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Introduction and motivations
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Chiral magnetic and vortical effects

Chiral fermions + magnetic field ⇒ chiral magnetic effect (CME)
(Kharzeev, Mclerran, Warringa, Fukushima 2008; Son, Zhitnitsky 2004; · · · ):

~JR =
1

4π2
µR ~B, ~JL = − 1

4π2
µL ~B

Chiral fermions + fluid vorticity ⇒ chiral vortical effect (CVE)
(Erdmenger etal 2008; Barnerjee etal 2008, Son, Surowka 2009; Landsteiner etal 2011):

~JR =
1

4π2
µ2
R~ω +

T 2

12
~ω, ~JL = − 1

4π2
µ2
L~ω −

T 2

12
~ω

Phenomenology: Heavy-ion collisions, Weyl/Dirac semi-metals,
optically active materials, supernova, cold atoms, · · · .
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Coriolis force and CVE
CVE is less understood than CME.

CVE due to Coriolis force: The “lowest Landau level” problem

This suggests the following replacement ~B → 2ε~ω:(Stephanov, Yin 2012)

~JCME =

∫
d3~p

(2π)3
e ~B(~ΩB · ~̂p)f ⇒ ~JCVE =

∫
d3~p

(2π)3
2ε~ω(~ΩB · ~̂p)f

where ΩB is the Berry curvature. This (+ antiparticle) indeed gives
expected result.

Can such a replacement be derived in chiral kinetic theory?
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Rotating frame vs. rotating fluid

CVE due to flow vorticity in inertial frame.(Son, Surowka 2009; Gao, Pu,

Wang, Wang 2012; Chen, Stephanov, Son, Yin 2014)

Is rotating frame equivalent to flow vorticity in generating CVE?

Helpful if we formulate a chiral kinetic theory allowing both
rotating-frame effect and flow vorticity

Mysterious T 2 term in CVE. Is it due to gravitational anomaly?

A kinetic theory in curved spacetime would be helpful.
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Chiral kinetic theory in electromagnetic (EM)
field

The kinetic description of chiral fermions
Son, Yamamoto 2012;
Stephanov, Yin 2012;
Gao, Liang, Pu, Wang, Wang 2012; Chen, Pu, Wang, Wang 2013
Hidaka, Pu, Yang 2016;
Muller, Venogopalan 2017;
Huang, Shi, Jiang, Liao, Zhuang 2018;

· · · · · ·

Based on adiabatic expansion or ~ expansion.

Chiral anomaly is encoded.

Valid for weak magnetic field.

Friendly in application. Quark-gluon plasma, Weyl/Dirac
semimetals, electroweak gases, · · ·
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Semiclassical equations of motion
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Heisenberg equation of motion

Consider a Weyl fermion in a rotating frame:

H = ~p · ~σ − ~ω ·
(
~x× ~p+

~
2
~σ

)
where ~p = −i~~∇.

The Heisenberg equations:

~̇x =
1

i~
[~x,H] = ~σ + ~x× ~ω,

~̇p =
1

i~
[~p,H] = ~p× ~ω,

~̇σ =
1

i~
[~σ,H] =

2

~
~p× ~σ − ~ω × ~σ

The EOM of for spin can be solved order by order in ~:

~σ = ~̂p+ ~
1

2p

[
~̂p× (~̂p× ~ω)− ~̂p× ˙̂

~p
]

+O(~2)

with ~̂p = ~p/|~p|. (We only show the particle branch.)
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Semiclassical equation of motion

Substitute this solution to the first two EOMs:

~̇x = ~̂p+ ~x× ~ω =
∂ε

∂~p
+ ~~p× ~ΩB ,

~̇p = ~p× ~ω = − ∂ε
∂~x

where ~ΩB = ~̂p/(2p2) is the Berry curvature and the single-particle

energy ε = p− ~ω · (~x× ~p)− ~
2~ω · ~̂p.

The Coriolis force and centrifugal force:

~̈x = −2~ω × ~̇x− ~ω × (~ω × ~x)

Surprisingly the EOMs do not have ~ order correction. But the
single-particle energy does.
This suggests a kinetic equation up to O(~):

∂tf + ~̇x · ~∇xf + ~̇p · ~∇pf = C[f ]

with phase space measure 1.
Similar procedure for EM field case gives the CKT in EM field as
derived before. (Son, Yamamoto 2012, Hidaka, Pu, Yang 2017, Huang, Shi, Jiang,

Liao, Zhuang 2018)
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The dynamics of Wigner function
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Wigner operator in curved spacetime

Instead of Weyl fermions, we consider massless Dirac fermions so
that the formalism can be potentially extended to massive case.
Our Wigner operator is:

