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The Chiral Magnetic Effect (CME) results 

from anomalous chiral transport of the 

chiral fermions in the QGP, leading to the 

generation of an electric current along the  

magnetic field generated in the collision:

 Leads to charge separation along 

the B-field
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I. CME detection & characterization 

could provide crucial insights on; 

 anomalous transport 

 the interplay of chiral symmetry 

restoration, axial anomaly, and 

gluonic topology in the QGP

II. The search for CME-driven charge 

separation is a major research theme 

especially at RHIC!
 The isobar run is currently in progress
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CME-driven charge separation leads to a dipole term in the azimuthal distribution 

of the produced charged hadrons:

Objective: identify & characterize this “dipole moment”
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Measuring Charge separation
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 The Gamma correlator and its variants, have been used extensively 

for experimental measurements
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 The Gamma Correlator’s response is similar for 

signal and background

 Background-driven correlations complicate 

CME-driven signal extraction?

 Background can account for a part, or all of the 

observed charge separation signal?

Results from AMPT
Ma, Zhang

Phys.Lett. B700 (2011) 39-43

Tested with Input 

charge separation in AMPT

switch the py values of a 

fraction of each set
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Gamma correlator & its Response
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 The magnitudes of the scaled correlators for p+Pb and 

Pb+Pb are not expected to be the same

 “Reduced” magnetic field strength for p+Pb?

 Large dispersion of the B-field about Ψ2 in p+Pb

Recent CMS  measurements for p+Pb and  Pb+Pb

at the LHC  gives cause for pause!

Gamma correlator status quo & measurements

Pb+Pb

B
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B and Ψ2 correlated

B and Ψ2 ~ uncorrelated

plane

p+Pb
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Why a new correlator?
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To have better control over signal and  background

CME-driven + Background-driven 

charge separation

Background-driven 

charge separation

only

Measure separately;

 CME-driven + Background-driven 

charge separation

 Background-driven 

charge separation

Then compare them

Correlator essentials

B and Ψ2 ~ uncorrelated

plane

p+Pb

Leverage Small systems

 Measurement insensitive

to B-field  “no signal”

 Excellent bench mark 

 Ψ3 measurements insensitive 

to B-field, but sensitive to background

 Compare with Ψ2 measurements

B and Ψ3 ~ uncorrelated

𝐋𝐞𝐯𝐞𝐫𝐚𝐠𝐞 𝚿𝟑𝐦𝐞𝐚𝐬𝐮𝐫𝐞𝐦𝐞𝐧𝐭𝐬

Ψ3
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The “New” Correlator
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The correlator is constructed for each event plane 
m

via a ratio of two correlation functions
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quantifies charge separation 

along the B-field
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( )
m

C S

 

quantifies charge separation

perpendicular to the B-field

(measures only background)

3
( )C S 

3
( )C S

 and are both insensitive to CME-driven charge separation

Note

(they measure only background)

N. Magdy et al. 

arXiv: 1710.01717

The correlator measures the magnitude of charge separation parallel to 

the B-field, relative to that for charge separation perpendicular to the B-field

( )
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The “New” Correlator – Correlation Functions
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Shuffled ( )N S

is obtained from the same 

events, following random 

reassignment (shuffling) of 

only the charge of each 

particle in an event

is the distribution over events, 

of the event-by-event 

averaged ΔS

real ( )N S

Correlation functions are constructed from the ratio of two distributions

real ( )     N S carries charge separation response

Shuffled ( )   “ ” N S carries the null response

contributions from CME-driven charge 

separation, vanish for this 

correlation function

N. Magdy et al. 

arXiv: 1710.01717

measures charge separationS
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The “New” Correlator & Correlation Functions
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Correlation functions are constructed 

from Gaussian shaped distributions
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New Correlator Response
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Correlator response investigated with several models

 Toy Models

 AMPT (background only)

 AVFD  (background + signal)

Representative examples follow
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Correlator Response – background models
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 Validation of the expected similarity between the patterns 

for              and              for background-driven charge separation
2
( )R S 

3
( )R S 

 A discernible difference in the response for signal and background

(             and             )  is  a crucial and necessary requirement for 

unambiguous identification and characterization of CME-driven 

charge separation.

