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In	off-central	collision,	most	of	the	
angular	momentum	is	carried	
away	by	the	spectators,	but	there	
still	a	nonzero	angular	momentum	
in	the	range	of																			remains.	
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I. INTRODUCTION

Understanding of QCD matter under extreme rapidly rotation is a puzzle and a hot topic in physics because of
the applications in many physical environments (e.g. the rapidly spinning neutron stars in astrophysics, the trapped
nonrelativistic bosonic cold atoms in condense matter physics and non-central heavy-collisions in high energy physics).
The typical collision events in heavy ion collisions experiment are o↵-central, the two colliding nuclei carry a total
momentum J / b

p
sNN . Notice here, b is the impact parameter and the beam energy

p
sNN is the nucleon-nucleon

center-of-mass energy. After the impact, most of the angular momentum is carried away by the spectators, but there
still a nonzero angular momentum in the range 103~�105~ remains in the created QCD matter [1, 2]. Recently, many
interesting physics phenomena were founded in rotating matter (i.e., chiral vortical e↵ect [3–5] and chiral vortical
wave [6]). Such properties are very similar with the phenomena which were founded in magnetized matter (matter
in magnetic field). The chiral vortical e↵ect an chiral vortical e↵ect play analogous roles to the chiral magnetic
e↵ect [3, 7] and the chiral magnetic wave [8, 9].

There are already many studies about the QCD phase diagram and the respective chiral critical end point(CEP)
which are a↵ected by the presence of external magnetic fields (for review of them see Ref. [10]), compare with that,
the understanding of phase diagram in rotation QCD matter still need to be developed. Although some studies have
discussed the phase diagram under rotation [11–15] as well as the lattice result is shown in Ref. [16], we still need a
systematic study on this. In this paper, we discuss the QCD phase diagram, the corresponding CEP and the baryon
number density fluctuation in a rotational 2 flavor NJL model with vector interaction. In recent studies [11, 13–15],
they pointed out that the boundary e↵ect is very important in rotation system, however, we consider the angular
velocity is much smaller than the inverse of system’s size and ignore the finite volume boundary e↵ect in this paper
for now. We use the angular velocity as a third dimension in QCD phase diagram, carefully calculate how the
CEP influenced by angular velocity ! at a certain radius. As expect, in the phase transition on the T-µ plane, the
temperature of CEP is lower with a increasing angular velocity. Similarly we found that the phase transition on the
T-! plane is lower with a increasing chemical potential. Also we evaluate the a↵ect which is caused by the vector
interaction in our study. The numerical result shows that the influence of vector interaction term on the chiral phase
transition on T-! plane is much less sensitive compare with the the chiral phase transition on T-µ plane. We conclude
an one-eighth sphere shape chiral phase transition surface on (!, µ, T) frame.

In Heavy Ion Collisions experiment include RHIC, LHC as well as future accelerator at FAIR in Darmstadt and
NICA in Dubna, one of the important goal is to search for the existence of the CEP and to locate the CEP in the
QCD phase diagram. From 2010 to 2014, the first phase of beam energy scan program (BES-I) at RHIC was Runned.
The experimental measurements of the fluctuations of conserved quantities have been performed for Au+Au collisions
at

p
sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4 and 200GeV. The experimental measurements of cumulants of conserved

quantities up to the fourth order of net-proton, net-charge and net-kaon multiplicity distributions from BES-I [17, 18]
are summarized in Ref.[19]. One interesting observation is that the kurtosis of the baryon number distributions �2

in the most central Au+Au collisions shows a non-monotonic energy dependence behavior: It decreases from almost
1 at the colliding energy of

p
sNN = 200GeV to 0.1 at

p
sNN = 20GeV then starts to increase quickly to 3.5 atp

sNN = 7GeV. In the last part of our calculation we evaluate the kurtosis of the number distribution with di↵erent
angular momentum.
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FIG. 11: Averaged vorticity ⟨ωy⟩ from the AMPT model as a
function of time at various impact parameter b for fixed beam
energy

√
sNN = 200 GeV. The solid curves are from fitting

formula (see text for details).

So what does that imply? It suggests that, to extract
the component of local vorticity that is truly associated
with the global rotation, one needs to perform an average
over the fireball. Upon such averaging, the background
flow contributions to local vorticity would cancel out, and
what remains can be attributed to the rotational motion.

