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• Based on nucl-th/0708.0035,Phys. Rev. D 94, 065042 (2016)
1703.03079,1701.08263 and 1802.09011

• Many collaborators, some in the audience Leonardo Tinti, David
Montenegro,Barbara Betz,Jorge Noronha,Miklos Gyulassy,...

• But talk is my own, in the sense that the people above will not necessarily
agree with me

• This is a workshop, so I am not afraid to say things which are
controversial, wrong or stupid to stimulate discussion.



The ideal fluid where constituents spin, so vortices make them spin around!
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Ultracold atoms: Zutic, Matos-Abiague, ”Spin Hydrodynamics”, Nature
Physics 12 24-25 Takahashi et al”, Nature Physics 12 52-56 (2016)



In the context of heavy ion physics...

Λ

Initial rapidity gradient and initial transparency could generate initial angular
momentum. NB: Different from chiral magnetic/vortaic effects. Not
anomalous and all DoFs in equilibrium (no B-field, ”local” microscopic
spin-orbit coupling, angular momentum follows local equilibrium)



Transeferred to Λ via “spin-orbit coupling in hydro”. Detectable via P-
violating decays

Experimentally confirmed! published in Nature (1701.06657 )!

Theory as usual lags behind! What does it mean that microscopic
constituents not scalar?

s

I.Uspal et al
(STAR)

012016 (2016)
J.Phys.Conf.Ser.736



A possibly satisfactory experimental answer: Cooper-Frye the angular
momentum (Becattini et al, 1303.3431)
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But cannot be the whole story: Cooper-Frye is built around detailed
balance over hadronization hypersurface Cooper-Frye formula based on
ideal isotropic hydro.

dΣµ(T hydro
µν − T particles

µν ) = dΣµ(shydroµ − sparticlesµ ) = 0

Where is polarization vs angular momentum in plasma? What is its
contribution to transport? Surprisingly subtle questions



What is ideal hydro? A conceptual difficulty!

Entropy conserved always at maximum at each point in spacetime

Local isotropy in the comoving frame

Vorticity is conserved (Kelvins theorem)

Continuum limit when you break up cells, intensive results stay the same

With polarization, only the first has a chance of being realized even in the
ideal limit,



Further questions

• Should you coarse-grain? Is a “small vortex” indistinguisheable from a
polarization spin state

• Connection to anomalous transport, CME,CVE , magneto-hydrodynamics

– Classical fields coupled to the fluid vs part of the fluid. (Bµ vs Ωµν )
– Anomalous vs symmetry respecting (Jµ = ...+ Ω vs Tµν + uαSαµν )

Very different physics but experimentally entangled . Eg, polarizability
variation with baryo and isospin chemical potential can mimic the CME!
all observables so far CP-respecting

• What is the role of Gauge symmetry? In a QGP most particles with
spin are gluons, but ”gluon polarization” and ”angular momentum” dont
separate (gauge changes go between one and another).



All this means no ideal hydro limit is defined for mediums with polarization
, and its connection to microsopic theory is puzzling This is conceptually
difficult! I thought about it for 10 years! But its exactly what makes science
fun!

I want
to understand

imagine...

and calculate
things I cannot



What won’t work I: Hydro is not (just) transport!
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Models based on microscopic distribution functions and 1-particle Wigner-
functions most likely far away from ideal hydrodynamic limit because (unlike
in non-polarized case) taking such a limit without spoiling convergence of
the BBGKY hyerarchy impossible
the fact that transport usually cannot handle stable circulation without a
mean field should be a hint! Stochastic fluctuatons with finitely many
particles destroy circulation



Hydro is not (just) transport: Hydrodynamics is based on three scales

lmicro︸ ︷︷ ︸

∼s−1/3,n−1/3

≪ lmfp
︸︷︷︸

∼η/(sT )

≪ Lmacro

lmicro stochastic, lmfp dissipative. If lmicro ∼ lmfp soundwaves

Of amplitude so that momentum Psound ∼ (area)λ (δρ) cs ≫ T

And wavenumber ksound ∼ Psound

Survive (ie their amplitude does not decay to Esound ∼ T ) τsound ≫ 1/T

fluctuating vortices, sound-waves, polarization mix. Creating an effective
non-transport viscosity? (In abs/0708.0035 we confused lmicro, lmfp ).



