ϕ-meson Global Spin Alignment at RHIC

- Results and Practical Considerations

Aihong Tang (for the STAR Collaboration)
Office of Science

Outline

I : Global spin alignment of ϕ-meson at RHIC - Results

II : Practical considerations for measuring global spin alignment of ϕ-meson

Conclusion

Introduction

In non-central collisions, large orbital angular momentum L ($\sim 10^{3}$ at RHIC energies) is deposited in the interaction region.

Viscosity dissipates the vorticity to QGP fluid at a larger scale.

Introduction

PRL 94, 102301 (2005)

Globally Polarized Quark-Gluon Plasma in Noncentral $\boldsymbol{A}+\boldsymbol{A}$ Collisions

Zuo-Tang Liang ${ }^{1}$ and Xin-Nian Wang ${ }^{2,1}$
${ }^{1}$ Department of Physics, Shandong University, Jinan, Shandong 250100, China
${ }^{2}$ Nuclear Science Division, MS 70R0319, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
(Received 25 October 2004; published 14 March 2005)

Produced partons have a large local relative orbital angular momentum along the direction opposite to the reaction plane in the early stage of noncentral heavy-ion collisions. Parton scattering is shown to polarize quarks along the same direction due to spin-orbital coupling. Such global quark polarization will lead to many observable consequences, such as left-right asymmetry of hadron spectra and global transverse polarization of thermal photons, dileptons, and hadrons. Hadrons from the decay of polarized resonances will have an azimuthal asymmetry similar to the elliptic flow. Global hyperon polarization is studied within different hadronization scenarios and can be easily tested.

DOI: 10.1103/PhysRevLett.94.102301 PACS numbers: 25.75.Nq, 13.88.+e, 12.38.Mh

```
also Voloshin' 04; Betz/Gyulassy/Torrieri' 07; Gao'08,'12; Becattini' 13,'15;
Csernai' 13; Jiang/Lin/Liao' 16; many others
```

Local orbital angular momentum (vorticity) transferred to spin degree of freedom of final-state hadrons. Classical Mechanics \rightarrow Quantum Mechanics.

Shed light on the fundamental spin-rotation coupling.

Most Vortical Fluid

STAR Collaboration, NATURE 54862 (2017)

Fluid produced at RHIC:
the least viscous and the most vortical!

Why ϕ spin alignment?

- ϕ-mesons are expected to originate predominantly from primordial production \rightarrow less decay contributions if compared to hyperons, more sensitive to early dynamics.
- Daughter's polar angle distribution is even function for spin-1 particles \rightarrow no local cancelation when integrating over phase space as opposed to spin-1/2 particles. The alignment is in general additive over space and time.
- Clean access to strange quark polarization.

Interconnection to Other Physics

- Spin-orbit coupling \rightarrow magnitude of the vorticity. (connection to CVE)
- Reaction plane dependence of alignment/polarization \rightarrow transport properties (e.g. viscosity).
- Transverse momentum dependence of alignment/polarization \rightarrow Hadronization.
- Degree of Thermalization?
- Vorticity induced magnetic field?

New channel, insight to rich physics

Connection to Chiral Vortical Effect

vs

Baryonic Charge Separation

$$
\vec{J}_{B}=\frac{N_{c} \mu_{5}}{\pi^{2}} \mu_{B} \stackrel{\rightharpoonup}{\omega}
$$

Electric Charge Separation

$$
\vec{J}_{E}=\frac{N_{c} \mu_{5}}{3 \pi^{2}} \vec{B}
$$

Constrain the vorticity (ω) : ϕ spin alignment (and (anti) \wedge polarization) w.r.t. the system angular momentum (L).

Probe Bulk Property

Reaction plane dependence of alignment/polarization - connection to viscosity

Vorticity, maximum in the reaction plane, may not be propagated efficiently from in- to out-ofreaction plane due to the low viscosity of the system. This may lead to larger in-plane than out-of-plane polarization/spin alignment.