B. Averaged Vorticity for the QGP

In this subsection we present our key results: the prop-
erly averaged vorticity ⟨ωy⟩ that encodes information on
the global rotation of the fireball. For the averaging pro-
cess, we will use the weighing function as given in Eq.(4)
for the fireball over the full transverse plane and a spatial
rapidity span of η ∈ [−4, 4].
Let us first present the centrality dependence of ⟨ωy⟩

at given beam energy
√
sNN = 200 GeV: see Fig. 11. The

⟨ωy⟩ briefly increases with time which is most likely due
to parton scatterings during the early stage (when the
transverse radial expansion is not developed yet) that in
certain way decrease the fluid moment of inertia. The av-
eraged vorticity reaches peak value at an almost universal
time around 1 fm/c and then follows a steady decrease
with time. The decrease is due to the system’s expansion
which increases total moment of inertia at the price of re-
duced vorticity due to the constraint of constant angular
momentum. The results also clearly demonstrate that
the averaged vorticity increases from central to periph-
eral collisions: this trend is different from the angular
momentum. Such difference again can be understood as
follows: while the vorticity increases with b, the fluid mo-
ment of inertia (pertinent to rotation) in the fireball de-
creases with b, thus the angular momentum shows a non-
monotonic behavior due to the two competing trends.
We next show the beam energy dependence of ⟨ωy⟩ at

FIG. 12: Averaged vorticity ⟨ωy⟩ from the AMPT model as a
function of time at varied beam energy

√
sNN for fixed impact

parameter b = 7 fm. The solid curves are from fitting formula
(see text for details).

given impact parameter b = 7 fm: see Fig. 12. Simi-
lar time evolution patterns are observed at all energies.
We notice that the averaged vorticity increases with de-
creasing beam energy, in quite the opposite trend to the
angular momentum. This may be understood as follows:
with increasing beam energy, the fluid moment of inertia
(pertinent to rotation) increases more rapidly than the
decrease of vorticity, thus the total angular momentum
is still increasing. We have numerically checked that this
is indeed the case.
Finally, we present a parameterization of averaged vor-

ticity as a function of time, centrality as well as beam en-
ergy, which provides comprehensive and very good fit to
the numerical results of Au+Au collisions from AMPT.
This is given by:

⟨ωy⟩(t, b,
√
sNN ) = A(b,

√
sNN )

+B(b,
√
sNN) (0.58t)0.35 e−0.58t (8)

with the two coefficients A and B given by:

A =
[

e−0.016 b
√
sNN + 1

]

× tanh(0.28 b)

× [0.001775 tanh(3− 0.015
√
sNN ) + 0.0128] ,

B =
[

e−0.016 b
√
sNN + 1

]

× [0.02388 b+ 0.01203]

× [1.751− tanh(0.01
√
sNN )] .

In the above relations,
√
sNN should be evaluated in the

unit of GeV, b in the unit of fm, t in the unit of fm/c, and
ωy in the unit of fm−1. The solid curves in Figs. 11 and 12
are obtained from the above formula, in comparison with
actual AMPT results. As can be seen, the agreement is
excellent and we have checked that in all cases the relative
error of the above formula is at most a few percent. Such
parameterization could be conveniently used for future
studies of various vorticity driven effects in QGP.

Figure 1. The space-averaged vorticity at τ = τ0 and η = 0 averaged over 105 events for RHIC Au +
Au collisions at

√
s = 200 GeV (Left) and LHC Pb + Pb collisions at

√
s = 2.76 TeV (Right).

Figure 2. The collision energy dependence of the vorticity at η = 0 (Left) and the spacetime rapidity
dependence (Right) at various collision energies. Proper time is fixed τ = 0.4 fm and impact parameter
is b = 10 fm.