What won’t work II: AdS/CFT (at least the way people do it)

Fermion-gas coupling Nc suppressed in models with fundamental Fermions
(e.g. D3−D7 ), a straight-forward consequence of large Nc expansion.

Not surprising: At same order as microscopic fluctuations, since AdS/CFT
version of

lmicro︸ ︷︷ ︸

∼s−1/3,n−1/3

≪ lmfp
︸︷︷︸

∼η/(sT )

≪ Lmacro is
1

TN2/3
c
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Expansion in Nc is expansion in gs



What won’t work II: AdS/CFT (at least the way people do it)
Gluon polarization not gauge invariant, not sure what happens to it at large
Nc in presence of angular momentum. vorticity-polarization coupling in a
medium with no flavors? not sure! What needs to be checked is

〈

Ωαβµ(t′)Ωαβµ (t)
〉

and ∂µΩ
αβµ

of a non-linear rotating black hole solution in AdS, calculate how circulation
Ωαβ around horizon decays (subtracting viscosity effect) AFAIK not yet
done...

Compute circulation
         p.dx

on boundary



What might work: EFT techniques

• Fluid elements as fields: φI(xµ), I = 1...3 position of a fluid cell

• Impose symmetries on the Lagrangian

– isotropy, compressibility L = F (B), B = detIJ(∂µφI∂µφJ)
– chemical potential is added by adding a U(1) symmetry to system.

φI → φIe
iα , L(φI,α) = L(φI,α+ y) , Jµ =

dL

d∂µα

Can impose a well-defined uµ by adding chemical shift symmetry
L(φI,α) = L(φI,α+ y(φI)) → L = L (b, y = uµ∂µα)



What might work: EFT techniques

L → lnZ Z =

∫

Dφi exp
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Knudsen number an EFT scale separation , T0 ∼ n−1/3 an effective ”Planck
constant” EFT expansion and lattice techniques should give all allowed terms
and correlators. Coarse-graining will be handled here!



What might work: EFT techniques
Treat polarization in a manner analogous to chemical potential breaking
“isotropy” direction Need local ∼ SO(3) charges

Ψµν|comoving = −Ψνµ|comoving = exp

⎡

⎣−
∑

i=1,2,3

αi(φI)T̂i
µν

⎤

⎦

For ”many incoherent particles” RPA means only vector representation
remains

αi → αi +∆αi (φI) ⇒ L(b, yαβ = uµ∂
µΨαβ)

but y is an auxiliary variable, since polarization not conserved

b → b
(
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(

b
(
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.



define ideal hydrodynamics as: Entropy always locally maximized, only
transport are conserved quantities . This leads to a relationship between
Lagrangian and thermodynamic relations via a free energy

dF =
∂F
∂V

dV +
∂F
∂e

de+
∂F

∂ [Ωµν]
d [Ωµν] = 0

Provided polarization aligned to vorticity yµν ∼ χ(T )(e+ p) (∂µuν − ∂νuµ)

If not, there is no ideal fluid limit due to non-hydrodynamic goldstone mode

φ

Vector
quantity
1

Vector quantity 2θ



Gives a complicated but uniquely defined dynamics...

{

gb(1− cy)∂νb+ gy4y
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∂(∂νφI)

]

= 0

NB depends on accelleration (vorticity)! Foreseeing trouble with
Ostrogradski’s theorem! and indeed...