F. Becattini, L.P. Csernai, D.J. Wang and Y.L. Xie. Phys. Rev. C 93 069901(E) (2016)

Understand Hadronization

Z.T. Liang and X.N. Wang, Phys. Lett. B629, 20 (2005)

For ϕ spin alignment,

- Recombination of polarized (anti)quarks : $\rho_{00}<1 / 3$.

$$
\rho_{00}^{\varphi(r e c)}=\frac{1-P_{s}^{2}}{3+P_{s}^{2}}
$$

- Fragmentation of polarized quarks: $\rho_{00}>1 / 3$.

$$
\rho_{00}^{\varphi(f r a g)}=\frac{1+\beta P_{s}^{2}}{3-\beta P_{s}^{2}}
$$

P_{s} : strange quark polarization
β : the ratio of polarization of antiquark, in the opposite direction, to that of leading quark.

Relativistic Heavy Ion Collider (RHIC)

STAR : Uniform and Large Acceptance

STAR : Excellent PID and Tracking

Charged hadrons

Neutral particles

Hyperons \& Hyper-nuclei

Heavy-flavor hadrons

ϕ Spin Alignment Observable

The 00-component of ϕ-meson spin density matrix $\left(\rho_{00}\right)$ can be measured via angular distribution of decay daughter ($\phi \rightarrow \mathrm{K}^{+}+\mathrm{K}^{-}$) using :
$\frac{d N}{d\left(\cos \theta^{*}\right)}=N_{0} \times\left[\left(1-\rho_{00}\right)+\left(3 \rho_{00}-1\right) \cos ^{2} \theta^{*}\right]$

A deviation of ρ_{00} from $1 / 3$ would indicate a non-zero spin alignment.

$$
\rho_{00}>\frac{1}{3}
$$

$$
\rho_{00}<\frac{1}{3}
$$

$$
\rho_{00}=\frac{1}{3}
$$

ϕ spin alignment : STAR Previous Results

STAR Collaboration, Phys. Rev. C 77, 061902(R) (2008)

X. Sun for STAR Collab., QM17 Poster

Consistent with $\rho_{00}=1 / 3$ with large uncertainties.

ρ_{00} VS P_{T}

First time seeing $\rho_{00}>1 / 3$ in heavy-ion collisions.
Non-trivial p_{T} dependence.
Fragmentation around $1.5 \mathrm{GeV} / \mathrm{c}$? Model over-simplified?

ρ_{00} vs $\mathrm{p}_{\mathrm{T}}: \mathbf{2}^{\text {nd }}$ vs $1^{\text {st }}$ order EP

The relation between the two measurements will be discussed later in this talk

ρ_{00} vs Centrality

Smooth centrality dependence, strongest in semi-central collisions.

ρ_{00} vs Energy

Significant alignment observed at 200 and 39 GeV .
Supporting the picture of strong vorticiy.

ρ_{00} vs Energy

ρ_{00} : seemingly weaker dependent on energy if compared to P_{H}

Vorticity Field in Play?

Could the difference in energy dependence between \wedge polarization and ϕ spin alignment explained by the different response to the vorticity field?

Practical Considerations for Measuring Global Spin Alignment of Spin-1 Vector Mesons

A. Tang, B. Tu and C. Zhou. arXiv:1803.05777

Derivation of Event Plane Resolution Correction

For spin-1 particles, their daughter's angular distribution can be written in a general form as a function of θ^{*} and β :

$$
\frac{d N}{d \cos \theta^{*} d \beta} \propto 1+A \cos ^{2} \theta^{*}+B \sin ^{2} \theta^{*} \cos 2 \beta+C \sin 2 \theta^{*} \cos \beta
$$

where

$$
A=\frac{3 \rho_{00}-1}{1-\rho_{00}}
$$

We have

$$
\begin{aligned}
& \cos \theta^{*}=\sin \theta \sin (\phi-\psi) \\
& \cos \theta=\sin \theta^{*} \sin \beta
\end{aligned}
$$

where θ is the angle between $z-$ axis and the momentum direction of a daughter particle in the rest frame.