In Fig. 2 (Left) we show ⟨ω̄y⟩ at mid-rapidity as a function of collision energy
√
s. Clearly, the

magnitude of ⟨ω̄y⟩ decreases when
√
s increases. This, at first sight, may seem counter-intuitive as the

angular momentum increases with
√
s. However, with increasing

√
s, the moment of inertia grows more

rapidly than the increasing of the total angular momentum of QGP, and can make the vorticity decrease.
More importantly, with increasing collision energy, more angular momentum is carried by particles at
finite rapidity and thus the vorticity at η = 0 is relatively weakened (see Fig. 2 (Right)). This reflects the
fact that at higher collision energy, the system at the mid-rapidity region behaves closer to the Bjorken
boost invariant picture and thus allows smaller vorticity.
The spatial distribution of the vorticity (we present only ⟨ω2y⟩ of v2 as an example) in the transverse

plane is shown in Fig. 3 (Left). Notice that ⟨ω2y⟩ varies more steeply along the x direction than along
the y direction in consistence with the elliptic shape of the overlapping region. The spatial distribution
of the T 2-weighted flow helicity in the transverse plane is shown in Fig. 3 (Right). Clearly, the reaction
plane separates the region with positive helicity from the region with negative helicity. The flow helicity
separation may have interesting experimental implication, for example, it may be related to the chiral
charges separation via the CVE [17, 18].
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This paper is organized as follow: in the next section, we give a general expression of the two-flavor NJL model
including vector interaction in rotating frame, and then derive the gap equations in order to get the grand potential
and constituent mass of quarks. In Sec. III we show our numerical results and analysis. Finally, the discussion and
conclusion part is given in Sec. IV.

II. FORMALISM

In 2 flavor NJL model with vector interaction in a rotating frame, the Lagrangian is given by:

L =  ̄[i�̄µ(@µ + �µ)�m] +GS [( ̄ )
2 + ( ̄i�5~⌧ )

2] +GV ( ̄�
µ )2. (1)

Here, m is the quark rest mass, GS and GV are the scalar and vector couplings. The spinor connection is given
by �µ = 1

4 ⇥ 1
2 [�

a, �b]�abµ. Here, �abµ = ⌘ac(ec�G
�
µ⌫e

⌫
b � e ⌫

b @µe
c
⌫), G

�
µ⌫ is the a�ne connection determined by

gµ⌫ . Following Refs [12], we consider slow rotation (! is much smaller than the inverse of system’s size) and choose
eaµ = �aµ + �ai�

0
µ vi and e µ

a = � µ
a � � 0

a �
µ

i vi. It is easy to get the grand potential in first order approximation

⌦ =

Z
d3r

⇢
(M �m)2

4GS
� (µ� µ̃)2

4GV
� TNcNf

16⇡2

X

n

Z
dk2t

Z
dkz[Jn(ktr)

2 + Jn+1(ktr)
2]
h
ln(1 + e(Ek�(n+ 1

2 )!�µ̃)/T )

+ ln(1 + e�(Ek�(n+ 1
2 )!�µ̃)/T ) + ln(1 + e�(Ek+(n+ 1

2 )!+µ̃)/T ) + ln(1 + e(Ek+(n+ 1
2 )!+µ̃)/T )

i�
,

(2)

where Ek =
p

k2z + k2t +M2, r is the location from the center of rotation and Jn(x) are the first kind nth Bessel
functions. The dynamical quark chemical potential is defined as µ̃ = µ � 2GV

⌦
 † 

↵
and the mean field quark

constituent mass is given by M = m� 2GS

⌦
 ̄ 

↵
. In order to find the stationary points of ⌦ with respect to M and

µ̃, we need to solve the following gap equations,

@⌦

@M
= 0,

@⌦

@µ̃
= 0. (3)

Then they could be written as followings,

0 =

Z
d3r

8
<

:
M �m

2GS
� NcNf

8⇡2

X

n

Z
dk2t

Z
dkz[Jn(ktr)

2 + Jn+1(ktr)
2]

M sinh
�
Ek
T

�

Ek

h
cosh

�
Ek
T

�
+ cosh

⇣
µ̃+(n+ 1

2 )!
T

⌘i

9
=

; ,

(4a)

0 =

Z
d3r

8
<

:
µ� µ̃

2GV
� NcNf

8⇡2

X

n

Z
dk2t

Z
dkz[Jn(ktr)

2 + Jn+1(ktr)
2]

sinh
⇣

µ̃+(n+ 1
2 )!