Linearizing and calculating dispersion relation shows violation of causality
We decompose perturbation into sound and vortex φI = ∇φ+∇× Ω⃗

(
ϕ

Ω⃗

)

=

∫

dwd3k

(
ϕ0

Ω⃗0

)

exp
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i
(

⃗kφ,Ω.x⃗− wφ,Ωt
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The part parallel to k (“sound-wave”) will have a dispersion relation

w2
φ − c2sk

2
φ + 2βkφw

3
φ = 0

The vector part will be

(3k2Ω − 2kΩwΩ)j(k⃗Ω × Ω⃗0)iw
2
Ω + w4Ω = 0

Vorticity causes sound and vortices to mix, alters the dispersion relation to
a generally non-causal one...



A possible interpretation: Minimal viscosity from polarization!
Need Israel-Stewart like terms at first order to restore causality. e.g. (wrong
in paper!)

τΩuα∂
αΩµν + Ωµν = χ(T, y)−1yµν , Ωµν → uβϵµναγ∂

αT γβ

Dissipative techniques can be added to Lagrangian using field doubling

anti−dissipative

1210.2745
C.Galley

dissipative

2L = mẋ2 − wx2
︸ ︷︷ ︸
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→
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+2 ẋ+x− − ẋ−x+
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K

Standard techniques give you two sets of equations, one with a damped
harmonic oscillator, the other “anti-damped”



PS an experimental aside (1802.09011)
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Gluons in a QGP producing η′ mesons at coalescence should be susceptible
to polarization. UA(1) violation forces matrix element to be
Tαβab (p, q, P ) = Hf(p2, q2, P 2)P (p, q) , P (p, q,α,β) = ϵµνλγ pµ qν ϵλ(p) ϵγ(q)
Second term, together with thermal gluons, contains vorticity! η′ was known
to be a probe of CP-odd phases for years but Success of statistical model
suggests using the centrality dependence of η′/π0 , both decaying into γγ
as a probe of gluon polarization. A strong centrality dependence (absent
from most ratios) would suggest it.



Some non-conclusions
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• Thermalization of ”spin-angular momentum” interactions an unsolved
problem. Its solution conceptually very non-trivial, phenomenologically
essential to understand a whole range of effects

• only method which I think is capable to tackle it is to treat hydro as a
lagrangian field theory. Work in progress

• Mostly theory work, but some experimental results I am waiting for:
η′/π0 ratio as a function of centrality, Λ vs Λ polarization as a function
of centrality/system size, chemical potential



Hydro as EFT fields: (Nicolis et al,1011.6396 (JHEP))
Continuus mechanics (fluids, solids, jellies,...) is written in terms of 3-
coordinates φI(xµ), I = 1...3 of the position of a fluid cell originally at
φI(t = 0, xi), I = 1...3 . (Lagrangian hydro . NB: no conserved charges)
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The system is a Fluid if it’s Lagrangian obeys some symmetries
(Ideal hydrodynamics ↔ Isotropy in comoving frame) Solutions generally
break these, Excitations (Sound waves, vortices etc) can be thought of as
”Goldstone bosons”.



Translation invariance at Lagrangian level ↔ Lagrangian can only be a
function of BIJ = ∂µφI∂µφJ Now we have a “continuus material”!

Homogeneity/Isotropy means the Lagrangian can only be a function of
B = detBIJ ,diagBIJ

The comoving fluid cell must not see a ”preferred” direction ⇐ SO(3)
invariance

Invariance under Volume-preserving diffeomorphisms means the Lagrangian
can only be a function of B (actually b =

√
B )

In all fluids a cell can be infinitesimally deformed
(with this, we have a fluid. If this last requirement is not met, Nicolis et
all call this a “Jelly”)



A few exercises for the bored public Check that L = -F(B) leads to

Tµν = (P + ρ)uµuν − Pgµν

provided that

ρ = F (B) , p = F (B)−2F ′(B)B , uµ =
1

6
√
B
ϵµαβγϵIJK ∂αφ

I∂βφ
J∂γφ

K

(A useful formula is db
d∂µφI

∂νφI = uµuν − gµν )

Equation of state chosen by specifying F (b) . “Ideal”: ⇔ F (B) ∝ b2/3

b is identified with the entropy and bdF (B)
dB with the microscopic temperature.

