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quite comparable with that observed in sQGP experimentally,
as shown in Fig. 3. What is also worth noting is that it does
predict a maximum of this ratio at T ¼ Tc, reflecting the
behavior of the density of monopoles.
Returning to QCD-like theories which do not have powerful

extended supersymmetries that would prevent any phase
transitions and guarantee smooth transition from UV to IR,
one finds a transition to confining and chirally broken phases.
Those have certain quantum condensates which divert the
renormalization group (RG) flow to a hadronic phase at
T < Tc. Therefore the duality argument must hold at least
in the plasma phase, at T > Tc. We can follow the duality
argument and the Dirac condition only halfway, until
e2=4πℏc ∼ g2=4πℏc ∼ 1. This is a plasma of coexisting
electric quasiparticles and magnetic monopoles.
One can summarize the picture of the so-called magnetic

scenario by a schematic plot shown in Fig. 5, from Liao and
Shuryak (2007). At the top (the high T domain) and at the right
(the high density domain) one finds weakly coupled or
“electrically dominated” regimes (wQGP). On the contrary,
near the origin of the plot, in vacuum, the electric fields are
subdominant and confined into the flux tubes. The vacuum is
filled by the magnetically charged condensate, known as a dual
superconductor. The region in between (relevant for matter
produced at RHIC and the LHC) is close to the “equilibrium
line,” marked by e ¼ g on the plot. In this region both electric
and magnetic coupling are equal and thus αelectric ¼
αmagnetic ¼ 1: so neither the electric nor magnetic formulations
of the theory are simple.
Do we have any evidence of a presence or importance for

heavy ion physics of magnetic objects? Here are some
arguments for that based on lattice studies and phenomenol-
ogy, more or less in historical order.

(i) In the RHIC-LHC region Tc < T < 2Tc the VEVof the
Polyakov line hPi is substantially different from 1. Hidaka
and Pisarski (2008) argued that hPi must be incorporated
into a density of thermal quarks and gluons and thus
suppress their contributions. They called such matter “semi-
QGP” emphasizing that only about one-half of the QGP
degrees of freedom should actually contribute to thermody-
namics at such T. And yet, the lattice data insist that the
thermal energy density remains close to the T4 trend nearly
all the way to Tc.
(ii) The magnetic scenario (Liao and Shuryak, 2007)

proposed to explain this puzzle by ascribing “another half”
of such contributions to the magnetic monopoles, which are
not subject to hPi suppression because they do not have the
electric charge. A number of lattice studies found magnetic
monopoles and showed that they behave as physical quasi-
particles in the medium. Their motion definitely shows Bose-
Einstein condensation at T < Tc (D’Alessandro, D’Elia, and
Shuryak, 2010). Their spatial correlation functions are plas-
malike. Even more striking is the observation (Liao and
Shuryak, 2008) revealing magnetic coupling which grows
with T, being indeed an inverse of the asymptotic free-
dom curve.
The magnetic scenario also has difficulties. Unlike the

instanton dyons, lattice monopoles so far defined are gauge
dependent. The original t’Hooft–Polyakov solution requires
an adjoint scalar field, absent in the QCD Lagrangian, but
perhaps an effective scalar can be generated dynamically. In
the Euclidean time finite-temperature setting this is not a
problem, as A0 naturally takes this role, but it cannot be used
in real-time applications required for kinetic calculations.
(iii) Plasmas with electric and magnetic charges show

unusual transport properties: The Lorenz force enhances
the collision rate and reduces viscosity (Liao and Shuryak,
2007). Quantum gluon-monopole scattering leads to a large
transport cross section (Ratti and Shuryak, 2009), providing
small viscosity in the range close to that observed at the RHIC
and the LHC.
(iv) The high density of (noncondensed) monopoles near Tc

leads to compression of the electric flux tubes, perhaps
explaining curious lattice observations of very high tension
in the potential energy (not free energy) of the heavy-quark
potentials near Tc (Liao and Shuryak, 2007); see Sec. X.
(v) Last but not least, the peaking density of monopoles

near Tc seems to be directly relevant to jet quenching;
see Sec. XI.
Completing this introduction to monopole applications, it

is impossible not to mention the remaining unresolved issues.
Theories with adjoint scalar fields, such as, e.g., the cel-
ebrated N ¼ 2 Seiberg-Witten theory, naturally have parti-
clelike monopole solutions. However, in QCD-like theories
without scalars the exact structure of the lattice monopole are
not yet well understood. There are indications that most, if
not all, of the monopole physics can be taken care of via the
instanton dyons previously mentioned: in this case the role of
the adjoint “Higgs” is played by the time component of the
gauge potential A4. The dyon solution is well defined
and real in Euclidean time, but becomes imaginary in the
Minkowski continuation: so it is not a “particle” in the
ordinary sense.

FIG. 5. A schematic phase diagram on a (compactified) plane of
temperature and baryonic chemical potential T − μ. The shaded
(blue) region shows the magnetically dominated region g < e,
which includes the deconfined hadronic phase as well as a small
part of the QGP domain. The unshaded region includes the
electrically dominated part of QGP and the color superconducting
(CS) region, which has e-charged diquark condensates and is
therefore “magnetically confined.” The dashed line (e ¼ g) is the
line of electric-magnetic equilibrium. The solid lines indicate true
phase transitions, while the dash-dotted line is a deconfinement
crossover line. From Liao and Shuryak, 2007.

Edward Shuryak: Strongly coupled quark-gluon plasma in heavy …

Rev. Mod. Phys., Vol. 89, No. 3, July–September 2017 035001-8

2

MOTIVATION & OUTLINE

Chiral evolution without magnetic monopoles 

Chiral evolution with magnetic monopoles (an Abelian model)

Magnetic monopoles at T=0: dual superconductor, 
color confinement.

Motivation:

The condensate may not melt away at Tc

⇒ Important part of QGP dynamics

Outline
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QED WITH CHIRAL ANOMALY WITHOUT MONOPOLES
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conservation. The goal of this paper is to investigate this mechanism in more detail. To this

end, the vector potential is expanded into a complete set of the helicity states. The circularly

polarized plane waves are used in this paper, but the same result can obtained with any other

Chandrasekhar-Kendall states as well. The vector potential is then approximated by a single fastest

growing (as a function of time) state. Momentum k

0

of the fastest growing state is proportional to

the chiral conductivity and hence is a function of time. This is di↵erent from the monochromatic

approximation discussed in [4, 6], where the momentum of a monochromatic state is constant. In

the present model, the rate of the state growth is determined by the anomaly equation.

In order to solve the Maxwell and the chiral anomaly equations one needs to know the equation

of state of the medium that relates the chiral charge density to the axial chemical potential. We

consider two equations of state (38) and (55) corresponding to hot and cold media. In each case

an analytical solution is derived for the chiral conductivity and magnetic field. The details of this

derivation are discussed in the subsequent sections. The results are shown in Fig. 1–Fig. 4. One

can see that the vector potential increases rapidly with time. However the magnetic field develops

a maximum only if at the initial time a large enough fraction of the total helicity is stored in the

medium rather than in the field. Eventually, the magnetic field vanishes at later times.

II. MAXWELL EQUATIONS

Electrodynamics coupled to the topological charge carried by the gluon field is governed by the

Maxwell-Chern-Simons equations [18–21]

r ·B = 0 , (3)

r ·E = ⇢� cAr✓ ·B , (4)

r⇥E = �@tB , (5)

r⇥B = @tE + j + cA(@t✓B +r✓ ⇥E) , (6)

where ✓ is a pseudo-scalar field and cA = Nc
P

f q
2

fe
2

/2⇡2. In a chiral medium, the time-derivative

of ✓ can be identified with the axial chemical potential ✓̇ = µ

5

. We are going to consider an

idealized case of a homogeneous medium r✓ = 0 with vanishing charge density ⇢ = 0. In this case

the anomalous current is given by

jA = ��B , (7)

chiral conductivity induced by the chiral anomaly of QED

Pseudo-scalar field θ describes coupling of QED to the topological vacuum 
fluctuations of the nuclear matter (e.g. QGP).
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j = ��BAnomalous current 

Assumption: θ is spatially homogeneous (single topological sector) 

�� = cA✓̇ = cAµ5

j, B are T-odd ⇒ σχ is T-even ⇒ non-dissipative

Maxwell-Chern-Simons theory:
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HELICITY CONSERVATION WITHOUT MONOPOLES

Chiral anomaly 

6

V. CHIRAL ANOMALY

Time-dependence of �� is determined by the chiral anomaly equation and the equation of state

that connects the average chiral charge density hnAi to the axial chemical potential µ
5

. The chiral

anomaly equation reads [23, 24]

@µj
µ
A = cAE ·B . (33)

In a homogeneous medium r · jA = ��r ·B = 0, so that (33) reduces to an equation for the time

component of the anomalous current

ṅA = cAE ·B . (34)

Averaging over volume and using (28) gives†

@t hnAi = cA

V

Z
E ·B d

3

x = � cA

2V
@tHem

. (35)

Integrating, one obtains the total helicity conservation condition

2V

cA
hnAi+H

em

= H
tot

, (36)

where H
tot

is a constant.

