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Probing topological properties of QCD

* P and CP odd field configurations are connected to
the topological structure of QCD
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* In the EW sector, topological transitions might be responsible
for the observed baryon asymmetry of the Universe.

* Puzzling properties:

QCD is P and CP even.
Axial currents are anomalous.
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Sphalerons in the Glasma

* In the matter created in the earliest moments of a heavy ion collision,
(the ‘Glasma’) sphaleron transitions are abundant!
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 Real-time lattice simulations:
Significant sphaleron transitions on time scales of the order 1/Qs
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Anomalous fermion production
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Classical-statistical lattice simulations

e Dynamics of anomalous fermion production at earliest times
e Onset and properties of of anomalous transport

See also talke bj N. Tanjt M. Mace, NM, S, Schlichting, S. Sharma: PRL 117, 061601, PRD 95, 036023, NPA 967, 752



Pre-equilibrium dynamics of the CME

CGC flux tubes over-occupied kinetic regime hydrodynamic
colliding nuclei B plasma regime

J+
SN

Abundance of
topological transitions

Large Magnetic F

Understand how messengers Understand how they persist, interact
of topological transitions are : : with medium and turn into measurable
produced E : quantities



Anomalous Transport

local fluctuations of topological charge
(dynamical, characteristic scale Qs)

C(t,0t) = %((Ncs(t +0t) - NCS(t))2>



Anomalous Transport

local fluctuations of topological charge

(dynamical, characteristic scale Qs) ..
1 2 \“\, i
C(t,dt) = V((Ncs(t +6t) - Nos(t)) ) CME: electric charge
separation

production of initial

chiral charge imbalance --..._.____
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Anomalous Transport

local fluctuations of topological charge
(dynamical, characteristic scale Qs)

~
~

C(t,ot) = %((Ncs(t +0t) — NCS(t))2> CME: electric charge

separation

production of initial
chiral charge imbalance .

As the fireball expands...

e Magnetic field decays quickly
e medium becomes dilute
e Subsequent interactions with

the fireball, scattering off topological domains.



Chiral Kinetic Theory

Conceptual Challenges

D Lorentz covariant description of chiral fermions, spin

and helicity in “point-particle” picture.
Some very non-intuitive aspects: scattering and Lorentz covariance, “side-jumps”,

covariance of distribution functions?

Dynamics of the chiral anomaly consistently included.
Well known in QFT, but point-particle picture requires fundamental insights.

D Interactions (=physics of anomalous transport)
Interactions with topological and non-topological fluctuations in the fireball.

Scales and mechanisms? What can we learn for anomalous hydro?



Chiral Kinetic Theory from
the World-line approach to quantum field theory



1. World-line approach to QFT

e One-loop effective action (euclidean for now)

I'[A] = —log |det(—D?)| = —Tr (log(—D?)) L=2'D%

9 Feynman, Schwinger 50’s; Polyakov, 80’s
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1. World-line approach to QFT

e One-loop effective action (euclidean for now)

I[A] = —log [det(—D?)] = —Tr (log(~D?)) L =2a'D%

e Integral representation of log (heat-kernel)
o dy o 00 oot
1 :/ —E/ d / dt _yt:_/ 7 —ot  _—t
og(o) L Cdy ) e o (e e )

e Effective action: QM path integral of particle on circle (Strassler, 1992)
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1. World-line approach to QFT

e ‘SUSY spinning particle models’ via anti-commuting variables

Berezin & Marinov, Barducci, Balachandran, Casalbuoni, Brink, Howe, DiVecchia (70s-80s)

Particle Spin Dynamics as the Grassmann Variant of Classical Mechanic
F. A. BEREZIN

Department of Mathematics, Moscow State University, Moscow, U.S.S.R.

ij

AND
M. S. MARINOV

Institute for Theoretical and Experimental Physics, Moscow 117259, U.S.S.R.
Received August 9, 1976

A generalization of classical mechanics is presented. The dynamical variables (functions
on the phase space) are assumed to be elements of an algebra with anticommuting generators
(the Grassmann algebra). The action functional and the Poisson brackets are defined. The
equations of motion are deduced from the variational principle. The dynamics are also
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equations of motion are deduced from the variational principle. The dynamics are also

 Related to world-line representation for fermions (QED/QCD)