uµ fixed by uµ∂µφ∀I = 0



You can also show that

∂µ

(

b︸︷︷︸
=s

uµ

)

= 0 , s = −
dP

dT
=

p+ ρ

T

Ie, b is the conserved quantity corresponding to our earlier group. Up
to dimensional factor corresponds to microscopic entropy. Can also write
everything in terms of Kµ = buµ

Chemical potentials (neglected here) would be implemented by
complexifying φI and promoting them to internal space vectors

An infinite number of global conserved charges for every closed path,
vorticity is conserved. Corresponding to infinite-D diffeomorphism
invariance



Ideal hydrodynamics and the microscopic scale
The most general Lagrangian is

L = T 4
0F

(
B

T 4
0

)

, B = T 4
0 detBIJ , BIJ =

∣
∣∂µφ

I∂µφJ
∣
∣

Where φI=1,2,3 is the comoving coordinate of a volume element of fluid.

NB: T0 ∼ Λg microscopic scale, includes thermal wavelength and g ∼ N2
c

(or µ/Λ for dense systems ). T0 → ∞ ⇒ classical limit
It is therefore natural to identify T0 with the microscopic scale!

Kn behaves as a gradient, T0 as a Planck constant!!!



At T0 < ∞ quantum and thermal fluctuations can produce sound waves
and vortices, “weighted” by the usual path integral prescription!

Z =

∫

Dφi exp
[

−T 4
0

∫

F (B)d4x

]

, ⟨O⟩ ∼
∂lnZ
∂...

(

eg.
〈

T x
µνT

x′

µν

〉

=
∂2lnZ

∂gµν(x)∂gµν

T0 ∼ n−1/3 , unlike Knudsen number, behaves as a ”Planck constant”

For analytical calculations fluid can be perturbed around a hydrostatic
(φI = x⃗ ) background

φI = x⃗+ (π⃗L)
︸︷︷︸

sound

+ (π⃗T )
︸︷︷︸

vortex

Polarization likely to dramatically change things here



And we discover a fundamental problem: Vortices carry arbitray small
energies but stay put! No S-matrix in hydrostatic solution!

Llinear = ˙π⃗L
2
− c2s(∇.π⃗L)

2
︸ ︷︷ ︸

sound wave

+ π̇T
2

︸︷︷︸

vortex

+Interactions(O
(

π3, ∂π3, ...
)

)

Unlike sound waves , Vortices can not give you a theory of free particles,
since they do not propagate: They carry energy and momentum but stay in
the same place! Can not expand such a quantum theory in terms of free
particles.

Physically: “quantum vortices” can live for an arbitrary long time, and
dominate any vacuum solution with their interactions. This does not mean
the theory is ill-defined, just that its strongly non-perturbative!

Polarization might help here!



The big problem with Lagrangians... usually only non-dissipative terms
A first order term in the Lagrangian can always be reabsorbed as a field
redefinition, i.e. is topological

But there are a few ways to fix it. We focus on coordinate doubling
(Galley,but before Morse+Feschbach)

φI → φ̂I = (φ+I ,φ
−

I )

Action given by two copies plus an interaction term

SCTP =

∫ ti

tf

d4x
{

Ls[φ
+]− L∗

s[φ
−] +K[φ̂±]

}

The first two terms are non-dissipative, action doubled. Third term can be
used to model dissipation



Dissipative
extension
of Hamiltons
principle
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Standard techniques give you two sets of equations, one with a damped
harmonic oscillator, the other “anti-damped”



Navier-Stokes (GT,D.Montenegro, PRD, in press)
In terms of Kµ = buµ the bulk term is

L(1)
CTP = T 4

o

∑

i,j,k

zijk(K
lγKm

γ )B∂µφiI∂νφjJ∂µK
k
ν .

and the shear term is

L(1)
CTP = T 4

o

∑

i,j,k

zijk(K
lγKm

γ )BB−1
IJ ∂

µφiI∂νφjJ∂µK
k
ν .