T

⌘

cosh
�
Ek
T

�
+ cosh

⇣
µ̃+(n+ 1

2 )!
T

⌘

9
=

; . (4b)

The cumulants of baryon number distributions are given by

CB
n = V T 3�B

n (5)

Here, the baryon number susceptibilities

�B
n =

@n(P/T 4)

@(µB/T )n
, (6)

with the pressure P = �⌦ which is just the minus grand potential. The variance and kurtosis are defined by

�2 = CB
2 ,  =

CB
4

(�2)2
. (7)

The relations between observable quantities and theoretical calculations is

�2 =
CB

4

CB
2

=
B4
B2

(8)
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This paper is organized as follow: in the next section, we give a general expression of the two-flavor NJL model
including vector interaction in rotating frame, and then derive the gap equations in order to get the grand potential
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p
sNN = 7GeV. From the results in [20], the oscillation behavior of the kurtosis along he freeze out line has been

regarded as a typical signature of the existence of the CEP. In the holographic QCD model [21], we explained that
the sign changing of the baryon number susceptibilities along the freeze-out line is not necessarily related to the CEP,
but the peaked baryon number susceptibilities along the freeze-out line is solely determined by the CEP thus can be
used as an evident signature for the existence of the CEP, and the peak position is close to the location of the CEP in
the QCD phase diagram. In the last part of our calculation here we evaluate the kurtosis of the number distribution
with di↵erent angular velocities.
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FIG. 6: (Left) The chiral phase transition line in the NJL model and three di↵erent freeze-out lines. (Right) The 2D plot for
�2 as a function of the baryon chemical potential along three freeze-out lines and comparing with BES-I. The angular velocity
! from upper to lower equal to 0, 0.1, 0.15, 0.18GeV
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FIG. 1: The phase diagram on the T-µ plane with di↵erent !. The vector couplings are GV = 0, 0.67 GS and -0.5 GS from
upper left to lower.

FIG. 2: The phase diagram on the T-µ plane with di↵erent GV . The angular velocities are ! = 0, 0.1 GeV, 0.15 GeV, 0.18
GeV from upper left to lower right.

B. baryon number susceptibilities

In Fig.6 we show the 3D plot and 2D plot for the kurtosis of baryon number fluctuation �2 as a function of the
temperature and baryon chemical potential with di↵erent angular velocities in NJL model without considering vector
interaction. Because the measurement of heavy-ion collision is along the freeze-out line, by following Ref. [22] , we
choose three di↵erent freeze-out lines in the NJL model: 1) Starting from the back ridge of the chiral phase boundary,
goes through the negative region and then cross the phase boundary; 2) Starting from the front ridge of the chiral
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FIG. 3: The phase diagram on the T-! plane with di↵erent chemical potential µ. The vector couplings are GV = 0, 0.67 GS

and -0.5 GS from upper left to lower.

FIG. 4: The phase diagram on the T-! plane with di↵erent GV . The chemical potentials are µ = 0, 0.05 GeV, 0.08 GeV, 0.1
GeV from upper left to lower right.

phase boundary and then cross the foot of the CEP mountain; 3) Far away from the phase boundary. These three
free-out lines are indicated by dashed-dotted, dotted and dashed lines, respectively. In a non-rotating system, the

IV. CONCLUSION AND OUTLOOK

In this paper, we use the angular velocity as a third dimension in QCD phase diagram as well as include the
vector interaction contribution. We study the phase diagram in 3D frame and get a phase transition surface which
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FIG. 5: 3D phase chiral transition surface on (!, µ,T) frame.
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FIG. 5: Polyakov loop (left panel) and chiral condensate (right panel) vs. field strength qB at T = 195 MeV obtained
with β = 1.80, am = 0.0025 and lattice size 323 × 6.
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FIG. 7: Conjectured B-T phase diagram at fixed mass
am = 0.0025. The horizontal line T = T∗ = const. indi-
cates the path of simulations at T = 195 MeV as in Figs.
5 and 6.

case of a magnetic catalysis. In Fig. 7 we conjecture a
B − T phase diagram, which might clarify the situa-
tion. In order to prove it, further simulations at some-
what smaller temperatures and/or smaller quark mass
would be helpful. If it proves to be true then – for the
same am = 0.0025 or even lower mass – one should
find a path T = const. < Tc(B = 0) for which
at qB = 0 the system is in the confinement (chirally
broken) phase. With increasing qB one passes then
the chirally restored phase, i.e. the deconfinement or
chiral transition twice, and ends up again in the con-
finement phase. Along such a path in the phase dia-
gram the chiral condensate should decrease with qB
when entering the chirally restored phase. This would
mean the existence of inverse magnetic catalysis also
in two-color QCD.

