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Introduction and motivations
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Chiral magnetic and vortical effects

» Chiral fermions + = chiral magnetic effect (CME)
(Kharzeev, Mclerran, Warringa, Fukushima 2008; Son, Zhitnitsky 2004; - - -):
Jn=—ppB, Jy=——p,B
R = T SHMR L= L
42 RS 42t
» Chiral fermions + = chiral vortical effect (CVE)
(Erdmenger etal 2008; Barnerjee etal 2008, Son, Surowka 2009; Landsteiner etal 2011):
- 1 T° - 1 T°
Jrp= —phb+ —@, Jp=——spii - —&
42 e T 472 1o

» Phenomenology: Heavy-ion collisions, Weyl/Dirac semi-metals,
optically active materials, supernova, cold atoms, - - -.

Weyl semimetal Dirac semimetal
(non-degenerated bands) - (doubly degeneratedbands)
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Coriolis force and CVE

» CVE is less understood than CME.
» CVE due to Coriolis force: The “lowest Landau level” problem

—— ()
In magnetic field, Lorentz force: In rotating frame, Coriolis force:
F=e(x X B) F = 2¢e(x X w) + 0(@?)

Larmor theorem: eB~2&w

» This suggests the following replacement B — 260 (Stephanov, Yin 2012)

- By == - o By = -
Jeme = (27T)3€B(QB'27)f = Jove = WQEW(QB'ﬁ)f

where Qg is the Berry curvature. This (4 antiparticle) indeed gives
expected result.

» Can such a replacement be derived in chiral kinetic theory?
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Rotating frame vs. rotating fluid

CVE due to flow vorticity in inertial frame.(Son, Surowka 2009; Gao, Pu,

Wang, Wang 2012; Chen, Stephanov, Son, Yin 2014)
Is rotating frame equivalent to flow vorticity in generating CVE?

2
| Path relative to

1 - (B)’/(he merry-go-round
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Helpful if we formulate a chiral kinetic theory allowing both
rotating-frame effect and flow vorticity

Mysterious T2 term in CVE. Is it due to gravitational anomaly?

A kinetic theory in curved spacetime would be helpful.
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Chiral kinetic theory in electromagnetic (EM)
field

» The kinetic description of chiral fermions
Son, Yamamoto 2012;
Stephanov, Yin 2012;
Gao, Liang, Pu, Wang, Wang 2012; Chen, Pu, Wang, Wang 2013
Hidaka, Pu, Yang 2016;
Muller, Venogopalan 2017;
Huang, Shi, Jiang, Liao, Zhuang 2018;

» Based on adiabatic expansion or & expansion.
» Chiral anomaly is encoded.
» Valid for weak magnetic field.

» Friendly in application. Quark-gluon plasma, Weyl/Dirac
semimetals, electroweak gases, - - -
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Semiclassical equations of motion
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Heisenberg equation of motion

Consider a Weyl fermion in a rotating frame:

where p'= —ihV.

h
H=§6—-@- (:Exﬁ+25>

The Heisenberg equations:

z

P

Q-

The EOM of for spin can be solved order by order in h:

F=p+

1
= Sl H =G+ T xS,
- e =pxo
- Z’h ) 7p K

1 2

1 r-~ ~ ~ X
ho [P % (0% @) —p'x p| + O(h?)

with = 5/|p]. (We only show the particle branch.)
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Semiclassical equation of motion

Substitute this solution to the first two EOMs:

: . e
T = ﬁ—l—j’x&)’:?—i—ﬁpXQB,
:, 5% Oe

= w=——
po=" ot

where (5 = ﬁ/(2p ) is the Berry curvature and the single-particle

energy e =p — @ - (gcxﬁ)—§w p.
The Coriolis force and centrifugal force:

I=-20X7—& x (Jx7)

Surprisingly the EOMs do not have & order correction. But the
single-particle energy does.
This suggests a kinetic equation up to O(h):