Magnetic helicity H
em

explicitly depends on ��(t), rather than on hnAi. Therefore, in order

to solve (36) one needs an equation of state of the chiral medium that connects the chiral charge

density and the axial potential. It can be computed from the grand canonical potential ⌦ as [22]

hnAi = � 1

V

@⌦

@µ

5

. (37)

Clearly, the equation of state depends on medium properties and, in general, is complicated even

in the non-interacting approximation. It simplifies in two important limits: when temperatures T

and quark chemical potentials µ are much higher or much lower than the axial chemical potential

µ

5

. We refer to these limits as the hot and cold medium respectively and consider separately in

the following two sections.

VI. MAGNETIC FIELD EVOLUTION IN HOT MEDIUM

In a hot medium with µ, T � µ

5

, the equation of state is linear [22]

hnAi = �µ

5

, (38)

† Our notations generally follow [2].

Integrate over time  ! helicity conservation
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ṅA = cAE ·B . (34)

Averaging over volume and using (28) gives†

@t hnAi = cA

V

Z
E ·B d

3

x = � cA

2V
@tHem

. (35)

Integrating, one obtains the total helicity conservation condition

2V

cA
hnAi+H

em

= H
tot

, (36)

where H
tot

is a constant.

Magnetic helicity H
em

explicitly depends on ��(t), rather than on hnAi. Therefore, in order

to solve (36) one needs an equation of state of the chiral medium that connects the chiral charge

density and the axial potential. It can be computed from the grand canonical potential ⌦ as [22]

hnAi = � 1

V

@⌦

@µ

5

. (37)

Clearly, the equation of state depends on medium properties and, in general, is complicated even

in the non-interacting approximation. It simplifies in two important limits: when temperatures T

and quark chemical potentials µ are much higher or much lower than the axial chemical potential

µ

5

. We refer to these limits as the hot and cold medium respectively and consider separately in

the following two sections.

VI. MAGNETIC FIELD EVOLUTION IN HOT MEDIUM

In a hot medium with µ, T � µ

5

, the equation of state is linear [22]

hnAi = �µ

5

, (38)

† Our notations generally follow [2].

Equation of state (hot medium)

6

V. CHIRAL ANOMALY

Time-dependence of �� is determined by the chiral anomaly equation and the equation of state

that connects the average chiral charge density hnAi to the axial chemical potential µ
5

. The chiral

anomaly equation reads [23, 24]

@µj
µ
A = cAE ·B . (33)

In a homogeneous medium r · jA = ��r ·B = 0, so that (33) reduces to an equation for the time

component of the anomalous current
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where the susceptibility � depends on µ and T , but not on time. It follows then from (8) that

��(t) =
cA

�

hnA(t)i , (39)

The helicity conservation (36) now reads

��(t)

↵

= 1� H
em

(t)

H
tot

, (40)

where ↵ = H
tot

c

2

A/(2V �) is a characteristic energy scale.

The vector potential in (23) is normalized such that at the initial time the magnetic helicity

equals unity H
em

(0) = 1. Denoting the initial value of the chiral conductivity by ��(0) = �

0

one

can infer from (40) that

�

0

= ↵(1�H�1

tot

) < ↵ . (41)

The ratio �

0
0

= �

0

/↵ determines the fraction of the total initial helicity stored in the medium. If

at t = 0 H
tot

� 1, then most of the initial helicity is stored in the medium, implying �

0
0

. 1.

Note that �0
0

never equals 1 for a finite positive total helicity.‡ In the opposite case, all helicity is

initially magnetic H
tot

= H
em

(0) = 1 implying �

0
0

= 0.

Substituting (31) into (40), using the definition of � from (22) and taking the time-derivative,

one derives an equation for ��

�̇� = �
⇣q

�

2 + �

2

� � �

⌘
(↵� ��) . (42)

It is convenient to use a set of dimensionless quantities

�

0
� = ��/↵ , �

0 = �/↵ , ⌧ = ↵t , (43)

in terms of which Eq. (42) is cast into the form

�̇

0
� = �

⇣q
�

02 + �

02
� � �

0
⌘
(1� �

0
�) . (44)

In view of (41), the right-hand-side of (44) is always negative. Perforce, �� is a monotonically

decreasing function of time implying that helicity always flows from the medium to the field until

all of it is stored in the field. This is in contrast to [2, 4] where the helicity can flow in both

directions. How long it takes to transfer the helicity to the field depends on an equation of state

as discussed in this and the following sections.

‡ In the case of negative helicity, all terms in (36) would change sign, see footnote ⇤.

Helicity flows between the magnetic field and 
medium. Total helicity is conserved.
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IV. ENERGY AND HELICITY

Now let us verify whether the energy conservation restricts the functional form of ��(t). Energy

stored in the electromagnetic field is

E
em

=
1

2

Z
(E2 +B

2)d3x =
X

k,�

1

2k

�|ȧ
k�|2 + |a

k�|2k2
�
, (24)

where (14),(15),(12) were used. Similarly, magnetic helicity is given by

H
em

=

Z
A ·B d

3

x =
X

k,�

�|a
k�|2 , (25)

while the energy loss due to Ohm’s currents reads

Q =

Z
j ·E d

3

x = �

Z
E

2

d

3

x = �

X

k,�

1

k

|ȧ
k�|2 . (26)

The energy balance equation follows from Maxwell equations. Subtracting the scalar product

of (5) with B from the scalar product of (6) with E and integrating over volume yields

1

2
@t

Z
(E2 +B

2)d3x+

Z
j ·E d

3

x+ ��(t)

Z
B ·E d

3

x = 0 , (27)

where we neglected the surface contribution. Noting that up to a surface term

@tHem

= �2

Z
E ·B d

3

x , (28)

we can write (27) as

@tEem +Q� 1

2
��(t) @tHem

= 0 . (29)

In the framework of our model, i.e. using the fastest growing state (23) as an ansatz for the

vector potential, one obtains

E
em

=
1

2��

⇣
�

2

� + �

2 � �

q
�

2 + �

2

�

⌘
e

�
, (30)

H
em

= e

�
, (31)

Q =
�

2��

⇣q
�

2 + �

2

� � �

⌘
2

e

�
. (32)

Noting that in the adiabatic approximation Ė
em

⇡ �̇E
em

it is straightforward to verify that

Eqs. (30)–(32) satisfy the energy balance equation (29).

We emphasize that Eq. (29) is satisfied for any function ��(t). Thus, energy conservation does

not tame the instability of the magnetic field. In particular, for a constant chiral conductivity,

Eqs. (30),(31),(32) diverge exponentially with time. This does not contradict the conclusions of

Ref. [16], because it explicitly used the chiral anomaly equation.