Let us finally notice that in the recent papers [38,
39] similar scenarios as proposed here were obtained
for the cases Nf = 2 and Nf = 2 + 1, which differ



Experiment	measurement		

•  The	peaked	baryon	number	susceptibilities	along	
the	freeze-out	line	is	solely	determined	by	the	
CEP,	this	can	be	used	as	an	evident	signature	for	
the	existence	of	the	CEP,	the	peak	position	is	
close	to	the	location	of	the	CEP	in	the	QCD	phase	
diagram.		

•  The	cumulants	of	conserved	quantities	up	to	
fourth	order	have	been	measured	in	BES-I	
program	at	RHIC.		
STAR	Collaboration,	PRL(2010)	
STAR	Collaboration,	PRL(2014)	
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This paper is organized as follow: in the next section, we give a general expression of the two-flavor NJL model
including vector interaction in rotating frame, and then derive the gap equations in order to get the grand potential
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The cumulants of baryon number distributions are given by

CB
n = V T 3�B

n (5)

Here, the baryon number susceptibilities

�B
n =

@n(P/T 4)

@(µB/T )n
, (6)

with the pressure P = �⌦ which is just the minus grand potential. The variance and kurtosis are defined by

�2 = CB
2 ,  =

CB
4

(�2)2
. (7)

The relations between observable quantities and theoretical calculations is

�2 =
CB

4

CB
2

=
B4
B2

(8)
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NJL-1 NJL-2 NJL-3

FIG. 2: The 3D plot for the kurtosis of the baryon number fluctuation �2 as a function of the temperature and baryon
chemical potential in the NJL model.

FIG. 3: (Above) The chiral phase transition line in the NJL model and three di↵erent freeze-out lines:1) Starting from the back
ridge of the chiral phase boundary, goes through the negative region and then cross the phase boundary; 2) Starting from the
front ridge of the chiral phase boundary and then cross the foot of the CEP mountain; 3) Far away from the phase boundary.
These three free-out lines are indicated by long dashed, dashed-dotted and dashed lines, respectively. (Below) The 2D plot for
�2 as a function of the baryon chemical potential along three freeze-out lines and comparing with BES-I measurement.

Because the measurement of heavy-ion collision is along the freeze-out line, we choose three di↵erent freeze-out lines
in the NJL model: 1) Starting from the back ridge of the chiral phase boundary, goes through the negative region
and then cross the phase boundary; 2) Starting from the front ridge of the chiral phase boundary and then cross the
foot of the CEP mountain; 3) Far away from the phase boundary. These three free-out lines are indicated by long
dashed, dashed-dotted and dashed lines, respectively.

It is observed that when the freeze-out line crosses the CEP mountain or crosses the foot of the CEP mountain,
there will be a peak showing up for �2 along the freeze-out line, and the location of the peak is close to the location
of the CEP mountain. In the case of no CEP, it is found that �2 keeps flat in almost the whole region and does not
show any structure. The BES-I measurement is also shown in the 2D plot of �2 as a function of the baryon chemical
potential for comparing. In the NJL-1 and NJL-2 with the existence of CEP in the phase diagram, it is found that for
the first case freeze-out line, because the freeze-out line starts from the back ridge of the chiral phase boundary and
goes through the negative region of �2, then crosses the CEP mountain, therefore, �2 decreases from around 0.1
and then down to negative value then rises up quickly and shows up a high peak around the critical chemical potential,
which shows a dip and then a peak structure of �2 along the freeze-out line. For the second case of freeze-out line,
because the freeze-out line starts from the front ridge of the chiral phase boundary, and then crosses the foot of the
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FIG. 2: The 3D plot for the kurtosis of the baryon number fluctuation �2 as a function of the temperature and baryon
chemical potential in the NJL model.
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FIG. 3: (Above) The chiral phase transition line in the NJL model and three di↵erent freeze-out lines:1) Starting from the back
ridge of the chiral phase boundary, goes through the negative region and then cross the phase boundary; 2) Starting from the
front ridge of the chiral phase boundary and then cross the foot of the CEP mountain; 3) Far away from the phase boundary.
These three free-out lines are indicated by long dashed, dashed-dotted and dashed lines, respectively. (Below) The 2D plot for
�2 as a function of the baryon chemical potential along three freeze-out lines and comparing with BES-I measurement.