Of + 7 -Vaof +7-Vof =Clf]

with phase space measure 1.
Similar procedure for EM field case gives the CKT in EM field as

derived before. (Son, Yamamoto 2012, Hidaka, Pu, Yang 2017, Huang, Shi, Jiang,

Liao, Zhuang 2018)
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The dynamics of Wigner function
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Wigner operator in curved spacetime

» Instead of Weyl fermions, we consider massless Dirac fermions so
that the formalism can be potentially extended to massive case.
» Our Wigner operator is:

Was(ep) = [ diyl-go)l e [a)er DP2] [ Py(a)]

[e3

» The position of the spacetime manifold is z*, the position in the
tangent space of x is y", p, is in the cotangent space of x. The
whole phase space is the cotangent bundle.

» The derivative D, in the tangent bundle is lifted from the usual
covariant derivative V, in the spacetime manifold:

0

A v
DU = VH —F‘_“,y w

» The derivative D,, in the cotangent bundle is lifted from the usual

covariant derivative V, in the spacetime manifold:

A 0
DH = VH + FquATm
» The advantage of using D, y” and p, are parallelly transported:

Duy” =0= Dup,
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Wigner function and its dynamics
» Wigner function:

W (z,p) = (W(z,p))

» Consider noninteracting fermions. Dirac equations:

ihy - V() = il (x %7—0
» Multiply D,, to Wigner function and apply Dirac equations:

h N 1
o (l Dy, +pu) W(z,p) = —iy"hH, (w,—gihap) ® W(z,p)
%7“ {Gu <m7 *%ihap> ’W(xvp)]
®

» The tensor product is understood similarly as how we define W.

+

» This equation is exact.

» The operators & and HOo n
1
H#(mvy) = ZE[yD77[yD7DH]]7
n=1
. b 1
Gu(x’y) = Z(n+1)|[y'D7"'>[y'DaDu]"']
n=1 '
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h expansion
» Up to O(h?) order, here A, = D,, — F;;50y:

u ih B, Mo, IR abor , I 58
Y p# + EA# — gR U,\prapap + ?R,\Wba 8p =+ ﬁ ((%Fﬁu) ap (9p W(x,p)

ihQ n ab aX
= 377 Rkuab[a 76pw(x7p)]

» Dirac decomposition:
W (z,p) = i F+ P+ 9"V + "y A + %U”USW,:|
» Focus on V, and A, or equivalently R, /L, = (1/2)(V, £ A,):
p R" = O(h?),
PR + ge“”aﬁAﬂRy =0(1?),
A RF:— Zewﬁnga;R,, = O(h?)

» L, satisfies same equations but with opposite sign for & coefficients.

» The first two equations fix R, up to a scalar function (distribution
function).

» The third equation is kinetic equation for distribution function.
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The kinetic equation

» The solutions to the first two equations:

h
Ry = pufo(p®) + hE,p” 8 (p° )+ newpgn p” AP f8(p%) + O(h?)
» n' is a frame choosing vector.
» f=fo+ fi + O(h?) is the distribution function.
» The kinetic equation for f:
2 _ h = a f heMPVG'n p n B P
5(p p—.nGaﬁp n ){p A+ 72@.”) [D (p-n)—G nA] A

Mo [ (D) AP — g (DG L f = O()

+2p~n

where

Ay =0, + T upa0y =GR, Guy=Fu — ZeﬂAaﬁRVW

» This equation is invariant under general coordinate transformation.

» In Minkowski spacetime, I'*,,, =0 = R,**?, it reduces to the
kinetic equation in electromagnetic field. (Huang, Shi, Jiang, Liao, Zhuang
2018)

» Let us focus on case of F),, = 0. We consider the rotating frame.
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Rotating frame

» An inertial frame with a Minkowski coordinate:
ds? = dt* — di*
» A frame rotating with constant & w.r.t. the above inertial frame:
ds® = [1 — (& x ©)?)dt* — 2(& x F) - dEdt — d?
» Some key quantities for rotating frame:
» Metric:
goo =1— (@ xE)?, goi=gio=—(FxD), gi=—0;
» Inverse metric:
g0 =1 ¢”=¢"=-@xD", ¢g7=-0"4(@xD)(@xT)
» Nonzero components of Christoffel connection:
[oo = [@ x (@& x D)]°, T'o; =Tjo = —€7 "