Ŵαβ(x, p) =

∫
d4y[−g(x)]1/2e−ip·y/~

[
ψ̄(x)ey·

←−
D/2

]
β

[
e−y·D/2ψ(x)

]
α

The position of the spacetime manifold is xµ, the position in the
tangent space of x is yµ, pµ is in the cotangent space of x. The
whole phase space is the cotangent bundle.
The derivative Dµ in the tangent bundle is lifted from the usual
covariant derivative ∇µ in the spacetime manifold:

Dµ = ∇µ − Γλµνy
ν ∂

∂yλ

The derivative Dµ in the cotangent bundle is lifted from the usual
covariant derivative ∇µ in the spacetime manifold:

Dµ = ∇µ + Γλµνpλ
∂

∂pν

The advantage of using Dµ, yν and pν are parallelly transported:

Dµy
ν = 0 = Dµpν
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Wigner function and its dynamics

Wigner function:

W (x, p) = 〈Ŵ (x, p)〉
Consider noninteracting fermions. Dirac equations:

i~γ · ∇ψ(x) = i~ψ̄(x)
←−
∇ · γ = 0

Multiply Dµ to Wigner function and apply Dirac equations:

γµ
(
i~
2
Dµ + pµ

)
W (x, p) = −iγµ~Ĥµ

(
x,−1

2
i~∂p

)
⊗W (x, p)

+
i~
2
γµ
[
Ĝµ

(
x,−1

2
i~∂p

)
,W (x, p)

]
⊗

This equation is exact.
The tensor product is understood similarly as how we define Ŵ .
The operators Ĝ and Ĥ:

Ĥµ(x, y) =

∞∑
n=1

1

n!

n︷ ︸︸ ︷
[y ·D, · · · , [y ·D,Dµ] · · · ],

Ĝµ(x, y) =

∞∑
n=1

1

(n+ 1)!
[y ·D, · · · , [y ·D︸ ︷︷ ︸

n

, Dµ] · · · ]
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~ expansion
Up to O(~2) order, here ∆µ = Dµ − Fµλ∂λp :

γµ
[
pµ +

i~
2

∆µ −
~2

8
Rρσλµpρ∂

λ
p ∂

σ
p +

i~2

8
Rλµabσ

ab∂λp +
~2

12
(∂αFβµ) ∂αp ∂

β
p

]
W (x, p)

=
i~2

32
γµRλµab[σ

ab, ∂λpW (x, p)]

Dirac decomposition:

W (x, p) =
1

4

[
F + iγ5P + γµVµ + γ5γµAµ +

1

2
σµνSµν

]
Focus on Vµ and Aµ or equivalently Rµ/Lµ = (1/2)(Vµ ±Aµ):

pµRµ = O(~2),

p[αRβ] +
~
4
εµναβ∆µRν = O(~2),

∆µRµ −
~
4
εµναβRλµαβ∂

λ
pRν = O(~2)

Lµ satisfies same equations but with opposite sign for ~ coefficients.
The first two equations fix Rµ up to a scalar function (distribution
function).
The third equation is kinetic equation for distribution function.
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The kinetic equation

The solutions to the first two equations:

Rµ = pµfδ(p
2) + ~F̃µνpνfδ′(p2) +

~
2p · nεµνρσn

νpσ∆ρfδ(p2) +O(~2)

nµ is a frame choosing vector.

f = f0 + f1 +O(~2) is the distribution function.

The kinetic equation for f :

δ
(
p2 − ~

p · nG̃αβp
αnβ

){
p ·∆ +

~εµρνσnνpσ

2(p · n)2

[
Dµ(p · n)−Gµλnλ

]
∆ρ

+
~εµνρσ
2p · n

[
pσ(Dµnν)∆ρ − pσnν(DµGρλ)∂pλ

]}
f = O(~2)

where

∆µ = ∂µ + Γλµνpλ∂
ν
p −Gρλ∂

p
λ, Gµν = Fµν −

~
4
εµλαβRν

λαβ

This equation is invariant under general coordinate transformation.
In Minkowski spacetime, Γλµν = 0 = Rν

λαβ , it reduces to the
kinetic equation in electromagnetic field. (Huang, Shi, Jiang, Liao, Zhuang

2018)

Let us focus on case of Fµν = 0. We consider the rotating frame.
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Rotating frame

An inertial frame with a Minkowski coordinate:

ds2 = dt2 − d~x2

A frame rotating with constant ~ω w.r.t. the above inertial frame:

ds2 = [1− (~ω × ~x)2]dt2 − 2(~ω × ~x) · d~xdt− d~x2

Some key quantities for rotating frame:
Metric:

g00 = 1− (~ω × ~x)2, g0i = gi0 = −(~ω × ~x)i, gij = −δij
Inverse metric:

g00 = 1, g0i = gi0 = −(~ω × ~x)i, gij = −δij + (~ω × ~x)i(~ω × ~x)j

Nonzero components of Christoffel connection:

Γi00 = [~ω × (~ω × ~x)]i, Γi0j = Γij0 = −εijkωk

Nonzero components of spin connection:

Γ0 = −i~σ
2
· ~ω

Riemannian curvature:
Rµναβ = 0
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O(~0)-order kinetic equation

The classical kinetic equation:

δ(p2)pµDµf0 = 0

Integrating out “energy”, we can write it in 3-dimensional form.