Because the measurement of heavy-ion collision is along the freeze-out line, we choose three di↵erent freeze-out lines
in the NJL model: 1) Starting from the back ridge of the chiral phase boundary, goes through the negative region
and then cross the phase boundary; 2) Starting from the front ridge of the chiral phase boundary and then cross the
foot of the CEP mountain; 3) Far away from the phase boundary. These three free-out lines are indicated by long
dashed, dashed-dotted and dashed lines, respectively.

It is observed that when the freeze-out line crosses the CEP mountain or crosses the foot of the CEP mountain,
there will be a peak showing up for �2 along the freeze-out line, and the location of the peak is close to the location
of the CEP mountain. In the case of no CEP, it is found that �2 keeps flat in almost the whole region and does not
show any structure. The BES-I measurement is also shown in the 2D plot of �2 as a function of the baryon chemical
potential for comparing. In the NJL-1 and NJL-2 with the existence of CEP in the phase diagram, it is found that for
the first case freeze-out line, because the freeze-out line starts from the back ridge of the chiral phase boundary and
goes through the negative region of �2, then crosses the CEP mountain, therefore, �2 decreases from around 0.1
and then down to negative value then rises up quickly and shows up a high peak around the critical chemical potential,
which shows a dip and then a peak structure of �2 along the freeze-out line. For the second case of freeze-out line,
because the freeze-out line starts from the front ridge of the chiral phase boundary, and then crosses the foot of the
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from the back ridge of the deconfinement phase boundary, and then crosses the foot of the CEP mountain; 3) Starting
from the front ridge of the deconfinement phase boundary and keeps far away from the CEP mountain. These three
di↵erent freeze-out lines are indicated by long dashed, dashed-dotted and dashed lines, respectively. The structure of
�2 along the freeze-out line in µPNJL-1 and µPNJL-2 can show the dip and peak structure for both the first and
second cases of the freeze-out lines, �2 goes to negative at the dip in the first case, and keeps positive at the dip for
the second freeze-out line case.

μPNJL-1 μPNJL-2

FIG. 6: The 3D plot for the kurtosis of baryon number fluctuation �2 as a function of the temperature and baryon chemical
potential in the µPNJL model.

FIG. 7: (Above) The chiral phase transition line in the µPNJL model and three di↵erent freeze-out lines: 1) Starting from
the back ridge of the chiral phase boundary, goes through the negative region and then crosses the foot of the CEP mountain;
2) Starting from the back ridge of the deconfinement phase boundary, and then crosses the foot of the CEP mountain; 3)
Starting from the front ridge of the deconfinement phase boundary and keeps far away from the CEP mountain. These three
di↵erent freeze-out lines are indicated by long dashed, dashed-dotted and dashed lines, respectively. (Below) The 2D plot for
�2 as a function of the baryon chemical potential in the µPNJL model along three freeze-out lines and comparing with BES-I
measurement.

IV. CONCLUSION AND DISCUSSION

In this work, we have investigated the kurtosis �2 of net baryon number fluctuation and its structure along the
freeze out line in the NJL model, PNJL model as well as µPNJL model with di↵erent parameter sets.

It is found that at zero chemical potential, the magnitude of �2 is rather small in the NJL model comparing
with lattice result, and it can reach around 1 in the PNJL model and 2 in the µPNJL model around the critical
temperature. This indicates that the main contribution to the baryon number fluctuation comes from gluodynamics.
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from the back ridge of the deconfinement phase boundary, and then crosses the foot of the CEP mountain; 3) Starting
from the front ridge of the deconfinement phase boundary and keeps far away from the CEP mountain. These three
di↵erent freeze-out lines are indicated by long dashed, dashed-dotted and dashed lines, respectively. The structure of
�2 along the freeze-out line in µPNJL-1 and µPNJL-2 can show the dip and peak structure for both the first and
second cases of the freeze-out lines, �2 goes to negative at the dip in the first case, and keeps positive at the dip for
the second freeze-out line case.

FIG. 6: The 3D plot for the kurtosis of baryon number fluctuation �2 as a function of the temperature and baryon chemical
potential in the µPNJL model.
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FIG. 7: (Above) The chiral phase transition line in the µPNJL model and three di↵erent freeze-out lines: 1) Starting from
the back ridge of the chiral phase boundary, goes through the negative region and then crosses the foot of the CEP mountain;
2) Starting from the back ridge of the deconfinement phase boundary, and then crosses the foot of the CEP mountain; 3)
Starting from the front ridge of the deconfinement phase boundary and keeps far away from the CEP mountain. These three
di↵erent freeze-out lines are indicated by long dashed, dashed-dotted and dashed lines, respectively. (Below) The 2D plot for
�2 as a function of the baryon chemical potential in the µPNJL model along three freeze-out lines and comparing with BES-I
measurement.