Derivation of Event Plane Resolution Correction

The observed event plane ψ ' may be different from the real event plane: $\psi^{\prime}=\psi+\Delta$ The distribution of Δ is supposed to follow an even function, so we can assume $\langle\cos 2 \Delta\rangle=R, \quad\langle\sin 2 \Delta\rangle=0$. when $\psi \rightarrow \psi^{\prime}, \quad \theta^{*} \rightarrow \theta^{\prime^{*}}, \quad \beta \rightarrow \beta^{\prime}$, we have

$$
\begin{aligned}
& \text { we have } \\
& \qquad\left(\begin{array}{c}
1 \\
A \\
B \\
C
\end{array}\right) \rightarrow\left(\begin{array}{c}
1 \\
A^{\prime} \\
B^{\prime} \\
C^{\prime}
\end{array}\right)=\left(\begin{array}{c}
1 \\
\frac{A(1+3 R)+B(3-3 R)}{4+A(1-R)+B(-1+R)} \\
\frac{A(1-R)+B(3+R)}{4+A(1-R)+B(-1+R)} \\
\frac{4 \cdot C \cdot R}{4+A(1-R)+B(-1+R)}
\end{array}\right) \\
& \text { When } \quad B=0, \quad A^{\prime}=\frac{A(1+3 R)}{4+A(1-R)} \\
& \rho_{00}^{\text {real }}-\frac{1}{3}=\frac{4}{1+3 R}\left(\rho_{00}^{\text {obv }}-\frac{1}{3}\right)
\end{aligned}
$$

It can be shown that it is consistent with the correction procedure (Voloshin SQM2017)

$$
\rho_{00}^{\text {real }}-\frac{1}{3}=-\frac{4}{3} \cdot \frac{\left\langle\cos 2\left(\varphi-\psi_{E P}\right)\right\rangle}{R}
$$

De-correlation Between $1^{\text {st }}$ and $2^{\text {nd }}$ Order Event Plane

Recall the resolution correction,

$$
R=\langle\cos 2 \Delta\rangle
$$

For the $1^{\text {st_}}$-order EP, the corresponding correction term becomes $R_{1}=\left\langle\cos 2\left(\psi_{1}-\psi\right)\right\rangle$ and for the $2^{\text {nd }}$-order EP with the consideration of de-correlation, the correction term can be written as :
$R_{12}=\left\langle\cos 2\left(\Psi_{2}-\Psi_{1}+\Psi_{1}-\Psi\right)\right\rangle=D_{12} \cdot R_{1}$, where $\mathrm{D}_{12}=\left\langle\cos 2\left(\Psi_{2}-\Psi_{1}\right)\right\rangle$

Then we can take the corrected ρ_{00} from the $1^{\text {st }}$-order EP as real ρ_{00}, and use the resolution correction formula to recover the $2^{\text {nd }}$-order EP result.

$$
\rho_{00}^{2 \text { nd }}-\frac{1}{3}=\frac{4}{1+3 R_{2}}\left(\rho_{\mathrm{obv}}^{2 \text { nd }}-\frac{1}{3}\right)=\frac{1+3 R_{12}}{1+3 R_{2}}\left(\rho_{00}^{\text {stt }}-\frac{1}{3}\right)
$$

$2^{\text {nd }}$ vs $1^{\text {st }}$ order EP

C. Zhou, CPOD 17 \& X. Sun QM17

C. Zhou, CPOD 17 \& X. Sun QM17

The de-correlation between the $1^{\text {st }}$ and $2^{\text {nd }}$ event planes explains part of the difference. The remaining difference may due to $B \neq 0$ in the angular distribution:

$$
\frac{d N}{d \cos \theta^{*} d \beta} \propto 1+A \cos ^{2} \theta^{*}+B \sin ^{2} \theta^{*} \cos 2 \beta+C \sin 2 \theta^{*} \cos \beta
$$

