Chirality 2018 @ GGI, Florence Mar. 22, 2018 Anomalous-Viscous Fluid Dynamics (AVFD) For the Anomalous Chiral Transport in Heavy Ion Collisions

Jinfeng Liao

Indiana University, Physics Dept. & CEEM

Research Supported by U.S. NSF & DOE

arXiv:1611.04586

Quantifying the chiral magnetic effect from anomalous-viscous fluid dynamics^{*}

Yin Jiang(姜寅)¹ Shuzhe Shi(施舒哲)² Yi Yin(尹伊)³ Jinfeng Liao(廖劲峰)^{2,4;1)}

 ¹ School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China
 ² Physics Department and Center for Exploration of Energy and Matter, Indiana University, 2401 N Milo B. Sampson Lane, Bloomington, IN 47408, USA

³ Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
⁴ Institute of Particle Physics and Key Laboratory of Quark & Lepton Physics (MOE), Central China Normal University, Wuhan 430079, China

Anomalous Chiral Transport in Heavy Ion Collisions from Anomalous-Viscous Fluid Dynamics

Shuzhe Shi^a Yin Jiang^{b,c} Elias Lilleskov^{d,a} Jinfeng Liao^{a,e}

^a Physics Department and Center for Exploration of Energy and Matter, Indiana University, 2401 N Milo B. Sampson Lane, Bloomington, IN 47408, USA.

^bSchool of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China.

^cInstitut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, D-69120 Heidelberg, Germany.

^dDepartment of Physics and Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105, USA.

^eInstitute of Particle Physics and Key Laboratory of Quark & Lepton Physics (MOE), Central China Normal University, Wuhan, 430079, China. Shuzhe Shi (PhD @ IUB)

Other collaborators: Yin Jiang (Beihang), Yi Yin (MIT), Elias Lilleskov (REU);

Hui Zhang, Defu Hou (CCNU).

arXiv:1711.02496

Exciting Progress: See Recent Reviews

Prog. Part. Nucl. Phys. 88, 1 (2016)[arXiv:1511.04050 [hep-ph]].

J. Liao, Pramana 84, no. 5, 901 (2015) [arXiv:1401.2500 [hep-ph]].

Outline

- Introductory Discussions
- The AVFD Framework
- Quantitative Results from AVFD
- EBE-AVFD
- Summary & Outlook

Introductory Discussions

Chiral Symmetry & SSB

Classical symmetry:

 $egin{aligned} \mathcal{L} &= i ar{\Psi} \gamma^\mu \partial_\mu \Psi \ \mathcal{L} & o i ar{\Psi}_L \gamma^\mu \partial_\mu \Psi_L + i ar{\Psi}_R \gamma^\mu \partial_\mu \Psi_R \ \Lambda_A &: \Psi o e^{i \gamma_5 heta} \Psi \ \partial_\mu J_5^\mu &= 0 \end{aligned}$

The "Origin of Mass"

QCD interactions (via SSB) account for nearly all the visible mass in the Universe.

A typical person, say ~ 70 kg * Reasonable estimate, dominantly H2O ~ 10 protons + 8 neutrons ~ 28 u quarks + 26 d-quarks

* Mass from Higgs: ~1.7kg (~2.4%) * Mass from QCD: ~ 68.3kg (~97.6%)

The QCD chiral symmetry is just of paramount importance!

QCD & Chiral Symmetry

* Spontaneously broken chiral symmetry in the vacuum is a fundamental property of QCD.

* A chirally symmetric quark-gluon plasma at high temperature is an equally fundamental property of QCD!

Could we see direct experimental evidence for that?

"Little Bang" in High Energy Nuclear Collision

* Quark-gluon plasma (QGP) is created in such collisions. * It is PRIMORDIALLY HOT ~ trillion degrees ~ early universe. * Is chiral symmetry restored?

Chiral Anomaly

Chiral anomaly is a fundamental aspect of QFT with chiral fermions.