These are the simplest terms compatible with most symmetries. But shear
term also breaks volume-preserving diffeomorphism invariance. Effect of
fundamental length?



Going further, second order term?

Problem Causality problem for first order terms (Lagrangian unbounded),
second order terms with no local equilibrium (Ostrogradski’s theorem )

Solution: introduce a new degree of freedom. Keep transversality
condition but drop gradient dependence

Πµν = XIJ∂µφ
I∂νφ

J

XIJ are 6 new degrees of freedom to be fixed by initial conditions...
Equivalent of Israel-Stewart off-diagonal terms

Israel-Stewart/Anisotropic hydrodynamics emerge naturally in Lagrangian
approach



I-S in a lagrangian approach
Πµν = XIJĀIJ

µν As these are not conserved quantities, the equation of
motion has to be obtained from Lagrange’s equations

∂µ
∂L

∂(∂X)
=
∂L
∂X

The Israel-Stewart equations of motion Follows easily from the Lagrangian

L = T 4
0F (B) +

1

2
τηπ(Π

µν
− uα+∂αΠµν+ −Πµν

+ uα−∂αΠµν−)

+
1

2
Πµν

± Πµν± +
XIJ±

6

[

(A◦)IJµν ∂
µKν

]

±
︸ ︷︷ ︸

∼σµν

+O
(

(∂u)2
)

Last term non-dissipative, worked out in J. Bhattacharya, S. Bhattacharyya
and M. Rangamani,1211.1020



An important implication for relaxation dynamics

φ

Vector
quantity
1

Vector quantity 2θ

The ideal limit is not just η → 0 but also a well-defined τπ → 0 , “instant”
relaxation. This implies a well-defined relaxed state.



An important implication for relaxation dynamics

φ

Vector
quantity
1

Vector quantity 2θ

A system with two local vector observables (eg polarization and vorticity!)
which are not aligned generally does not have it. The φ degeneracy generates
a Goldstone mode and topological constraints which make a τπ → 0 limit
unstable! this will be important later



We are now ready to combine polarization with the ideal hydrodynamic
limit, defined as

(i) The dynamics within each cell is faster than macroscopic dynamics,
and it is expressible only in term of local variables and with no explicit
reference to four-velocity uµ (gradients of flow are however permissible,
in fact required to describe local vorticity).

(ii) Dynamics is dictated by local entropy maximization, within each cell,
subject to constraints of that cell alone. Macroscopic quantities are
assumed to be in local equilibrium inside each macroscopic cell

(iii) Only excitations around a hydrostatic medium are sound
waves,vortices

(i-iii) ,with symmetries and EFT define the theory



Conserved charges (Dubovsky et al, 1107.0731(PRD))
Within Lagrangian field theory a scalar chemical potential is added by
adding a U(1) symmetry to system.

φI → φIe
iα , L(φI,α) = L(φI,α+ y) , Jµ =

dL

d∂µα

generally flow of b and of J not in same direction. Can impose a well-defined
uµ by adding chemical shift symmetry

L(φI,α) = L(φI,α+ y(φI)) → L = L (b, y = uµ∂
µα)

A comparison with the usual thermodynamics gives us

µ = y , n = dF/dy

obviously can generalize to more complicated groups



So how do we implement polarization?
In comoving frame, polarization described by a representation of a ”little
group” of the volume element.
Need local ∼ SO(3) charges and unambiguus definition of uµ (sµ ∝ Jµ)

Ψµν|comoving = −Ψνµ|comoving = exp

⎡

⎣−
∑

i=1,2,3

αi(φI)T̂i
µν

⎤

⎦

For particle spinor, vector, tensor... repreentations possible.
For ”many incoherent particles” RPA means only vector representation
remains



Chemical shift symmetry, SO(3)α1,2,3 → SO(3)α1,2,3(φI)

αi → αi +∆αi (φI) ⇒ L(b, yαβ = uµ∂
µΨαβ)

yµν ≡ µi for polarization vector components in comoving frame

This way we ensured spin current flows with uµ.