Effect of Finite $\boldsymbol{\eta}$ Acceptance

Finite η coverage can introduce an artificial ρ_{00}

Correction for Finite $\boldsymbol{\eta}$ Acceptance

Recall the correction for EP resolution :

$$
\rho_{00}^{\text {real }}-\frac{1}{3}=\frac{4}{1+3 R}\left(\rho_{00}^{o b v}-\frac{1}{3}\right)
$$

for random Ψ in the transverse plane, $\mathrm{R}=0$:

$$
\rho_{00}^{\text {real }}-\frac{1}{3}=4\left(\rho_{00}^{\text {obv }}-\frac{1}{3}\right)
$$

The observed $\cos \theta^{*}$ distribution can be regarded as a convolution of distribution caused by real spin alignment $\left(f\left(\theta^{*}\right)\right.$) and that caused by finite η coverage $\left(g\left(\theta^{*}\right)\right.$),

$$
\left[\frac{d N}{d\left(\cos \theta^{*}\right)}\right]_{\text {obsered }} \propto f\left(\theta^{*}\right) g\left(\theta^{*}\right) \quad \text { where }\left(g\left(\theta^{*}\right)\right) \text { remains the same with random } \Psi \text {. }
$$

To cancel $g\left(\theta^{*}\right)$, we propose to measure the distribution of $\cos \theta^{*}$ with EP randomized in transverse plane as well, and take the ratio of usual measurement to it

$$
\begin{aligned}
& \frac{\left[\frac{d N}{d\left(\cos \theta^{*}\right)}\right]_{\text {observed }}}{\left[\frac{d N}{d\left(\cos \theta^{*}\right)}\right]_{\text {random } \psi} \frac{\left(1-\rho_{00}^{o b s}\right)+\left(3 \rho_{00}^{o b s}-1\right) \cos ^{2} \theta^{*}}{\left(1-\rho_{00}^{r d m}\right)+\left(3 \rho_{00}^{r d m}-1\right) \cos ^{2} \theta^{*}}} \\
& =\frac{5+\rho_{00}+R\left(3 \rho_{00}-1\right)+(1+3 R)\left(3 \rho_{00}-1\right) \cos 2 \theta^{*}}{5+\rho_{00}+\left(3 \rho_{00}-1\right) \cos 2 \theta^{*}} \quad \text { which can be used to extract } \rho_{00} .
\end{aligned}
$$

Correction for Finite η Acceptance

With correction, ρ_{00} from different η acceptances converge onto the right value.

Complications for Measuring Azimuthal Angle Dependence

A finite spin alignment in helicity frame will cause an artificial azimuthal angle dependence, and such artificial azimuthal dependence will be there w.r.t any plane, not just EP.

We propose to rotate the global angular momentum vector L randomly in 3-dimensional space, with that the real spin alignment signal will be destroyed completely, and the artificial one remains.

The observed signal can be regarded as

$$
\left[\frac{d N}{d\left(\cos \theta^{*}\right)}\right]_{\text {obesered }} \propto\left(1+A_{\text {random3D }} \cos ^{2} \theta^{*}\right)\left(1+A \cos ^{2} \theta^{*}\right)
$$

with $A_{\text {random3D }}$ measured independently, the real A can be extracted.

Complications for Measuring Azimuthal Angle Dependence

The correction for EP resolution is a non-trivial task, because smearing of EP will affect both L (thus θ^{*}) and ($\phi-\psi$) angle.