Energy is associated with timelike Killing vectors:
κ1 = δµ0 ∂µ = ∂0: time translation for a co-rotating observer

κ2 = ∂0 − (~ω × ~x)i∂i for |~ω × ~x| < 1:time translation for inertial observer

Killing vector κ1 ⇒ εp = p0 = |~p| − (~ω × ~x) · ~p for particle, where
~p = −(p1, p2, p3).

Kinetic equation in 3-dimensional form:[
∂0 + ~vp · ~∇x + ~p× ~ω · ~∇p

]
f0(t, ~x, ~p) = 0

where ~vp = ∂εp/∂~p = ~̂p− ~ω × ~x
Single-particle equations of motion:

~̇x = ~̂p− ~ω × ~x =
∂εp
∂~p

,

~̇p = ~p× ~ω = −∂εp
∂~xwhich is textbook result.
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O(~)-order kinetic equation

The kinetic equation up to O(~):

δ(p2)Dµ (pµ + ~sµνDν) f = 0

where sµν = −(1/2p · n)εµνρσn
ρpσ is spin.

The current:

JµR =

∫
d4p

(2π)4
δ(p2) (pµ + ~sµνDν) f

where the second term represents the side-jump. (Chen etal 2014)

Consider equilibrium state. f = f(g) with g a linear combination of
collisional conserved quantities.
At O(~0) order; classical:

Conserved quantities are particle number, momenta; angular
momentum automatically conserved:

g = α0(x) + βµ0 (x)pµ

Substitute to kinetic equation:

∇µα0 = 0, ∇µβ0
ν +∇νβ0

µ = φ0(x)gµν

The functional form of f(g) needs classical collision term to fix.
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O(~)-order kinetic equation

Up to O(~) order:
Spin should be included in angular momentum:

g = α(x) + βµ(x)pµ + γµν(x)sµν

α = α0 + α1 +O(~2), βµ = βµ0 + βµ1 +O(~2), γµν = O(~)

Substitute to kinetic equation, the ~-order quantities:

∇µα1 = 0, ∇µβ1ν +∇νβ1µ = φ1(x)gµν

nµ = βµ0 , γµν = ∇[µβ0ν], ∇µ∇[νβ0λ] = 0

Consider the co-rotating observer with a co-rotating fluid:
Killing vector and frame-choosing vector:

κµ1 = δµ0 , n
µ = δµ0

Integrate out the energy p · κ1:

∂tf + ~̇x · ~∇xf + ~̇p · ~∇pf = 0

f = f(|~p| − (~ω × ~x) · ~p− ~~ω · ~̂p/2)

This coincides our warm-up calculation.
The CVE current:

~JR =

∫
d3~p

(2π)3

(
~̂p+ ~|~p|~ΩB × ~∇x

)
f
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O(~)-order kinetic equation

Up to O(~) order:
Spin should be included in angular momentum:

g = α(x) + βµ(x)pµ + γµν(x)sµν

α = α0 + α1 +O(~2), βµ = βµ0 + βµ1 +O(~2), γµν = O(~)

Substitute to kinetic equation, the ~-order quantities:

∇µα1 = 0, ∇µβ1ν +∇νβ1µ = φ1(x)gµν

nµ = βµ0 , γµν = ∇[µβ0ν], ∇µ∇[νβ0λ] = 0

Consider the co-rotating observer with an inertial fluid:
Killing vector and frame-choosing vector:

κµ1 = δµ0 , n
µ = gµ0

Integrate out the energy p · κ1:[
∂0 + ~vp · ~∇x + ~p× ~ω · ~∇p

]
f = 0

f = f(|~p| − (~ω × ~x) · ~p)

There is no CVE.
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Summary and outlook

We derive generally covariant chiral kinetic theory up to O(~) order

We discuss some aspects of CVE. The CVE appears when the fluid
is rotating in inertial frame. A rotating frame itself does not
generate CVE; CVE is due to rotating of the fluid.

Derive gravitational anomaly relation. To reveal the relation between
the T 2 term in CVE and gravitational anomaly.

~ correction to the collision term. Its influence to the CVE current.

The interplay between electromagnetic field and inertial or
gravitational effects

Spin dynamics.

Thank you!
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