WA, B] = log det(i@ + A + 75 B) WA, B] = Wg[A, B] + iWi[A, B]

10



1. World-line approach to QFT

e ‘SUSY spinning particle models’ via anti-commuting variables

Berezin & Marinov, Barducci, Balachandran, Casalbuoni, Brink, Howe, DiVecchia (70s-80s)

Particle Spin Dynamics as the Grassmann Variant of Classical Mechanic
F. A. BEREZIN
Department of Mathematics, Moscow State University, Moscow, U.S.S.R.
. 2 . .
b 1 M ’[,g AND
J— y 174
£ — 25 _|_ CEMAPL<$) _|_ §¢M¢ILL S quIJ/Vw _l_ e M. S. MARINOV

2 Institute for Theoretical and Experimental Physics, Moscow 117259, U.S.S.R.

Received August 9, 1976
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G‘r& s S m Q M L& M S LM v&r LQ b LQ s ’U) —) — ’7/ - ’7 A generalization of classical mechanics is presented. The dynamical variables (functions
i / L ) / L on the phase space) are assumed to be elements of an algebra with anticommuting generators
2 (the Grassmann algebra). The action functional and the Poisson brackets are defined. The

equations of motion are deduced from the variational principle. The dynamics are also

 Related to world-line representation for fermions (QED/QCD)

WA, B] = log det(id + A+ vsB) WA, B] = Wg|A, B] + iWi[A, B]

... which has that exact same “point-particle” Lagrangian (no approximations!)
1 [dT r
Wr = §/Tﬂ/@x/@wtrexp{—/d7 [:(’L')}
0 P AP 0
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2. Origin of the anomaly
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2. Origin of the anomaly

e Origin of anomaly from fermionic effective action well khnown

WA, B] = Wg|A, B] +iWi|A, B] “. log det(id + A+ s B)”

— (euclidean)

 Phase of the determinant / imaginary part of effective action is
iII-defined, origin of the anomaly (Alvarez-Gaume, Witten 1984)
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2. Origin of the anomaly

e Origin of anomaly from fermionic effective action well khnown

WA, B] = Wg|A, B] +iWi|A, B] “. log det(id + A+ s B)”

— (euclidean)

 Phase of the determinant / imaginary part of effective action is
iII-defined, origin of the anomaly (Alvarez-Gaume, Witten 1984)

A world-line representation of the imaginary part can be found, but only if we give up
chiral symmetry (b’Hoker and Gagne)

1 o0
Wi = é—i/da/dT Tr{Me_%TS?OO}
—1 0

e Anomaly related to Grassmann zero modes on the world line (see aiso Polyakov’s book 80's)

1OW] 1

a.u<.]fl (y)> = a.u 6Bu(y) B—0 - = 167[2 guvpo-F,uV(y)FpO'(y)
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Constructing a quantum kinetic theory for chiral fermions
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3. Chiral Kinetic Theory

 World-line approach naturally continued to Schwinger-Keldysh (SK)
non-equilibrium path integral

Z = / d¢] exp (—~G¢]) / dA] exp (iSu)
’ (SK) world-Line
Sert| 4, €] = —3 Je d*x F,F* 4+ W[A,¢] effective action,

can derive (!) that from original QFT

13 Barducci 1984



3. Chiral Kinetic Theory

 World-line approach naturally continued to Schwinger-Keldysh (SK)
non-equilibrium path integral

7 = / d¢] exp (—GIe]) C/ [dA] exp (iSeq)
(SK) world-Line

.Seff[A’_g] - _% fc dx FWFW T W[A7§] effective action,

can derive (!) that from original QFT

e |In saddle-point limit (Truncated Wigner approximation) the central object is a
Wigner distribution

- dynamics is determined by a Liouville equation
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3. Chiral Kinetic Theory

 World-line approach naturally continued to Schwinger-Keldysh (SK)
non-equilibrium path integral

7 = / d¢] exp (—GIe]) / [dA] exp (iSeq)

C
(SK) world-line

.Seff[A’_g] - _% fc dx FWFW T W[A7§] effective action,

can derive (!) that from original QFT

e |In saddle-point limit (Truncated Wigner approximation) the central object is a
Wigner distribution