Magnetic helicity:

Fraction of the total 
helicity in the plasma

Fraction of the total 
helicity in the field
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ADIABATIC SOLUTION WITHOUT MONOPOLES

3

where the chiral conductivity defined as [21, 22]

�� = cAµ5

(8)

is a function of only time. In the radiation gauge r ·A = 0, A0 = 0 Eq. (6) can be written as an

equation for the vector potential

�r2

A = �@

2

tA+ j + ��(t)r⇥A . (9)

III. THE FASTEST GROWING STATE

We proceed by expanding the vector potential into eigenstates of the curl operator W

k�(x),

known also as the Chandrasekhar-Kendall (CK) states [1]. A particular form of these functions is

not important, but its easier to deal with them in Cartesian coordinates where they are represented

by the circularly polarized plane waves

W

k�(x) =
✏

�

p
2kV

e

ik·x
, (10)

where V is volume and � = ±1 corresponds to the right and left polarizations. Functions (10)

satisfy the eigenvalue equation

r⇥W

k�(x) = �kW

k�(x) (11)

and the normalization condition

Z
W

⇤
k�(x) ·Wk

0�0(x)d3x =
1

2k
���0

�

k,k0
. (12)

Expansion of the vector potential into a complete set of the CK states reads

A =
X

k,�

[a
k�(t)W

k

0�0(x) + a

⇤
k

0�0(t)W ⇤
k

0�0(x)] . (13)

The corresponding electric and magnetic fields are given by

E = �@tA =
X

k,�

[�ȧ

k�(t)W
k

0�0(x)� ȧ

⇤
k�(t)W

⇤
k�(x)] , (14)

B = r⇥A =
X

k,�

[�k a
k�(t)Wk�(x) + �ka

⇤
k�(t)W

⇤
k�(x)] . (15)

Substituting (13) into (9) and using the Ohm’s law j = �E one gets an equation

k

2

a

k� = �ä

k� � �ȧ

k� + ��(t)�k a
k� . (16)

Radiation gauge:

3
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It can be solved in the adiabatic approximation, which is adequate for analysis of the unstable
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The model employed in the ensuing sections of this paper, consists in approximating the vector

potential by the fastest growing mode given by (21),(22). The corresponding vector potential is
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To verify that the ansatz Eq. (23) is indeed a solution to Eq. (9) one has to keep in mind that

when taking the time-derivative of A, function W

k0+ is treated as time-independent (even though

k
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depends on time), because its time-derivative is proportional to !̇
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, which is neglected in the

adiabatic approximation.

⇤ If during the evolution �� changes sign, then � = 1 state stops growing while � = �1 becomes the fastest growing
state.
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which are eigenstates of the curl operator with eigenvalues �k, ✏� is the polarization vector with
� = +1(�1) corresponding to the right (left) polarization and V is volume. Substituting (26) into
(5) one derives an equation
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The magnetic helicity (8) can be written as

H
em

=

Z

A ·B d

3

x =
X

k,�

�|a
k�|2 . (29)

Upon substitution into (9), it yields an implicit equation for ��(t).

FIG. 2. Properties of the dispersion relation (32). The upper (lower) half corresponds to states with � = +1
(� = �1). Regions with chiral magnetic instability where the Meissner phase is not possible are shown in
red. They are enclosed by the static CK states. The green region consists of exponentially decaying CK
states without oscillation. The white region consists of exponentially decaying CK states with oscillation.
The border lines for oscillation shown here correspond to �e = 4�m.

A more detailed analysis of the time-evolution problem can be done using the adiabatic approx-
imation. It also allows one to consider media with realistic values of electric conductivity. The
adiabatic approximation consists in writing the amplitudes in the form

a
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R t
0 !k�(t0)dt0 (30)

and assuming that !k�(t) is a slow varying function. Substituting (30) into (28) and neglecting
terms proportional to !̇k�, one obtains a quadratic equation
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where �
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= ±1.
The dispersion relation (32) has the following properties summarized on the diagram Fig. 2:
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Within this model the helicity conservation equation:
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where the susceptibility � depends on µ and T , but not on time. It follows then from (8) that
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cA
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The helicity conservation (36) now reads
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where ↵ = H
tot

c

2

A/(2V �) is a characteristic energy scale.

The vector potential in (23) is normalized such that at the initial time the magnetic helicity
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(0) = 1. Denoting the initial value of the chiral conductivity by ��(0) = �
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0

never equals 1 for a finite positive total helicity.‡ In the opposite case, all helicity is

initially magnetic H
tot

= H
em

(0) = 1 implying �

0
0

= 0.

Substituting (31) into (40), using the definition of � from (22) and taking the time-derivative,

one derives an equation for ��

�̇� = �
⇣q

�

2 + �

2

� � �

⌘
(↵� ��) . (42)

It is convenient to use a set of dimensionless quantities

�

0
� = ��/↵ , �

0 = �/↵ , ⌧ = ↵t , (43)

in terms of which Eq. (42) is cast into the form

�̇

0
� = �

⇣q
�

02 + �

02
� � �

0
⌘
(1� �

0
�) . (44)

In view of (41), the right-hand-side of (44) is always negative. Perforce, �� is a monotonically

decreasing function of time implying that helicity always flows from the medium to the field until

all of it is stored in the field. This is in contrast to [2, 4] where the helicity can flow in both

directions. How long it takes to transfer the helicity to the field depends on an equation of state

as discussed in this and the following sections.

‡ In the case of negative helicity, all terms in (36) would change sign, see footnote ⇤.

can be solved analytically ⇒ chiral evolution 
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CHIRAL EVOLUTION WITHOUT MONOPOLES
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Since �

0
�(⌧) is monotonically decreasing from its initial value �

0
0

, the magnetic field has maximum

only if �0
0

> 1/2, i.e. if most of the initial helicity is in the medium. Otherwise, B(t) is a mono-

tonically decreasing function of time (despite the fact that A always grows). This is shown in

Fig. 2.
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FIG. 2: Evolution of the magnetic field in hot medium for �

0 = 0 (solid line), 1 (dotted line), 10 (dashed

line). The initial condition is �0
�(0) ⌘ �

0
0 = 0.5, i.e. 50% of the initial helicity is in the field (left panel) and

�

0
0 = 0.95, i.e. 95% of the initial helicity is in medium, (right panel).

A. Insulating medium � = 0

The chiral conductivity can be explicitly expressed as a function of ⌧ in the case of vanishing

electrical conductivity � = 0. In this case, solution to Eq. (44) reads

�

0
�(⌧) =

1

1 +
⇣

1

�0
0
� 1

⌘
e

⌧
. (49)

Clearly, at ⌧ ⌧ 1, the chiral conductivity is constant, while at t > 1 it exponentially decreases

with time, see Fig. 1. To compute the corresponding magnetic field substitute (49) into (22), which

yields

�(t) =

Z t

0

��(t
0)dt0 = ⌧ � ln

⇥
e

⌧
�
1� �

0
0

�
+ �

0
0

⇤
. (50)

Plugging this into (21) one derives for an insulating medium

a

0

(t) =
e

⌧/2

p
e

⌧ (1� �

0
0

) + �

0
0

. (51)

Since ȧ
0

> 0 for any �

0
0

> 0, magnetic helicity H
em

= a

2

0

increases from its initial value H
em

(0) = 1

to the final value of H
em

(1) = (1� �

0
0

)�1 = H
tot

, where (41) has been used.

Magnetic field has a peak (instability) only if ��(0)/↵ > 1/2
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QED WITH CHIRAL ANOMALY AND WITH MONOPOLES

Assume linear response:
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field modes and point out the conditions under which the magnetic field (and magnetic helicity) is
unstable. In our context, the term “instability” means that a small fluctuation of the field triggers
its exponential growth, even though eventually it decays as a result of the magnetic helicity non-
conservation. We show that the stability condition coincides with the condition for the existence
of the superconductivity. In order to develop a clearer understanding of the time evolution of the
magnetic field and the chiral conductivity, we employ in Sec. IV the Fastest Growing State (FGS)
model [30] which assumes that the magnetic helicity at later times is driven by a mode with the
exponentially largest growth rate. Using this model we perform in Sec. V a detailed investigation
of the time-evolution of the MCSm theory. We argue that after undergoing an inverse cascade the
system settles to the superconducting phase. This is the main result of our paper. We conclude
with a discussion in Sec. VI.