Classical symmetry:

$$egin{aligned} \mathcal{L} &= i\Psi\gamma^\mu\partial_\mu\Psi\ \mathcal{L} & o iar{\Psi}_L\gamma^\mu\partial_\mu\Psi_L + iar{\Psi}_R\gamma^\mu\partial_\mu\Psi_R\ &\Lambda_A:\Psi o e^{i\gamma_5 heta}\Psi\ &\partial_\mu J_5^\mu &= 0 \end{aligned}$$

Broken at QM level:

$$\begin{aligned} \partial_{\mu}J_{5}^{\mu} &= C_{A}\vec{E}\cdot\vec{B} \\ \frac{dQ_{5}}{dt} &= \int_{\vec{x}}C_{A}\vec{E}\cdot\vec{B} \end{aligned}$$

* C_A is universal anomaly coefficient* Anomaly is intrinsically QUANTUM effect

[e.g. pi0—> 2 gamma]

The Chiral Magnetic Effect

New Phase & New Extreme Conditions

The quark-gluon plasma is a type of CHIRAL MATTER, with (approximately) chiral quarks.

Heavy ion collision environment: extremely strong magnetic field and fluid rotation!

Strong EM Fields in Heavy Ion Collisions

• Strongest B field (and strong E field as well) naturally arises! [Kharzeev,McLerran,Warringa;Tuichin; Skokov,et al; Bzdak-Skokov; Deng-Huang; Bloczynski-Huang-Zhang-Liao; Skokov-McLerran; ...]

• "Out-of-plane" orientation (approximately)

[Kharzeev 2004; Kharzeev, McLerran, Warringa, 2008;...]

Experimental Observable

charge separation \Rightarrow charge dept. two-particle correlation

$$\gamma = \langle \cos(\varDelta\phi_i + \varDelta\phi_j) \rangle = \langle \cos\varDelta\phi_i \cos\varDelta\phi_j \rangle - \langle \sin\varDelta\phi_i \sin\varDelta\phi_j \rangle$$

- $\delta = \langle \cos(\varDelta \phi_i \varDelta \phi_j) \rangle = \langle \cos \varDelta \phi_i \cos \varDelta \phi_j \rangle + \langle \sin \varDelta \phi_i \sin \varDelta \phi_j \rangle$
- $\gamma = \kappa v_2 F H$ F: Bulk Background $\delta = F + H$ H: Possible Pure CME Signal = $(a_{1,CME})^2$

See many exp. talks at this conference.

Summarizing Exp. Search Status Main challenge: flow-driven background v.s. CME signal

Vary v2 for fixed B: AuAu v.s. UU; Varying event-shape; 2-component subtraction.

Vary B for fixed v2: Isobaric collisions with RuRu v.s. ZrZr Our best guess for now:

Encouraging experimental evidence for CME in QGP — can we quantitatively compute CME signal?

Many interesting proposals of new observables! See many exp. talks at this conference.

Toward Quantitative Era of CME Study

- * Modeling CME &CMW with transport model (AMPT): SINAP group; TAMU group; ...
- * Modeling CME with chiral kinetic theory: Tsinghua-IU group; TAMU group; ...
- * Dynamical magneto-hydro: Florence-Frankfurt group; BNL-SBU group; Tokyo group; ...
- * Axial charge dynamics: SYSU group; BNL-SBU group Tsinghua-IU group; ...
- * Fluid dynamical description: IU group; BNL-SBU group; ...

The rest of this talk will focus on the approach based on a new kind of fluid dynamics simulations: Anomalous-Viscous Fluid Dynamics (AVFD)

The AVFD Framework

From Micro. Laws To Macro. Phenomena

Micro. Laws:

Macro. Phenomena:

Symmetry; Lagrangian; Conservation laws; Thermodynamics; Phase transitions; Transport; Hydrodynamics;

Would chiral anomaly, usually considered at microscopic level, manifest itself MACROSCOPICALLY in a many-body system of chiral fermions? If so, how?

Many-body physics of chiral anomaly: General interest and broad impact! e.g. semimetals, neutrinos in supernovae, Compact stars, cosmology, plasma physics, ...