Complications for Measuring Azimuthal Angle Dependence

$$
\begin{aligned}
& \left(\begin{array}{c}
\rho_{00,1}^{\text {obs }}-\frac{1}{3} \\
\rho_{00,2}^{\text {obs }}-\frac{1}{3} \\
\vdots \\
\rho_{00, n}^{o s s}-\frac{1}{3}
\end{array}\right)=\underbrace{\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right)\left(\begin{array}{c}
\rho_{0,1}^{\text {real }}-\frac{1}{3} \\
\rho_{00,2}^{\text {real }}-\frac{1}{3} \\
\vdots \\
\rho_{00, n}^{\text {real }}-\frac{1}{3}
\end{array}\right)}_{A} \\
& a_{i j}=\frac{M_{j i}}{\sum_{i} M_{j i}} \frac{4}{1+3 r_{j i}} r_{i j}=\frac{\sum_{k} m_{i j}^{k} w_{i j}^{k} \cos \left[2 *\left(\Psi_{o b s}^{k}-\Psi_{R P}\right)\right]}{M_{i j}}, w_{i j=}^{k}=\frac{\left\langle\sum_{j} m_{i j}\right\rangle}{\sum_{j} m_{j}^{k}} . \\
& \text { The procedure accurately recovers input values. } \\
& \text { With slight modification, can also be used in the } \\
& \text { study of azimuthal dependence of (anti)Lambda } \\
& \text { global polarization. }
\end{aligned}
$$

Summary

- Significant ϕ global spin alignment is seen at RHIC. Particle production and vorticity induced by initial angular momentum are possible sources that might contribute to the new observation.
- A few important practical considerations for measuring ϕ global spin alignment discussed.
- Correction for event plane resolution,
- Comparison between ρ_{00} measured with different planes,
- Correction for finite pseudorapidity coverage,
- Complications in measuring azimuthal dependence and how to handle.

Backup Slides

Chiral Vortical Effect vs Chiral Magnetic Effect

Particle Level Resolution

For particles that stay in the vicinity bins after smearing, their events experience less EP perturbation than those that end further from the original bin. Thus the EP resolution correction should be applied differently for different bins.

Define particle level resolution $\boldsymbol{r}_{i j}$, which takes care of particles that are from bin i before smearing and end in bin j after smearing,
$\left\langle\sum m_{i}\right\rangle \quad r_{i j}=\frac{\sum_{k} m_{i j}^{k} w_{i j} \cos \left[2 *\left(\Psi_{o b s}^{k}-\Psi_{R P}\right)\right]}{M_{i j}}$
Where $w_{i j}=\frac{\left\langle\sum_{j} m_{i j}\right\rangle}{\sum_{j} m_{i j}^{k}}$, and $\langle\mathrm{L}\rangle_{\text {denotes the average over events. }}$

Simulation on EP smearing

For a given $\Delta \Psi$, we can trace the contribution from original bin i to bin j after smearing, by integrating the relative particle yield :

$$
\frac{1}{2 \pi} \int_{x 1}^{x 2} 1+2 v_{2} \cos (2 \phi) d \phi=\left(\left.\frac{1}{2 \pi}\left(\phi-v_{2} \sin (2 \phi)\right)\right|_{x 1} ^{x 2}\right.
$$

This process can be repeated over many $\Delta \Psi$ for which the pdf. is given by :

$$
f(\Delta \Psi)=\frac{1}{2 \pi}\left[e^{-\frac{\chi^{2}}{2}}+\sqrt{\frac{\pi}{2}} \chi \cos (\Delta \Psi) e^{-\frac{\chi^{2} \sin ^{2}(\Delta \Psi)}{2}}\left(1+\operatorname{erf}\left(\chi \cos \frac{(\Delta \Psi)}{\sqrt{2}}\right)\right)\right]
$$

S. Voloshin and Y. Zhang Z. Phys. C 70 (1996)665

Thus $a_{i j}=\frac{M_{i j}}{\sum_{i} M_{i j}} * \frac{4}{1+3 r_{i j}}$ can be determined