II. MAXWELL-CHERN-SIMONS THEORY WITH MAGNETIC MONOPOLES

A. Maxwell and the chiral anomaly equations

A plasma of electric and magnetic charges with chiral anomaly is governed by the following
generalization of the Maxwell equations [3–6]:

r ·B = 0 , (1)

r ·E = 0 , (2)

�r⇥E = @tB + jm , (3)

r⇥B = @tE + je + ��B , (4)

where jm is the magnetic current density and �� is assumed to depend only on time. Assuming the
linear response je = �eE, jm = �mB, we can derive, using (1)–(4), an equation for the magnetic
field

�r2

B + @

2

tB = �(�e + �m)@tB � �e�mB + ��(t)r⇥B . (5)

In view of (1) we can introduce the vector potential A as B = r⇥A. Since the Bianchi identity
is violated in the presence of the magnetic current, the relationship between the electric field and
the vector potential is modified as compared to the Maxwell theory. One can check that

E = �@tA� �mA , (6)

satisfies the modified Faraday’s law (3) in the Coulomb gauge r ·A = 0. We note that the vector
potential A obeys the same equation (5) as the magnetic field.

The relationship (6) between the electric field and the vector potential is not unique. One can
add on its right-hand-side a gradient of any scalar function �. The choice of � is dictated by
the requirement of the gauge-invariance of (6). Equations such as (6) appear in the theory of the
superconductivity and indicate the necessity to introduce the magnetic monopole condensate. The
condensate contributes to the right-hand-side of (6) a term proportional to the gradient of its phase
� which restores the gauge invariance. The term ��mA in (6) and the term proportional to r�

make up the supercurrent. Not surprisingly, the supercurrent induces the Meissner e↵ect discussed
in the next sub-section. Throughout the paper we assume the gauge condition � = 0.

The time-evolution of the chiral conductivity is governed by the chiral anomaly equation. At
high temperatures it can be written as [9, 30]

@t�� = c

2

A/(�V )

Z

E ·B d

3

x , (7)
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� which restores the gauge invariance. The term ��mA in (6) and the term proportional to r�

make up the supercurrent. Not surprisingly, the supercurrent induces the Meissner e↵ect discussed
in the next sub-section. Throughout the paper we assume the gauge condition � = 0.

The time-evolution of the chiral conductivity is governed by the chiral anomaly equation. At
high temperatures it can be written as [9, 30]
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field modes and point out the conditions under which the magnetic field (and magnetic helicity) is
unstable. In our context, the term “instability” means that a small fluctuation of the field triggers
its exponential growth, even though eventually it decays as a result of the magnetic helicity non-
conservation. We show that the stability condition coincides with the condition for the existence
of the superconductivity. In order to develop a clearer understanding of the time evolution of the
magnetic field and the chiral conductivity, we employ in Sec. IV the Fastest Growing State (FGS)
model [30] which assumes that the magnetic helicity at later times is driven by a mode with the
exponentially largest growth rate. Using this model we perform in Sec. V a detailed investigation
of the time-evolution of the MCSm theory. We argue that after undergoing an inverse cascade the
system settles to the superconducting phase. This is the main result of our paper. We conclude
with a discussion in Sec. VI.

II. MAXWELL-CHERN-SIMONS THEORY WITH MAGNETIC MONOPOLES

A. Maxwell and the chiral anomaly equations

A plasma of electric and magnetic charges with chiral anomaly is governed by the following
generalization of the Maxwell equations [3–6]:

r ·B = 0 , (1)

r ·E = 0 , (2)

�r⇥E = @tB + jm , (3)

r⇥B = @tE + je + ��B , (4)

where jm is the magnetic current density and �� is assumed to depend only on time. Assuming the
linear response je = �eE, jm = �mB, we can derive, using (1)–(4), an equation for the magnetic
field
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tB = �(�e + �m)@tB � �e�mB + ��(t)r⇥B . (5)

In view of (1) we can introduce the vector potential A as B = r⇥A. Since the Bianchi identity
is violated in the presence of the magnetic current, the relationship between the electric field and
the vector potential is modified as compared to the Maxwell theory. One can check that

E = �@tA� �mA , (6)

satisfies the modified Faraday’s law (3) in the Coulomb gauge r ·A = 0. We note that the vector
potential A obeys the same equation (5) as the magnetic field.

The relationship (6) between the electric field and the vector potential is not unique. One can
add on its right-hand-side a gradient of any scalar function �. The choice of � is dictated by
the requirement of the gauge-invariance of (6). Equations such as (6) appear in the theory of the
superconductivity and indicate the necessity to introduce the magnetic monopole condensate. The
condensate contributes to the right-hand-side of (6) a term proportional to the gradient of its phase
� which restores the gauge invariance. The term ��mA in (6) and the term proportional to r�

make up the supercurrent. Not surprisingly, the supercurrent induces the Meissner e↵ect discussed
in the next sub-section. Throughout the paper we assume the gauge condition � = 0.

The time-evolution of the chiral conductivity is governed by the chiral anomaly equation. At
high temperatures it can be written as [9, 30]

@t�� = c

2

A/(�V )

Z

E ·B d

3

x , (7)Chiral anomaly equation

3

where cA = Nc
P

f q
2

fe
2

/(2⇡2) is the anomaly coe�cient, V is the volume of the system and �

is the susceptibility that does not depend on time [30]. Eq. (7) can be written in terms of the
magnetic helicity defined as

H
em

=

Z

A ·B d

3

x , (8)

Denoting � = c

2

A/(V �) yields

�

�1

@t�� = �@tHem

� 2�mH
em

. (9)

Evidently, the total helicity H
tot

= �

�1

�� +H
em

is not a conserved quantity at finite �m. While
the magnetic current is energy non-dissipative, it does dissipate the magnetic helicity.

B. Meissner e↵ect

That the magnetic current does not dissipate energy can also be seen from the fact that under
time-reversal T the current density and magnetic field change signs, implying that the magnetic
conductivity �m is even under T . The same argument indicates that the chiral conductivity ��

is also even under T , which, as recently argued by Kharzeev, implies the existence of the “chiral
magnetic superconductivity” [41].

To see how the supercurrent induces the Meissner e↵ect, it is convenient to introduce the
“normal” and “super” components of the electric field as

En = �@tA , Es = ��mA . (10)

We denote the electric currents induced by each component as

jn = �eEn , js = �eEs = ��e�mA . (11)

It can be checked that both currents satisfy the continuity equation: r · jn = r · js = 0. It is
straightforward to see that the super current js satisfies the London equations:

r⇥ js = � �e�mB, (12)

@tjs = + �e�mEn, (13)

which indicate that js is indeed a superconducting current. The MCSm equations (1)–(4) can be
rewritten for the pair of fields B, En as

r ·En = 0, (14)

r ·B = 0, (15)

�r⇥En = @tB, (16)

r⇥B = @tEn +
�e + �m

�e
jn + js + ��B. (17)

In the stationary limit jn = 0, En = 0 (12) and (17) yield

r2

B = �e�mB � ��r⇥B , (18)

which can also be seen directly from (5). The super component of the electric field satisfies the
same equation. Indeed, taking the Laplacian of the second equation in (10) and using (17) we
obtain

r2

Es = �e�mEs � ��r⇥Es . (19)

!

⇒ Magnetic current dissipates magnetic helicity,
but conserves energy because is σm is T-even
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reminiscent of the London theory of superconductivity
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of the superconductivity. In order to develop a clearer understanding of the time evolution of the
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model [30] which assumes that the magnetic helicity at later times is driven by a mode with the
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is violated in the presence of the magnetic current, the relationship between the electric field and
the vector potential is modified as compared to the Maxwell theory. One can check that
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satisfies the modified Faraday’s law (3) in the Coulomb gauge r ·A = 0. We note that the vector
potential A obeys the same equation (5) as the magnetic field.

The relationship (6) between the electric field and the vector potential is not unique. One can
add on its right-hand-side a gradient of any scalar function �. The choice of � is dictated by
the requirement of the gauge-invariance of (6). Equations such as (6) appear in the theory of the
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make up the supercurrent. Not surprisingly, the supercurrent induces the Meissner e↵ect discussed
in the next sub-section. Throughout the paper we assume the gauge condition � = 0.

The time-evolution of the chiral conductivity is governed by the chiral anomaly equation. At
high temperatures it can be written as [9, 30]
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conductivity �m is even under T . The same argument indicates that the chiral conductivity ��

is also even under T , which, as recently argued by Kharzeev, implies the existence of the “chiral
magnetic superconductivity” [41].