2
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3
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N. Magdy et al. 

arXiv: 1710.01717

Resonance contributions

suppressed 
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Correlator Response – background models
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N. Magdy et al. 

arXiv: 1710.01717

 Validation of the expected similarity between the patterns 

for              and              for background-driven charge separation
2
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 A discernible difference in the response for signal and background

(             and             )  is  a crucial and necessary requirement for 

unambiguous identification and characterization of CME-driven 

charge separation.
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a1=0.0%
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New Correlator Response – Signal + background

( )
( ) ,  m = 2, 3

( )

m

m

m

C S
R S

C S



 




 



 Validation of the expected concave-shaped 

response of              to CME-driven 

charge separation input in AVFD events.
2
( )R S 

N. Magdy et al. 

arXiv: 1710.01717

Signal magnitude reflected in the 

widths of the distributions

 Smaller widths for larger input signal

Concaved-shape distribution

for input charge separation
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Signal Quantification

Charge separation magnitude is reflected in the widths (𝝈) of the 

correlator distributions

The widths are also 

influenced by;

 Number fluctuations

 Event plane resolution

Both can be accounted for, 

via appropriate scaling

 Number fluctuations

 Event plane resolution

N. Magdy et al. this workshop
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B
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Ψ𝐵 and Ψ2 correlated

Ψ𝐵 and Ψ3 correlated

plane
Ψ𝐵 and Ψ2 & Ψ3
~ uncorrelated

p+Au

 We leverage the characteristic 𝐬, centrality and system dependence 

to identify and characterize CME-driven charge separation 

1
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Signal Identification & Characterization
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But need chiral 
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between              and
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N. Magdy et al. 

arXiv: 1803.02416
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New Correlator Response
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 Validation of the expected centrality dependence of 

to CME-driven charge separation input in AVFD events.
2
( )R S 

N. Magdy et al. 

arXiv: 1710.01717



17Roy A.  Lacey, Stony Brook University, Oct. 24, 2017

 In contrast, an essentially flat 

distribution for p(d)+Au
 A decidedly “concave-

shaped” distribution for 

peripheral Au+Au collisions

 Consistent with a CME-driven 

charge separation contribution 

in these collisions

Au+Au
B

Ψ2 plane

Ψ𝐵 and Ψ2 correlated

1 5

cha B
r

 Validates the 

 “reduced magnetic field 

strength” 

 random B-field orientations

in these collisions

STAR Preliminary

plane

Ψ𝐵 and Ψ2 ~ uncorrelated

New Correlator Response – Data teaser

𝑹𝜳𝒎
(∆S) measurements are consistent with the expectations 

for CME-driven charge separation
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New Correlator Response

 Validation of the expected 

isobaric dependence of             to 

CME-driven charge separation 

input in AVFD events.

2
( )R S 

AVFD predictions for the Ru+Ru and Zr+Zr

isobaric systems

Isobaric ratios of the correlation function 

can be used to characterize both signal 

and background – crucial for isobar run!

B-field difference

But similar background

for isobars
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Summary

 New charge-sensitive            correlators have been developed to identify and 

characterize CME-driven charge separation

( )
m

R S 

 This correlator suppresses, as well as measures the well known background 

contributions to the CME-driven charge separation signal

 Validation tests, performed with several models, indicate that the correlators can 

give;

 discernible responses for background- and CME-driven charge separation 

which allows unambiguous identification and characterization of the CME

 Crucial information to characterize both signal and background in the isobar 

data

 The experimentally measured correlators (to date) suggests the 

presence of a CME-driven charge separation in Au+Au collisions.
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End
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Chiral Magnetic Effect

The Chiral Magnetic Effect (CME) results from anomalous chiral transport of the 

chiral fermions in the QGP, leading to the generation of an electric current  

along the  magnetic field generated in the collision:

 Leads to charge separation about the event plane
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Charge separation leads to a dipole term in the azimuthal 

distribution of the produced charged hadrons:

Electric

Current
Chiral Magnetic

Conductivity

Chiral Chemical

potential

Objective: identify & characterize this “dipole moment”
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Jiang et al., arXiv:1611.04586
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https://arxiv.org/abs/1611.04586
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CME correlator status quo

Several measurements performed at RHIC and the LHC with the so-called 

Gamma Correlator;
Second order event plane

𝚿𝐁

𝚿𝐁 =𝚿𝑹𝑷
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Local charge conservation is an especially important background 

 Background-driven correlations can account for a part, 

or all of the observed charge separation signal?

Gamma correlator status quo & measurements