» Nonzero components of spin connection:
c
To=—i--@
2

» Riemannian curvature:
R'uyag =0
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O(h°)-order kinetic equation

The classical kinetic equation:
5(p*)p Dy fo =0

Integrating out “energy”, we can write it in 3-dimensional form.
Energy is associated with timelike Killing vectors:
k1 = 850y = Qo: time translation for a co-rotating observer
K2 = 0o — (& x &)"0; for |& x &| < 1:time translation for inertial observer
Killing vector k1 = ¢, = po = |p] — (J x &) - P for particle, where

p'=—(p1,p2,p3).
Kinetic equation in 3-dimensional form:

[00+7,- Vot 53V, ] fo(t,7,) =0

where @, = e, /0 = — & X &
Single-particle equations of motion:

fzﬁ—&xf:%

op”’
F=pxa=-02
ox

which is textbook result.
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O(h)-order kinetic equation

The kinetic equation up to O(h):
5(p*) D, (0" + hs*'D,) f =0

where s, = —(1/2p - n)€upenp? is spin.
The current:
Ti = / X 5(p*) (P + ks D) f
f (2m)* Y
where the second term represents the side-jump. (Chen etal 2014)

Consider equilibrium state. f = f(g) with g a linear combination of
collisional conserved quantities.
At O(hP) order; classical:
» Conserved quantities are particle number, momenta; angular
momentum automatically conserved:

g = ao(x) + By (z)pu
» Substitute to kinetic equation:
Viao =0, VuBy + Vuf = ¢o(a)gun

» The functional form of f(g) needs classical collision term to fix.
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O(h)-order kinetic equation
» Up to O(h) order:

» Spin should be included in angular momentum:
g9 = a(z) + 8" (@)pu + " (2)spw
a=ao+o1+O(h?), B"=p+p +0(h), " =0(h
» Substitute to kinetic equation, the h-order quantities:
Va1 =0, Vb +Vifbiu = ¢1(x)gu
=By, Y = v[/}.ﬁOl/]a VHV[VBOA] =0

» Consider the co-rotating observer with a co-rotating fluid:
» Killing vector and frame-choosing vector:

kY =8, nt =68
» Integrate out the energy p - k1:
Of +&-Vaof +1- *,,f:o
f= 0P = (@ x &) -5~ hd - p/2)

This coincides our warm-up calculation.
» The CVE current:

Jr = /(;3; (p+h|ﬁ|QB><V)f
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O(h)-order kinetic equation
» Up to O(h) order:

» Spin should be included in angular momentum:
g9 = a(z) + " (@)pu + " () s
a=ay+ar+0R?), B*=pL+8+0(h?), v =0(h)
» Substitute to kinetic equation, the fi-order quantities:
Vual = 07 nglu + Vuﬂlu = ¢1 ($)guu
n = ﬁ(l)La Yuv = v[;1.601/]7 vuv[uﬂo)\] =0

» Consider the co-rotating observer with an inertial fluid:
» Killing vector and frame-choosing vector:

n‘l‘:éé‘,n“:g“o
» Integrate out the energy p - k1:
00+, Vot 5x@-¥,| =0
f=71(pl = (& x ) -p)
» There is no CVE.
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Summary and outlook

We derive generally covariant chiral kinetic theory up to O(%) order

We discuss some aspects of CVE. The CVE appears when the fluid
is rotating in inertial frame. A rotating frame itself does not
generate CVE; CVE is due to rotating of the fluid.

Derive gravitational anomaly relation. To reveal the relation between
the T2 term in CVE and gravitational anomaly.

h correction to the collision term. Its influence to the CVE current.

The interplay between electromagnetic field and inertial or
gravitational effects

Spin dynamics.

Thank youl!
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