To see how the supercurrent induces the Meissner e↵ect, it is convenient to introduce the
“normal” and “super” components of the electric field as

En = �@tA , Es = ��mA . (10)

We denote the electric currents induced by each component as

jn = �eEn , js = �eEs = ��e�mA . (11)

It can be checked that both currents satisfy the continuity equation: r · jn = r · js = 0. It is
straightforward to see that the super current js satisfies the London equations:

r⇥ js = � �e�mB, (12)

@tjs = + �e�mEn, (13)

which indicate that js is indeed a superconducting current. The MCSm equations (1)–(4) can be
rewritten for the pair of fields B, En as

r ·En = 0, (14)

r ·B = 0, (15)

�r⇥En = @tB, (16)

r⇥B = @tEn +
�e + �m

�e
jn + js + ��B. (17)

charge conservation

⇒ when En=0, js is finite
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Stationary limit:

4

FIG. 1. Meissner e↵ect in a chiral medium.

In the stationary limit jn = 0, En = 0 (12) and (17) yield

r2

B = �e�mB � ��r⇥B , (18)

which can also be seen directly from (5). The super component of the electric field satisfies the
same equation. Indeed, taking the Laplacian of the second equation in (10) and using (17) we
obtain

r2

Es = �e�mEs � ��r⇥Es . (19)

In the anomaly-free case �� = 0, Eqs. (18),(19) imply that the electromagnetic field decays ex-
ponentially inside the conductor over the London penetration length ` = 1/

p
�e�m. In the ideal

conductor limit ` ! 0, the field is expelled, which is the Meissner e↵ect.
To analyze (18) and (19) at finite constant ��, we expand B and Es into a complete set of

eigenfunctions W
k�(x) of the curl operator, known as the Chandrasekhar-Kendall (CK) states [40].

Here k labels the Laplacian eigenvalues, in particular k � 0 is the wavenumber, and � = ±1 is
helicity. Using

r⇥W

k�(x) = �kW

k�(x) , (20)

we find that the wavenumber k satisfies

k =
���

2
±
r

1

4
�

2

� � �e�m. (21)

Since the CK states oscillate at large x, we observe that the electric and magnetic fields exponen-
tially decay in matter if �2

� < 4�e�m. The corresponding London penetration length is

` = 1

�

r

�e�m � 1

4
�

2

� . (22)

Additionally, in the chiral medium, the electric and magnetic fields oscillate as they decay, see
Fig. 1. At �

2

� � 4�e�m there is no Meissner e↵ect. In fact, as we will argue in Sec. III, at such
values of ��, the helicity of magnetic field is unstable, growing exponentially in time.

Thus far, when discussing the Meissner e↵ect, we ignored the time-dependence of �� which
stems from the chiral anomaly equation (9). Generally, it can be expected that during the chiral
evolution, the medium may go through both the superconducting and the normal phase. However,
as we will argue, the fixed point of the chiral evolution is superconducting.
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ponentially inside the conductor over the London penetration length ` = 1/

p
�e�m. In the ideal

conductor limit ` ! 0, the field is expelled, which is the Meissner e↵ect.
To analyze (18) and (19) at finite constant ��, we expand B and Es into a complete set of

eigenfunctions W
k�(x) of the curl operator, known as the Chandrasekhar-Kendall (CK) states [40].

Here k labels the Laplacian eigenvalues, in particular k � 0 is the wavenumber, and � = ±1 is
helicity. Using
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we find that the wavenumber k satisfies
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Since the CK states oscillate at large x, we observe that the electric and magnetic fields exponen-
tially decay in matter if �2

� < 4�e�m. The corresponding London penetration length is

` = 1
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r

�e�m � 1

4
�

2

� . (22)

Additionally, in the chiral medium, the electric and magnetic fields oscillate as they decay, see
Fig. 1. At �

2

� � 4�e�m there is no Meissner e↵ect. In fact, as we will argue in Sec. III, at such
values of ��, the helicity of magnetic field is unstable, growing exponentially in time.

Thus far, when discussing the Meissner e↵ect, we ignored the time-dependence of �� which
stems from the chiral anomaly equation (9). Generally, it can be expected that during the chiral
evolution, the medium may go through both the superconducting and the normal phase. However,
as we will argue, the fixed point of the chiral evolution is superconducting.
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London penetration depth

Same is true of electric field. Moreover, one can introduce A such that E=curl A. 
Everything is dual!

Spectrum:

L = (�e�m � �2
�/4)

�1/2
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Dispersion:

4

It can be solved in the adiabatic approximation, which is adequate for analysis of the unstable

states. Namely, we are seeking a solution in the form

a

k� = e

�i
R t
0 !k�(t0)dt0 (17)

and assume that !k�(t) is a slow varying function, which allows one to neglect terms proportional

to !̇k�. This yields

!k�(t) =


� i�

2
+ �

1

q
k

2 � ���k � �

2

/4

�
, (18)

with �

1

= ±1. States with �

1

= 1 and k such that the expression under the square root is

negative are unstable. A more detailed analyzes can be found in [3]. We are going to concentrate

on the fastest growing state, whose momentum k

0

corresponds to the maximum of the function

�(k2 � ���k � �

2

/4). Namely,

k

0

=
���

2
. (19)

Clearly, ��� is positive in an unstable state. We assume that �� > 0 and � = 1.⇤ At k = k

0

Eq. (18) becomes

!

0

(t) = � i�

2
+

i

2

q
�

2 + �

2

�(t) . (20)

Thus, the fastest growing state is

a

0

(t) = e

�(t)/2
, (21)

with

�(t) =

Z t

0

hq
�

2 + �

2

�(t
0)� �

i
dt

0
. (22)

The model employed in the ensuing sections of this paper, consists in approximating the vector

potential by the fastest growing mode given by (21),(22). The corresponding vector potential is

A(r, t) ⇡ a

0

(t)W
k0+(r) + c.c. (23)

To verify that the ansatz Eq. (23) is indeed a solution to Eq. (9) one has to keep in mind that

when taking the time-derivative of A, function W

k0+ is treated as time-independent (even though

k

0

depends on time), because its time-derivative is proportional to !̇

0

, which is neglected in the

adiabatic approximation.

⇤ If during the evolution �� changes sign, then � = 1 state stops growing while � = �1 becomes the fastest growing
state.

⇒ only possible if

Im ω>0:  

2

field modes and point out the conditions under which the magnetic field (and magnetic helicity) is
unstable. In our context, the term “instability” means that a small fluctuation of the field triggers
its exponential growth, even though eventually it decays as a result of the magnetic helicity non-
conservation. We show that the stability condition coincides with the condition for the existence
of the superconductivity. In order to develop a clearer understanding of the time evolution of the
magnetic field and the chiral conductivity, we employ in Sec. IV the Fastest Growing State (FGS)
model [30] which assumes that the magnetic helicity at later times is driven by a mode with the
exponentially largest growth rate. Using this model we perform in Sec. V a detailed investigation
of the time-evolution of the MCSm theory. We argue that after undergoing an inverse cascade the
system settles to the superconducting phase. This is the main result of our paper. We conclude
with a discussion in Sec. VI.

II. MAXWELL-CHERN-SIMONS THEORY WITH MAGNETIC MONOPOLES

A. Maxwell and the chiral anomaly equations

A plasma of electric and magnetic charges with chiral anomaly is governed by the following
generalization of the Maxwell equations [3–6]:

r ·B = 0 , (1)

r ·E = 0 , (2)

�r⇥E = @tB + jm , (3)

r⇥B = @tE + je + ��B , (4)

where jm is the magnetic current density and �� is assumed to depend only on time. Assuming the
linear response je = �eE, jm = �mB, we can derive, using (1)–(4), an equation for the magnetic
field

�r2

B + @

2

tB = �(�e + �m)@tB � �e�mB + ��(t)r⇥B . (5)

In view of (1) we can introduce the vector potential A as B = r⇥A. Since the Bianchi identity
is violated in the presence of the magnetic current, the relationship between the electric field and
the vector potential is modified as compared to the Maxwell theory. One can check that

E = �@tA� �mA , (6)

satisfies the modified Faraday’s law (3) in the Coulomb gauge r ·A = 0. We note that the vector
potential A obeys the same equation (5) as the magnetic field.