IV. CONCLUSION AND DISCUSSION

In this work, we have investigated the kurtosis �2 of net baryon number fluctuation and its structure along the
freeze out line in the NJL model, PNJL model as well as µPNJL model with di↵erent parameter sets.

It is found that at zero chemical potential, the magnitude of �2 is rather small in the NJL model comparing
with lattice result, and it can reach around 1 in the PNJL model and 2 in the µPNJL model around the critical
temperature. This indicates that the main contribution to the baryon number fluctuation comes from gluodynamics.

7

CEP mountain, we can only see a peak structure of �2 along the freeze-out line at high chemical potential. For the
third case of freeze-out, if the freeze-out line is far away from the phase boundary, one can only observe a weak peak
of �2 along the freeze-out line.

It is found that the magnitude of �2 in the NJL model at small baryon chemical potential region is small comparing
with experiment measurement.

D. The kurtosis of the baryon number fluctuation �2 in the PNJL model

In Fig. 4, we show the 3D plot for the kurtosis of baryon number fluctuation �2 as a function of the temperature
and baryon chemical potential in the PNJL model. In Fig.5 we show the phase transition lines and 2D plot for
�2 as a function of the baryon chemical potential along di↵erent freeze-out lines for PNJL-1,PNJL-2 and PNJL-3,
respectively.

Di↵erent from the NJL model, in the PNJL model, when the gluodynamics is taken into account, there will be two
phase transitions: one for the chiral phase transition and another for the deconfinement phase transition, and the
deconfinement phase transition line lays below the chiral phase transition line at small chemical potential region. The
two separate phase transition lines can be obviously seen from the (T, µ) phase diagram in Fig.5. In the 3D plot Fig.4
one can observe two separate phase boundaries at small baryon chemical potentials, and a valley forms in between
the two phase boundaries. It is noticed that the magnitude of baryon number fluctuation �2 is quite small along the
chiral phase boundary, but around 1 along the deconfinement phase boundary.

PNJL-1 PNJL-2 PNJL-3

FIG. 4: The 3D plot for the kurtosis of baryon number fluctuation �2 as a function of the temperature and baryon chemical
potential in the PNJL model.

By changing the coupling constant in the vector channel and parameter sets, the CEP of the chiral phase transition
in the PNJL model can shift. The CEPs are located at (µc

B = 778.2MeV, T c = 149.1MeV) and (µc
B = 971.5MeV, T c =

103.2MeV) in the PNJL-1 and PNJL-2 models, respectively. Even though the two critical baryon chemical potentials
µc
B in the PNJL-1 and PNJL-2 are almost the same, the critical temperature in the PNJL-1 model is higher than that

in the PNJL-2. For the parameters used in the PNJL-3, there is no CEP shows up in the phase diagram. From the
3D plot in Fig. 4, one can observe two obvious phase boundaries for the chiral and deconfinement phase transitions
in the crossover side, and the magnitude of the deconfinement ridge is much higher than the chiral ridge. If a CEP
for the chiral phase transition exists in the PNJL model, the structure of the CEP mountain for the chiral phase
transition looks as the same as that in the NJL model, and one can observe a negative region of �2 around the CEP
above the chiral phase boundary extended from the crossover side. The only di↵erence is that the deconfinement
phase boundary extends to the CEP mountain and merges with the chiral phase boundary.

The structure of �2 along the freeze-out line in the PNJL model is more complicated due to the two separated
phase boundaries. Comparing with the NJL model, the magnitude of �2 at small baryon chemical potentials in
the PNJL model is in agreement with experiment measurement due to the contribution from gluodynamics. We also
choose three di↵erent freeze-out lines: 1) Starting from the back ridge of the chiral phase boundary, goes through the
negative region and then crosses the foot of the CEP mountain; 2) Starting from the back ridge of the deconfinement
phase boundary, and then crosses the foot of the CEP mountain; 3) Starting from the front ridge of the deconfinement
phase boundary and keeps far away from the CEP mountain. These three di↵erent freeze-out lines are indicated by
long dashed, dashed-dotted and dashed lines, respectively. Here the back/ front ridge also means the higher/lower
temperature side comparing with the phase boundary, respectively.