- dynamics is determined by a Liouville equation

9 ) 0

{f,H} zf(%a‘c“jt aPuPMF @W‘) =0

- governed by chiral fermion Hamiltonian (not a model, derived from QFT!)

g . ) ) 1 o
H = [P? + " Fp (2)9"] + %C+X+ - %C—X— cx = 5 (£PH + 3PP dats)

13 Barducci 1984



3. Chiral Kinetic Theory

Quantum Kinetic Theory from Liouville equation

 need to understand interactions of anomalous
messengers with local topological fluctuations

C(t,ot) = %((Ncs(t +0t) — Ncs(t))2>
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3. Chiral Kinetic Theory

Quantum Kinetic Theory from Liouville equation

 need to understand interactions of anomalous
messengers with local topological fluctuations

C(t,ot) = %((Ncs(t +0t) - Ncs(t))2>

e SK path integral specifies (quantum and statistical) ensemble, through
initial density matrix / Wigner distribution. Fluctuations understood naturally.

f = f +of 1-particle distribution function

14



3. Chiral Kinetic Theory

Quantum Kinetic Theory from Liouville equation

 need to understand interactions of anomalous
messengers with local topological fluctuations

C(t,ot) = %((Ncg(t +0t) - Ncs(t))2>

e SK path integral specifies (quantum and statistical) ensemble, through
initial density matrix / Wigner distribution. Fluctuations understood naturally.

1-particle distribution function

Suantum and statistical ensemble



3. Chiral Kinetic Theory

Quantum Kinetic Theory
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c.f. BBGKY hierarchy, Landau Lifshitz, “Statistical Physics” and “Physical Kinetics”



3.

Quantum Kinetic Theory

Chiral Kinetic Theory
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3. Chiral Kinetic Theory

Quantum Kinetic Theory
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3. Bonus: Side-jumps

An issue of Lorentz covariance and spin: side jJumps

. Lorentz Invariance in Chiral Kinetic Theory
Jing-Yuan Chen, Dam T. Son (Chicago U.), Mikhail A. Stephanov (lllinois U., Chicago & Chicago U.), Ho-Ung Yee (lllinois U., Chicago & RIKEN BNL), Yi Yin (lllinois U., Chicago).

Published in Phys.Rev.Lett. 113 (2014) no.18, 182302

Collisions in Chiral Kinetic Theory
Jing-Yuan Chen, Dam T. Son (Chicago U.), Mikhail A. Stephanov (lllinois U., Chicago). Feb 24, 2015. 5 pp.

Published in Phys.Rev.Lett. 115 (2015) no.2, 021601

Seems puzzling, but is not

H = — P2 + Zw’u —C+X+ - = C X — C+ = % (iP,ﬂW + %eﬂyaﬂpuwuwawﬁ)

ass-shell conskraint / / hetici&v constraint

gauge parameters (Lagrange multiplier), 1st class constraints

e ‘Position’ z¥(7) at given ‘time’ is not gauge invariant, because 7 is not
(reparametrization invariance of world line of relativistic particle).
e Similarly defining the local spin frame is somewhat ambiguous.
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Summary

Fluckuakions mabker!

 Derived a consistent Chiral Kinetic Theory
using the world-line approach to QFT

* |ssues of Lorentz covariance and chirality/spin/helicity naturally
understood

* Non-equilibrium many-body (SK) formulation: quantum kinetic
theory in saddle point limit (Truncated Wigner approx.)
17



What next?

A lot more work ahead!

e compute collision terms, identify
mechanisms for anomalous
transport

e Connect to lattice simulations at
early times and anomalous hydro at
late times

e better insight into anomalous hydro/hydrodynamics of chiral fluids,
deriving it from the kinetic theory

 Applications to other fields, many-body systems where the dynamics
is nearly chiral and relativistic (heutron-stars, supernovae etc.)