The relationship (6) between the electric field and the vector potential is not unique. One can
add on its right-hand-side a gradient of any scalar function �. The choice of � is dictated by
the requirement of the gauge-invariance of (6). Equations such as (6) appear in the theory of the
superconductivity and indicate the necessity to introduce the magnetic monopole condensate. The
condensate contributes to the right-hand-side of (6) a term proportional to the gradient of its phase
� which restores the gauge invariance. The term ��mA in (6) and the term proportional to r�

make up the supercurrent. Not surprisingly, the supercurrent induces the Meissner e↵ect discussed
in the next sub-section. Throughout the paper we assume the gauge condition � = 0.

The time-evolution of the chiral conductivity is governed by the chiral anomaly equation. At
high temperatures it can be written as [9, 30]

@t�� = c

2

A/(�V )

Z

E ·B d

3

x , (7)

6

which are eigenstates of the curl operator with eigenvalues �k, ✏� is the polarization vector with
� = +1(�1) corresponding to the right (left) polarization and V is volume. Substituting (26) into
(5) one derives an equation

k

2

a

k� = �ä

k� � �ȧ

k� + ��(t)�k a
k� . (28)

The magnetic helicity (8) can be written as

H
em

=

Z

A ·B d

3

x =
X

k,�

�|a
k�|2 . (29)

Upon substitution into (9), it yields an implicit equation for ��(t).

FIG. 2. Properties of the dispersion relation (32). The upper (lower) half corresponds to states with � = +1
(� = �1). Regions with chiral magnetic instability where the Meissner phase is not possible are shown in
red. They are enclosed by the static CK states. The green region consists of exponentially decaying CK
states without oscillation. The white region consists of exponentially decaying CK states with oscillation.
The border lines for oscillation shown here correspond to �e = 4�m.

A more detailed analysis of the time-evolution problem can be done using the adiabatic approx-
imation. It also allows one to consider media with realistic values of electric conductivity. The
adiabatic approximation consists in writing the amplitudes in the form

a

k� = a

k�(0)e
�i

R t
0 !k�(t0)dt0 (30)

and assuming that !k�(t) is a slow varying function. Substituting (30) into (28) and neglecting
terms proportional to !̇k�, one obtains a quadratic equation

k

2 � !

2

k� = i!k�(�e + �m)� �e�m + �k�� (31)

that has two solutions

!k�(t) = � i(�e + �m)

2
+ �

1

i

2

q

(�e + �m)2 + 4(���k � �e�m � k

2) , (32)

where �

1

= ±1.
The dispersion relation (32) has the following properties summarized on the diagram Fig. 2:
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1. Modes with �

1

> 0 and ���k��e�m�k

2 � 0 are growing, i.e. unstable, because Im!k� > 0.
This means that the magnetic field and the corresponding magnetic helicity grow expo-
nentially with time through the transfer of helicity from the medium. The corresponding
momentum values are

��

2
� 1

2

q

�

2

� � 4�e�m  k  ��

2
+

1

2

q

�

2

� � 4�e�m . (33)

This kinematic region exists only if �2

� > 4�e�m. Eventually, after a long time, the magnetic
helicity vanishes (as explained in Sec. II C) while the chiral conductivity settles into a sta-
tionary state with �

2

� ! �

2

1

 4�e�m, which is the value of the chiral conductivity at which
the inverse cascade terminates. Termination of the inverse cascade is a distinctive feature
of the MCSm theory. Without monopole, the inverse cascade is self-similar [9] and is only
terminated as the characteristic instability wavelength �? ⇠ 2/�� grows larger than the size
of the system.

2. The CK modes in the region �

2

�  4�e�m are stable; this is the Meissner phase. The
magnetic field and magnetic helicity decay exponentially with (Re!�,k 6= 0) or without
oscillation (Re!�,k = 0) depending on the values of k, �e and �m. It is seen in Fig. 2 that
modes k  �� (� = +1) are always non-oscillating. The growing and over-damped modes
are separated by the static CK states with !k� = 0.

IV. FASTEST GROWING STATE (FGS) MODEL

In order to better understand the time-dynamics of the MCSm system it is useful to use a model
that on the one hand, has all properties discussed in the previous sections, while on the other hand,
is analytically solvable and hence easy to interpret. In the absence of the magnetic current jm = 0,
such a model, dubbed the Fastest Growing State model, was developed by one of us in [30]. It
reproduces the essential features of the time evolution found in numerical calculations and provides
a number of novel insights. In this and the following sections we generalize this model to include
the magnetic current. We will see, however, that its applicability is restricted to the case �e � �m.

Time evolution at later times is determined by the modes with negative imaginary part of !k�.
Among them there is the fastest growing mode k? such that !̇k?� = 0. Taking the time derivative
of (31) one finds that the fastest growing mode has the momentum

k? =
���

2
, (34)

which is independent of the electric and magnetic conductivities. Using this in (32) one finds the
amplitude of the fastest growing mode

a?(t) = a?(0)e
1
2�(t)

, (35)

where

�(t) =

Z t

0

h

q

(�e � �m)2 + �

2

�(t
0)� (�e + �m)

i

dt

0

. (36)

At later time one can approximate the sum in (29) by the fastest growing amplitude (35). For
definitiveness we also assume that �� is positive implying that � = +1. Thus, the magnetic helicity
becomes

H
em

(t) = fH
tot

(0)e�(t) , (37)
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of (31) one finds that the fastest growing mode has the momentum
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! chiral instability is incompatible 
with the Meissner effect

Instability (exponential increase of H) occurs for

BTW, the Fastest Growing State model captures the essential qualitative features.
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which are eigenstates of the curl operator with eigenvalues �k, ✏� is the polarization vector with
� = +1(�1) corresponding to the right (left) polarization and V is volume. Substituting (26) into
(5) one derives an equation
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The magnetic helicity (8) can be written as
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Upon substitution into (9), it yields an implicit equation for ��(t).

FIG. 2. Properties of the dispersion relation (32). The upper (lower) half corresponds to states with � = +1
(� = �1). Regions with chiral magnetic instability where the Meissner phase is not possible are shown in
red. They are enclosed by the static CK states. The green region consists of exponentially decaying CK
states without oscillation. The white region consists of exponentially decaying CK states with oscillation.
The border lines for oscillation shown here correspond to �e = 4�m.

A more detailed analysis of the time-evolution problem can be done using the adiabatic approx-
imation. It also allows one to consider media with realistic values of electric conductivity. The
adiabatic approximation consists in writing the amplitudes in the form

a

k� = a

k�(0)e
�i

R t
0 !k�(t0)dt0 (30)

and assuming that !k�(t) is a slow varying function. Substituting (30) into (28) and neglecting
terms proportional to !̇k�, one obtains a quadratic equation
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2 � !
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k� = i!k�(�e + �m)� �e�m + �k�� (31)

that has two solutions

!k�(t) = � i(�e + �m)

2
+ �
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2

q

(�e + �m)2 + 4(���k � �e�m � k

2) , (32)

where �

1

= ±1.
The dispersion relation (32) has the following properties summarized on the diagram Fig. 2:The growth rate is largest for
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Amplitude

Magnetic helicity f is the initial fraction of the helicity stored in B
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where f = H
em

(0)/H
tot

(0) � 0 is the fraction of the total helicity in magnetic field at t = 0.
It is convenient to define the dimensionless conductivities �� ! ��/↵, �m ! �m/↵, �e ! �e/↵

and dimensionless time t ! ↵t, where ↵ = �H
tot

(0) = H
tot

(0)c2A/(�V ) is a characteristic energy
scale. Using these notations, as well as (37), we can write (9) as

@t�� = �f(�̇ + 2�m)e� . (38)

Let us now divide this equation by d�/dt from (36). We have

d��

d�

= �

q

(�e � �m)2 + �

2

� � �e + �m
q

(�e � �m)2 + �

2

� � �e � �m

fe

�
. (39)

Considering the chiral conductivity to be a function of � this equation can be easily integrated.
The solution is

� = ln
�

1� f

�1 [F (��)� F (1� f)]
 

, (40)

where we defined

F (��) =
1

��

n

�

2

� + 2�m
h

q

�

2

� + (�e � �m)2 + �e � �m

i

�2���m ln
h

�� +
q

�

2

� + (�e � �m)2
io

, (41)

and used ��(0) = 1� f . In the limit �m ! 0, F ! ��. Substituting (40) into (38), we derive the
equation that governs the time evolution of the chiral conductivity

�̇� = � [f + F (1� f)� F (��)]
⇣

q

(�e � �m)2 + �

2

� � �e + �m

⌘

. (42)

This is the main equation of the FGS model. Once (42) is solved, one can compute � using (40)
and magnetic helicity using (37).