The same as in the NJL model, the peak structure of �2 along the freeze-out line in the PNJL model is solely
related to the CEP mountain, when the freeze-out line crosses the CEP mountain or crosses the foot of the CEP
mountain, there will be a peak showing up for �2, and the location of the peak is related to the location of the
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FIG. 5: (Above) The chiral phase transition line in the PNJL model and three di↵erent freeze-out lines: 1) Starting from the
back ridge of the chiral phase boundary, goes through the negative region and then crosses the foot of the CEP mountain;
2) Starting from the back ridge of the deconfinement phase boundary, and then crosses the foot of the CEP mountain; 3)
Starting from the front ridge of the deconfinement phase boundary and keeps far away from the CEP mountain. These three
di↵erent freeze-out lines are indicated by long dashed, dashed-dotted and dashed lines, respectively. (Below) The 2D plot for
�2 as a function of the baryon chemical potential in the PNJL model along three freeze-out lines and comparing with BES-I
measurement.

CEP mountain. If there is no CEP, �2 keeps flat in almost the whole chemical potential region. In the PNJL-1
and PNJL-2 models with the existence of CEP in the phase diagram, it is found that for both the first and second
cases of the freeze-out lines, one can observe the dip-peak structure for �2 along the freeze-out lines. The di↵erence
lies in that for the first freeze-out line case, �2 goes to negative at the dip, and for the second freeze-out line case,
�2 is positive at the dip. This is because that for the first case, the freeze-out line starts from the back ridge of
the chiral phase boundary and goes through the negative region of �2, then crosses the foot of the CEP mountain,
therefore, �2 decreases from around 0.1 and then down to negative value then rises up quickly and shows up a high
peak around the critical chemical potential, thus shows a dip and then a peak structure of �2 along the freeze-out
line. For the second case, the freeze-out line starts from the back ridge of the deconfinement phase boundary, and has
no chance to go through the negative region, then crosses the foot of the CEP mountain, though we can observe a
dip structure but the magnitude of �2 at the dip is positive. For the third case when the freeze-out line is far away
from the phase boundary, �2 along the freeze-out line is almost flat.

It is noticed that in the PNJL-1 model, �2 along the second cases of freeze-out line shows a dip structure and a
peak structure, and agrees well with the BES-I measurement. In the PNJL-3 model, there is no CEP in the phase
diagram, and no special structure of �2 along the freeze-out lines is observed.

E. The kurtosis of the baryon number fluctuation �2 in the µPNJL model

In Fig. 6, we show the 3D plot for the kurtosis of baryon number fluctuation �2 as a function of the temperature
and baryon chemical potential in the µPNJL model. In Fig.7 we show the phase transition lines and 2D plot for
�2 as a function of the baryon chemical potential along di↵erent freeze-out lines for µPNJL-1 and µPNJL-2 models,
respectively.

Same as that in the PNJL model, in the µPNJL model, there also exist two separate phase transitions for the
chiral phase transition and deconfinement phase transition, and the deconfinement phase transition line also lays
below the chiral phase transition line at small chemical potential region. From the 3D plot Fig.6 one can observe
two separate phase boundaries at small baryon chemical potentials. The height of the ridge along the deconfinement
phase boundary is around 2 at small chemical potentials in the µPNJL model, which is higher than that in the PNJL
model.

Similar to that in the PNJL model, we choose three di↵erent freeze-out lines: 1) Starting from the back ridge of the
chiral phase boundary, goes through the negative region and then crosses the foot of the CEP mountain; 2) Starting
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Summary	

•  Angular	velocity	plays	a	similar	role	as	vector	channel.	
It	almost	gives	an	addition	part	of	dynamical	quark	
chemical	potential.	

•  The	phase	transition	on	ω-T	plane	is	similar	as	the	
phase	transition	on	μ-T	plane.		

•  In	our	model,	we	assume	the	angular	momentum	is	
much	smaller	than	the	inverse	of	system	transverse	
size	which	means	we	did	not	include	the	boundary	
effect.		Also	the	gluodynamics	contribution	is	not	
included	here	and	it	still	a	puzzle	how	to	include	this	as	
what	we	did	in	non-	rotation	system.			



Thank	you	!	