Note that it is not a proper chemical potential (it it would be there would
be 3 phases attached to each φI) as yµν not invariant under symmetries of
φI. yµν ”auxiliary” polarization field



How to combine polarization with local equilibrium?

Since polarization decreases the entropy by an amount proportinal to the
DoFs and independent of polarization direction

b → b
(

1− cyµνy
µν +O

(

y4
))

, F (b) → F (b, y) = F
(

b
(

(1− cy2
))

.

Other terms break requirement (i)

First law of thermodynamics,

dE = TdS − pdV − JdΩ → dF (b) = db
dF

db
+ dy

dF

d(yb)



Energy-momentum tensor
Not uniquely defined

Canonical defined as the Noether charge for translations, could be negative
because of ∼ ∂L

∂(∂ψi)
∂ψj

Belinfante-Rosenfeld ∼ δS
δgµν

symmetric independent of spin, no non-
relativistic limit

Which is the source for ∂µTµν = 0 ? Not clear as...



The problem: Too many degrees of freedom

8 degrees of freedom,5 equations (e, p, ux,y,z, yµν). One can include
the antisymmetric part of Tµν and match equations but...

No entropy maximization If spin waves and sound waves separated, in
comoving volume their ratio is arbitrary... but it should be decided by
entropy maximization!



Solution clear: make polarization always proportional to vorticity,

yµν ∼ χ(T )(e+ p) (∂µuν − ∂νuµ)

extension of Gibbs-Duhem to angular momentum uniquely fixes χ via
entropy maximization. For a free energy F to be minimized

dF =
∂F
∂V

dV +
∂F
∂e

de+
∂F

∂ [Ωµν]
d [Ωµν] = 0

where [Ωµν] is the vorticity in the comoving frame.
THis fixes χ . It also constrains the Lagrangian to be a Legendre transform
of the free energy just as in the chemical potential case, in a straight-
forward generalization of Nicolis,Dubovsky et al. Free energy always at
(local) minimum! (requirement (ii))



A qualitative explanation
Instant thermalization means vorticity instantly adjusts to angular
momentum, and is parallel to angular momentum. Corrections to this
will be of the relaxation type a-la Israel-Stewart

φ

Vector
quantity
1

Vector quantity 2θ

Note that microscopic physics could allow an arbitrary angle
between vorticity and polarization. but such systems would have
no hydrodynamic limit due to requirement (iii) and the necessity for stability
of relaxation dynamics



These techniques lead to a well-defined Euler-Lagrange equation of motion

{

gb(1− cy)∂νb+ gy4y
β
αχ(T )

∂(∂βuα)

∂(∂λφI)
∂ν(∂λφ

I)

}

×

×[(1− cy)
∂b

∂(∂νφI)
− (8cb)yβαχ(T )

∂(∂βuα)

∂(∂νφI)
] + g(b, y)×

×(1− cy)∂ν(
∂b

∂(∂νφ)
)− 8cχ(T )g(b, y)

∂(∂βuα)

∂(∂λφI)

[
yβα
2
∂ν∂λφ

I×

×
∂b

∂(∂νφI)
+ (∂νb)4yβαδ

λ
ν + bχ(T )(

∂(∂βuα)

∂(∂νφI)
+
∂(∂αuβ)

∂(∂νφI)
)×

×∂ν(∂λφI) + byβα∂νln
∂(∂βuα)

∂(∂νφI)

]

= 0

NB depends on accelleration, so ∆S = 0 ⇒ ∂µ∂ν
∂F

∂(∂µ∂νφI)
= ∂µ

∂F
∂(∂µφI)



Which can be linearized, φI = XI + πI
The ”free” (sound wave and vortex kinetic terms) part of the equation will
be

L = (−F ′(1))

{
1

2
(π̇)2 − c2s[∂π]