Since the right-hand-side of (42) is negative, the chiral conductivity is a monotonically decreasing
function. At later times it approaches a stationary solution �

1

. In general, the stationary solution
�

1

is non-zero, in contrast to the case without magnetic monopoles monopole (�m = 0). Moreover,
�� = 0 is a stationary solution only if �e � �m. Indeed, in this case the right-hand-side of (42)
vanishes. If �e < �m, the chiral conductivity can become negative indicating the breakdown of the
model §. From now on we concentrate on the �e � �m case.

Once (42) is solved, the magnetic field can be computed as

B = B

0

q

��/(1� f) e
1
2�

. (43)

Clearly it exponentially decays at long times. The magnetic helicity reads using (37) and (40)

H
em

= H
tot

(0) [f + F (1� f)� F (��)] . (44)

It can be shown that F 0(±2
p
�e�m) = 0. Therefore, H

em

peaks at t
pk

defined as ��(t
pk

) = 2
p
�e�m.

The total helicity, however, always decreases in presence of �m.

§ The chiral conductivity can change sign and become negative as indicated in e.g. (25). However, the FGS model
is not suitable for such analysis.

One can derive a closed equation governing time-evolution of the chiral conductivity

Use FGS model to illustrate the general features the chiral evolution. 
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(a) f = 0.5, �e = 10�m

(b) f = 10�4, �e = 10�m

(c) �e = 1↵,�m = 0.1↵

FIG. 3. Left column: chiral conductivity ��(t) as a function of time for di↵erent initial conditions ��(0) =
1 � f and di↵erent electric and magnetic conductivities. Center column: the corresponding evolution
of the magnetic field. Right column: the corresponding evolution of the magnetic conductivity. ↵ =
H

tot

(0)c2A/(�V ) is a characteristic energy scale.

Representative solutions of (42) are shown in Fig. 3. It is seen that at t ! 1 the value of
the chiral conductivity approaches a constant that we labeled as �

1

in Sec. II C. To discuss the
possible values of the chiral conductivity at t ! 1 it is convenient to write (42) using (44) as

H
tot

(0) �̇� = �H
em

(��)
⇣

q

(�e � �m)2 + �

2

� � �e + �m

⌘

. (45)

Here H
tot

(0) is the value of the total helicity at t = 0, whereas H
em

(��) is the magnetic helicity as
a function of ��. The stationary solutions that the chiral conductivity approaches as t ! 1 satisfy
�̇� = 0. Eq. (45) always admits a stationary solution �

1

= 0 due to the vanishing of the expression
in the round brackets as �� ! 0 (since �e � �m). The remaining stationary solutions are the real
positive¶ roots of the equation H

em

(��) = 0. For a given initial condition ��(0) = 1� f , the chiral
conductivity settles to the largest root that satisfies �

1

 ��(0). Furthermore, since H
em

reaches
its maximum value at �� = 2

p
�e�m, these roots �

1

 2
p
�e�m. Since this equation always has

non-trivial roots, the trivial stationary state is never reached, see Fig. 4.

¶ As per assumption bellow Eq. (36).
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Notice that σχ does not vanish at t→∞  unlike no-monopole case. This is because 
part of magnetic helicity leaks out and evolution stops when the system runs out 
of the magnetic helicity, but the medium helicity is finite.



15

FINAL VALUES OF CHIRAL CONDUCTIVITY   

σ∞
=�

σ �
σ �

σχ(�)=���α

�
��-�

���
���
���

��� ��� ��� ��� ���
���

���

���

���

���

���

� σ� σ� /α

σ
∞
/α

σ�=σ�

�2
�(t ! 1) < 4�e�m

At t→∞ σχ  approaches a constant that satisfies

😲 Final state is a stable and exhibits the Meisner effect! 

Stability = exponential decay of small magnetic helicity fluctuations
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WHEN MAGNETIC HELICITY IS STABLE

Instability of magnetic helicity = period of growth → stability condition is

10

FIG. 4. Asymptotic values of the chiral conductivity �1 at di↵erent initial conditions ��(0) = 1� f . The
diagonal line separates the stable region below it from the unstable one above it.

V. STABILITY OF MAGNETIC HELICITY AND MAGNETIC FIELD

It is seen in Fig. 3 that during the initial stage of the evolution, the magnetic helicity can either
grow or decay with time. In the former case we say that the magnetic helicity is unstable whereas
in the later case it is stable. Our goal in this section is to derive the stability condition. The main
result is given by (46).

We can derive the stability condition by requiring that magnetic helicity be always decreasing
function of time, viz. Ḣ

em

< 0. It then follows from (44) that F

0(��)�̇� > 0. Since �̇� < 0 (see
(45)) we conclude that F

0(��) < 0 for any ��. This is the same condition as (33) from the more
general analysis of the dispersion relation, which shows that FGS captures the main feature of the
theory. Using (41) we obtain �

2

�  4�e�m for any ��. Finally, since ��  ��(0), we derive the
magnetic helicity is stable (meaning monotonically decreasing) if the chiral evolution starts from
the initial condition ��(0) = 1� f

�

2

�(0)  4�e�m . (46)

Conversely, the magnetic helicity is unstable if �2

� > 4�e�m for any ��. Observing that �� � �

1

,
we conclude that the magnetic helicity is unstable if �2

1

> 4�e�m. We see in Fig. 4 that this
condition is never satisfied. Therefore Eq. (46) is the only non-trivial stability condition. As we
argued in Sec. II B, if it is satisfied, the magnetic field is expelled from the medium.

In particular case f = 0, i.e. no magnetic field at t = 0, there exists a static solution ��(t) =
��(0) = �

1

= 1. According to (46) this solution is stable if 4�e�m � 1 and unstable otherwise. The
stability condition is never satisfied in a medium without magnetic monopoles �m = 0. In this case
a small perturbation inevitably drives the chiral conductivity to the only stable stationary solution
�

1

= 0 resulting in transfer of all helicity into the magnetic field (with monotonically increasing
magnetic helicity) and vanishing of �� [8, 9, 30]. Essentially, the stability of the ��(t) = 1 solution
reflects the stability of the chiral medium.
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investigate the condition for the magnetic field growth, which is referred to in the literature as the
magnetic field instability [7, 8, 14, 15, 19–28]. From (43) and (44) we derive that
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(0) � 0 is the fraction of the total helicity in magnetic field at t = 0.
It is convenient to define the dimensionless conductivities �� ! ��/↵, �m ! �m/↵, �e ! �e/↵

and dimensionless time t ! ↵t, where ↵ = �H
tot

(0) = H
tot

(0)c2A/(�V ) is a characteristic energy
scale. Using these notations, as well as (37), we can write (9) as

@t�� = �f(�̇ + 2�m)e� . (38)

Let us now divide this equation by d�/dt from (36). We have
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Considering the chiral conductivity to be a function of � this equation can be easily integrated.
The solution is

� = ln
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1� f

�1 [F (��)� F (1� f)]
 

, (40)

where we defined
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and used ��(0) = 1� f . In the limit �m ! 0, F ! ��. Substituting (40) into (38), we derive the
equation that governs the time evolution of the chiral conductivity

�̇� = � [f + F (1� f)� F (��)]
⇣

q

(�e � �m)2 + �

2

� � �e + �m

⌘

. (42)

This is the main equation of the FGS model. Once (42) is solved, one can compute � using (40)
and magnetic helicity using (37).

Since the right-hand-side of (42) is negative, the chiral conductivity is a monotonically decreasing
function. At later times it approaches a stationary solution �

1

. In general, the stationary solution
�

1

is non-zero, in contrast to the case without magnetic monopoles monopole (�m = 0). Moreover,
�� = 0 is a stationary solution only if �e � �m. Indeed, in this case the right-hand-side of (42)
vanishes. If �e < �m, the chiral conductivity can become negative indicating the breakdown of the
model §. From now on we concentrate on the �e � �m case.