18



Back-up:
Origin of the anomaly and Berry phase

(p—%)°

2m

S-([v/c—A/(mc*)| xE) B-S | o
+4%0x) - 2mc m St = —5eiyIyt

The non-relativistic, H=mc+

and adiabatic limit of the world-line representation contains a Berry phase

Wi :/@x@p exp (i/dz [x.p—FID

A = m*+ P 4 A%(x) —p- o (p) (p) = —i{y* (p)|V,| v (p))

Interesting related development: K. Fujikawa 2005 and 2017



Back-up:
Origin of the anomaly and Berry phase

(p—%)°

2m

S-([v/e—A/(mc*)] xE) B-S

—I—AO(x) — e . - gt — _%Gijkijk

The non-relativistic, H=mc+

and adiabatic limit of the world-line representation contains a Berry phase

Wi :/@x@p exp (i/dz [x.p—FID

~

A =mc?+ @A | A%(x) —p- o/ (p) o (p)

~i{y*(p)|V, |yt (p))

In the adiabatic limit, for large chemical potential and zero mass
we reproduce the results of Son & Yamamoto, Stephanov and Yin ...

.. from the real part, which we have shown to be independent of the anomaly

Interesting related development: K. Fujikawa 2005 and 2017



Fujikawa 2005

The notion of Berry’s phase is known to be useful in various physical contexts [17]-[18],
and the topological considerations are often crucial to obtain a qualitative understanding
of what 1s going on. Our analysis however shows that the topological interpretation of
Berry's phase associated with level crossing generally fails in practical physical settings
with any finite 7. "The notion of “approximate topologyv™ has no rigorous meaning, and
it 1s important to keep this approximate topological property of geometric phases asso-
ciated with level crossing in mind when one applies the notion of geometric phases to
concrete physical processes. This approximate topological property is in sharp contrast
to the Aharonov-Bohm phase [8] which is induced by the time-independent gauge poten-
tial and topologically exact for any finite time interval 7'. The similarity and difference
between the geometric phase and the Aharonov-Bohm phase have been recognized in the
early literature [1, 8], but our second quantized formulation, in which the analysis of the
geometric phase 1s reduced to a diagonalization of the effective Hamiltonian, allowed us
to analyze the topological properties precisely in the infinitesimal neighborhood of level
crossing.

What we have shown in the present paper is that this
expectation is not realized, and the similarity between the two is superfi-
cial. 7
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Backup: Chiral Kinetic Theory

e Collision terms generated by (topological)
fluctuations in the medium

e Similar equations exist for the fluctuations, which in the dilute limit
can be solved in closed form (c.f. BBGKY hierarchy)
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Backup: Grassmann extended phase space

Poisson/Dirac Brakets

The conjugate variables for z# are

=~ = = = =~ o
Jd 0 Jd 0 Ir 9 0 4 oL . ,
{4, B}y, _A<0.1'/‘ op*  Opt Oxr 2 [()L'l‘ apl, P = ()Tl, =P+ A%,
= o = = = =
i 0 :| n l 0 0 n 0 19, )B where
()1)’:, OYH 2 | Ovs Ops  Ops 05 ' o . . yvaf
(()') PH = IT _ i'i'll (L'“ + L€ ; U, L,(“g) X+
. s praf
+ i.i',, <c;"‘ - = 3 Yy cwi) X-— -

The Dirac brackets between any two elements of the ex-
tended phase space are given by

{z, p"} = {a", P"} = ¢g"", (7)

{Pll. Pl/} — F/u/ ) (8)

{Pu. F;u./} — _0(\ F/u./ . (9)

Py ¥} = 0’7 (10)
‘ 1

{ps, ¥s} = 3, (11)

while all other brackets vanish. Further, using Eq.(4) and
Eq.(5), we obtain

{C";l- C‘"l/} - _’.‘g[ll/ 3 (12)
{L’"g‘,. C"F‘,} = —1. (13)

22



Backup: Chiral phase space

Weyl equation %(, p)(1+~%) = 0.

Weyl Hamiltonian H = g[P2 + it F (z)y"] + é('+\+ - 3\

L C+ = %(:t])/ll.“—F Flll(lfP/lL ((,L j)

Phase space measure d4 = (—i ) (V2))d3 dip2dipt du)®

™
\Hl

'y / 3 I\ l\
= 2i(£P,yY" + ;’”“ P, Yo 3) €7 F I

(22)

The above expression can be quantized by identifying

VH — 2~k /y/2. This gives

r 1 5 ¢
efyr = p+ = 5(”} -P)(1 £~ )70- (23)
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Back-up: Overview and Literature

Pre-equilibrium dynamics of

L 3
2 4
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colliding nuclei . plasma regime
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Anomalous Hydro

x [fm]
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