Emergence in Hydrodynamic Context

Symmetry	Micro. Conservation Law	Emergent Macro. Hydro
translational invariance	energy and momentum conserved	$\partial_{\mu}T^{\mu\nu} = 0$
phase invariance	charge conserved	$\partial_{\mu}J^{\mu}=0$

 $\mathcal{L} \to \mathcal{L}$

Emergence in Hydrodynamic Context

Symmetry	Micro. Conservation Law	Emergent Macro. Hydro
translational invariance	energy and momentum conserved	$\partial_{\mu}T^{\mu\nu} = 0$
phase invariance	charge conserved	$\partial_{\mu}J^{\mu}=0$

WHAT ABOU "HALF"-SYMMETRY??? i..e ANOMALY?!

- classical symmetry that is broken in quantum theory

Hydrodynamics That Knows Left & Right

Microscopic quantum anomaly emerges as macroscopic anomalous hydrodynamic currents!

It would be remarkable to actually "see" this new hydrodynamics at work in real world materials!

AVFD: Anomalous-Viscous Fluid Dynamics

The AVFD Framework

[[]We now also have MUSIC-AVFD!]

The AVFD At Work [Jiang, Shi, Yin, JL, arXiv:1611.04586.]

The AVFD At Work [Jiang, Shi, Yin, JL, arXiv:1611.04586.]

Right-Handed Density

Left-Handed Density

The AVFD At Work [Jiang, Shi, Yin, JL, arXiv:1611.04586.]

U Flavor Density

D Flavor Density

The Charge Separation from AVFD

B field ⊗ μ₅ ⇒ current ⇒ dipole (charge separation) dN_±/dφ ∝ 1 + 2 a_{1±}sin(φ – ψ_{RP}) + ...

The Charge Separation from AVFD

B field $\otimes \mu_5 \Rightarrow \text{current} \Rightarrow \text{dipole} (\text{charge separation})$ $dN_{\pm}/d\phi \propto 1 + 2 a_{1\pm} \sin(\phi - \psi_{RP}) + ...$

 $H_{SS}-H_{OS} \leftrightarrow 2(a_1)^2$

Detailed Results from AVFD

arXiv:1611.04586

arXiv:1711.02496

The Influence of the Magnetic Field

Strong influence by B field evolution; Significant theoretical uncertainty!

The Axial Charge Initial Condition

Very sensitive to initial axial charge; Significant theoretical uncertainty!

The Influence of the Viscous Transport

First calibration for the influence of the viscous transport on charge separation signal!

AVFD Predictions v.s Experimental Data

Table 1. Centrality dependence of magnetic field peak strength and the initial chirality imbalance. The n_5/s shown here is obtained with a saturation scale $Q_s^2 = 1.25 \text{GeV}^2$.

Using Isobaric Collisions for CME Search

The Magnetic Fields and Signals of Isobars

Shuzhe Shi, JL, in preparation.

Toward Event-by-Event Simulations

Include EBE fluctuations:

- Initial Conditions
- Statistic @ Freeze-out
- Hadron Cascade

Important for better understanding: * Interplay between signal and BKG; * Experimental analysis methods

Fluctuations and Angular De-Correlation

Azimuthally fluctuating magnetic field and its impacts on observables in heavy-ion collisions

John Bloczynski^a, Xu-Guang Huang^{a,*}, Xilin Zhang^a, Jinfeng Liao^{a,b}

Fluctuations and Angular De-Correlation

* CME signal totally independent of v2?

NO!

* For event-shape engineering, B field is approximately constant across different shapes within same centrality?

NO!

* In small systems / central collisions, no B field effect at all?

NO!

Unfortunately, signal and BKG entangle more deeply than we'd hope. Both theorists and experimentalists need to be very careful!

Binning Events Could Be Tricky!

Au-Au @ 200GeV 50-60%

The multiplicity and B-EP de-correlation change with event shape!

EBE-AVFD Results

Au-Au @ 200GeV 50-60%

The CME signal is also correlated with event shape !

EBE-AVFD Results: Slope & Intercept

The intercept is SENSITIVE to CME signal !

The slope contains both BKG and signal !

EBE-AVFD Results: Gamma(1,2,3)

Summary & Outlook

Summary

Toward Full-Fledged EBE-AVFD: Stay Tuned!

