative (-y directed),
- →Rel. polarization, Π_y, may have small negative domains
- x-directed vorticity
- Integrated $\omega_x = 0$, \rightarrow integrated class. Π_x vanishes, p-dependence is symmetric.

Summary

- Collective flow is the most dominant collective feature of HI reactions.
- Peripheral reactions show shear, vorticity (turbulence) for small transport coefficients → exp. Λ-Polarization
- I.S. is of utmost importance, it can be implemented in (*t*, *z*) and (*τ*, *η*) hydro codes
- Different components, -y, x, z, and momentum dependence do show the weight of different dynamical flow patterns.
- $\rightarrow \Lambda$ -Polarization is highly sensitive diagnostic tool