2

}

+

+fζ

{

π̈i∂iπ̇j + π̈iπ̈j + ∂jπ̇
i∂iπ̇j + ∂jπ̇iπ̈j+

+(2π̈i∂jπ̇i − 2π̈j∂
iπ̇j) + (π̈2

i − π̈2
j ) + (∂jπ̇

2
i − ∂iπ̇

2
j )

}

• Accelleration terms survive linearization

• Vortices and sound wave modes mix at ”leading” order. Change in
temperature due to sound wave changes polarizability, and that changes
vorticity



We decompose perturbation into sound and vortex φI = ∇φ+∇× Ω⃗

(
ϕ
Ω⃗

)

=

∫

dwd3k

(
ϕ0

Ω⃗0

)

exp
[

i
(

⃗kφ,Ω.x⃗− wφ,Ωt
)]

The part parallel to k (“sound-wave”) will have a dispersion relation

w2
φ − c2sk

2
φ + 2βkφw

3
φ = 0

The vector part will be

(3k2Ω − 2kΩwΩ)j(k⃗Ω × Ω⃗0)iw
2
Ω + w4Ω = 0



Dispersion relations show violation of causality!

Both phase and group velocity will generally go above unity



What I think is going on I: A lower limit of viscosity for polarized hydro

the Free energy F , and hence the local dynamics, is sensitive to an
accelleration. As is well-known (Ostrogradski’s theorem, Dirac runaway
solutions) such Lagrangians are unstable and lead to causality violation.
Note that one needs Lagrangians to see this!

To fix this issue, one would need to update the proportionality of y on Ω to
an Israel-Stewart type equation

τΩuα∂
αyµν + yµν = χ(T, y)Ωµν

with an appropriate relaxation time τΩ would resolve this issue. Just
like with Israel-Stewart, this requires the introduction of new DoFs with
relaxation-type dynamics, but, unlike non-polarized hydro,such terms are
required from the idea limit Polarization and vorticity conservation
When polarization is not dynamical (yµµ constant), vorticity conservation



arises as a non-local Noether current of the diffeomorphism invariance of
the theory, specifically

∮

Ω
dxiu

idF (b)

db
= −

∫ 1

0
dτ

∫

d3x
∂L

∂(∂0φI)

dΩI

dτ
δ3
(

φJ − ΩJ(τ)
)

LHS Vorticity defined along closed loop Ω

RHS Noether current of the diffeomorphism moving φI along closed path
Ω in terms of parameter τ

ζIΩ(φ
J) = −

∫ 1

0
dτ

dΩI

dτ
δ3
(

φJ − ΩJ(τ)
)



Polarization and vorticity conservation
If polarization is not zero, the fact that the equation above only moves
around φI and not yµν breaks the symmetry, by an amount

dyµν

dτ
=

∫

d3x∂αyµν∂αφ
Iδ3 (φJ − ΩJ(τ))

Hence, over a closed path we expect vorticity conservation to break down
by an amount

d

dt

∮

Ω
dxiu

idF (b)

db
= ẏαβ

dL

∂(∂µyαβ)
∂µζΩ(φ

J) ≡
1

2
g(b, y)ẏ2

∫ 1

0

d∆αβ

dτ

∂Ω

∂∆αβ
dτ



d

dt

∮

Ω
dxiu

idF (b)

db
=

1

2
g(b, y)ẏ2

∫ 1

0

d∆αβ

dτ

∂Ω

∂∆αβ
dτ

The LHS is in principle a calculable but non-local quantity representing
the transfer between local polarization and non-local vorticity degrees of
freedom, the relativistic ideal hydrodynamic equivalent of
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What I think is going on II

polarization

Ω

Π
T polarization

No

With

Polarization makes vorticity aquire a ”soft gap” wrt angular momentum. At
small amplitudes, creating polarization is more advantageus than creating
vorticity. This means small amplitude vortices get quenched. Stabilizes
theory against perturbations, might act as effective viscosity! Working on
an expansion to prove it