Once (42) is solved, the magnetic field can be computed as

B = B

0

q

��/(1� f) e
1
2�

. (43)

Clearly it exponentially decays at long times. The magnetic helicity reads using (37) and (40)

H
em

= H
tot

(0) [f + F (1� f)� F (��)] . (44)

It can be shown that F 0(±2
p
�e�m) = 0. Therefore, H

em

peaks at t
pk

defined as ��(t
pk

) = 2
p
�e�m.

The total helicity, however, always decreases in presence of �m.

§ The chiral conductivity can change sign and become negative as indicated in e.g. (25). However, the FGS model
is not suitable for such analysis.
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FIG. 4. Asymptotic values of the chiral conductivity �1 at di↵erent initial conditions ��(0) = 1� f . The
diagonal line separates the stable region below it from the unstable one above it.

V. STABILITY OF MAGNETIC HELICITY AND MAGNETIC FIELD

It is seen in Fig. 3 that during the initial stage of the evolution, the magnetic helicity can either
grow or decay with time. In the former case we say that the magnetic helicity is unstable whereas
in the later case it is stable. Our goal in this section is to derive the stability condition. The main
result is given by (46).

We can derive the stability condition by requiring that magnetic helicity be always decreasing
function of time, viz. Ḣ

em

< 0. It then follows from (44) that F

0(��)�̇� > 0. Since �̇� < 0 (see
(45)) we conclude that F

0(��) < 0 for any ��. This is the same condition as (33) from the more
general analysis of the dispersion relation, which shows that FGS captures the main feature of the
theory. Using (41) we obtain �

2

�  4�e�m for any ��. Finally, since ��  ��(0), we derive the
magnetic helicity is stable (meaning monotonically decreasing) if the chiral evolution starts from
the initial condition ��(0) = 1� f

�

2

�(0)  4�e�m . (46)

Conversely, the magnetic helicity is unstable if �2

� > 4�e�m for any ��. Observing that �� � �

1

,
we conclude that the magnetic helicity is unstable if �2

1

> 4�e�m. We see in Fig. 4 that this
condition is never satisfied. Therefore Eq. (46) is the only non-trivial stability condition. As we
argued in Sec. II B, if it is satisfied, the magnetic field is expelled from the medium.

In particular case f = 0, i.e. no magnetic field at t = 0, there exists a static solution ��(t) =
��(0) = �

1

= 1. According to (46) this solution is stable if 4�e�m � 1 and unstable otherwise. The
stability condition is never satisfied in a medium without magnetic monopoles �m = 0. In this case
a small perturbation inevitably drives the chiral conductivity to the only stable stationary solution
�

1

= 0 resulting in transfer of all helicity into the magnetic field (with monotonically increasing
magnetic helicity) and vanishing of �� [8, 9, 30]. Essentially, the stability of the ��(t) = 1 solution
reflects the stability of the chiral medium.

Thus far in this section we discussed instability of the magnetic helicity. Now we would like to
investigate the condition for the magnetic field growth, which is referred to in the literature as the
magnetic field instability [7, 8, 14, 15, 19–28]. From (43) and (44) we derive that
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grow or decay with time. In the former case we say that the magnetic helicity is unstable whereas
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condition is never satisfied. Therefore Eq. (46) is the only non-trivial stability condition. As we
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= 0 resulting in transfer of all helicity into the magnetic field (with monotonically increasing
magnetic helicity) and vanishing of �� [8, 9, 30]. Essentially, the stability of the ��(t) = 1 solution
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V. STABILITY OF MAGNETIC HELICITY AND MAGNETIC FIELD

It is seen in Fig. 3 that during the initial stage of the evolution, the magnetic helicity can either
grow or decay with time. In the former case we say that the magnetic helicity is unstable whereas
in the later case it is stable. Our goal in this section is to derive the stability condition. The main
result is given by (46).
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theory. Using (41) we obtain �

2

�  4�e�m for any ��. Finally, since ��  ��(0), we derive the
magnetic helicity is stable (meaning monotonically decreasing) if the chiral evolution starts from
the initial condition ��(0) = 1� f

�

2

�(0)  4�e�m . (46)

Conversely, the magnetic helicity is unstable if �2

� > 4�e�m for any ��. Observing that �� � �

1

,
we conclude that the magnetic helicity is unstable if �2

1

> 4�e�m. We see in Fig. 4 that this
condition is never satisfied. Therefore Eq. (46) is the only non-trivial stability condition. As we
argued in Sec. II B, if it is satisfied, the magnetic field is expelled from the medium.

In particular case f = 0, i.e. no magnetic field at t = 0, there exists a static solution ��(t) =
��(0) = �

1

= 1. According to (46) this solution is stable if 4�e�m � 1 and unstable otherwise. The
stability condition is never satisfied in a medium without magnetic monopoles �m = 0. In this case
a small perturbation inevitably drives the chiral conductivity to the only stable stationary solution
�

1

= 0 resulting in transfer of all helicity into the magnetic field (with monotonically increasing
magnetic helicity) and vanishing of �� [8, 9, 30]. Essentially, the stability of the ��(t) = 1 solution
reflects the stability of the chiral medium.

Thus far in this section we discussed instability of the magnetic helicity. Now we would like to
investigate the condition for the magnetic field growth, which is referred to in the literature as the
magnetic field instability [7, 8, 14, 15, 19–28]. From (43) and (44) we derive that

✓

B

B

0

◆

2

=
H

em

H
tot

(0)

��

f(1� f)
. (47)

In particular,

Using FGS one can derive a more stringent stability condition.
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SUMMARY

1. Focus of this talk: dual QED with linear response.  

2. There is a superconducting phase; Meissner effect for both E and B 

3. Magnetic current dissipates helicity but conserves energy  

4. Chiral evolution ends up always in a superconducting state satisfying   

5. A superconducting state is always stable: a small fluctuation of magnetic 
helicity decays exponentially with time.  

6. Superfluid component may explain very low viscosity of QGP 

4

FIG. 1. Meissner e↵ect in a chiral medium.

In the stationary limit jn = 0, En = 0 (12) and (17) yield

r2

B = �e�mB � ��r⇥B , (18)

which can also be seen directly from (5). The super component of the electric field satisfies the
same equation. Indeed, taking the Laplacian of the second equation in (10) and using (17) we
obtain

r2

Es = �e�mEs � ��r⇥Es . (19)

In the anomaly-free case �� = 0, Eqs. (18),(19) imply that the electromagnetic field decays ex-
ponentially inside the conductor over the London penetration length ` = 1/

p
�e�m. In the ideal

conductor limit ` ! 0, the field is expelled, which is the Meissner e↵ect.
To analyze (18) and (19) at finite constant ��, we expand B and Es into a complete set of

eigenfunctions W
k�(x) of the curl operator, known as the Chandrasekhar-Kendall (CK) states [40].

Here k labels the Laplacian eigenvalues, in particular k � 0 is the wavenumber, and � = ±1 is
helicity. Using

r⇥W

k�(x) = �kW

k�(x) , (20)

we find that the wavenumber k satisfies

k =
���

2
±
r

1

4
�

2

� � �e�m. (21)

Since the CK states oscillate at large x, we observe that the electric and magnetic fields exponen-
tially decay in matter if �2

� < 4�e�m. The corresponding London penetration length is

` = 1

�

r

�e�m � 1

4
�

2

� . (22)

Additionally, in the chiral medium, the electric and magnetic fields oscillate as they decay, see
Fig. 1. At �

2

� � 4�e�m there is no Meissner e↵ect. In fact, as we will argue in Sec. III, at such
values of ��, the helicity of magnetic field is unstable, growing exponentially in time.

Thus far, when discussing the Meissner e↵ect, we ignored the time-dependence of �� which
stems from the chiral anomaly equation (9). Generally, it can be expected that during the chiral
evolution, the medium may go through both the superconducting and the normal phase. However,
as we will argue, the fixed point of the chiral evolution is superconducting.

🤔 Interesting: what is the role of the Dirac quantization eg=N/2 ?

Close CMP analogue: spin ice, but has quadratic response


