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Axial charge production in Glasma

The space-time distribution of axial charges is indispensable for the understanding of CME.

Possible axial charge production mechanisms:

* Quark production in Glasma

* Sphaleron transition in QGP/Glasma  Moore, Tassler (2011)
Mace, Schlichting, Venugopalan (2016)

N @w@-w

Glasma Color glass condensate Glasma
E; | B7Y E] || B}
FF #£0

1/12



The space-time distribution of axial charges is indispensable for the understanding of CME.

Possible axial charge production mechanisms:

* Quark production in Glasma

* Sphaleron transition in QGP/Glasma  Moore, Tassler (2011)
Mace, Schlichting, Venugopalan (2016)
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Challenges:
Nonequilibrium, Nonperturbative, Quantum dynamics of quarks, Expanding geometry

Real-time lattice simulations of quantum fermion fields and classical gauge fields




CGC initial conditions

Classical YM egs. coupled to large-x color sources
Dy F* = 57 8(x ) pony (1) + 60 ) piay ()
Solutionat 7 = 0" inthe FSgauge A™ =

E.(r=0",2) = —ig [a%l),a@]
B.(r=0%x) = —ige” [oz(l), J(T

)

Kovner, McLerran, Weigert (1995)

Numerical solution for 7 > 0 in the MV model

(e’ w'e’]

ut ~ Lappi, McLerran (2006)

A' = agy

pure gauge
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CGC initial conditions

Classical YM egs. coupled to large-x color sources
D, F" = 8" 6(x7)pay(@r) + 0" 6(z ") peay (1)

Solutionat 7 = 07 inthe FS gauge A =

E.(r=0",2) = —ig [a%l), o:"'ég)]
B.(r = 0",m1) = —ige” |al,), o,
with

] —afy X 4=y

pure gauge

(L) = (n)a”/(n)
Vi (L) = eXp [—igV ] P(n)}

Kovner, McLerran, Weigert (1995)

Numerical solution for 7 > 0 in the MV model We consider flux-tube-like configurations
with a Gaussian profile

initial energy density
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Quark fields

Up to the initial surface 7 = 0™, the Dirac equation
under the CGC classical gauge fields can be solved

analytlca”y' Gelis, kajantie, Lappi (2006);

Gelis, Tanji (2016)

The evolution for 7 > 0 can be described by solving
the Dirac equation for the mode functions

. i - _
(z'yoc'i, + ;'y?’DT7 +1y'D; — m) Vp wos,c(@) =0

on a real-time lattice in the expanding geometry.

To realize the chiral anomaly on the lattice, we employ the Wilson fermion extended to
the expanding geometry. Tanji, Berges (2018)
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Wilson fermion and chiral anomaly

Adler-Bell-Jackiw anomaly equation
2

0pgh = 2m(iysy) + f?Ea'Ba

m 3 = @y s |

The Wilson fermion exactly satisfies

Ot = 2mPivysy) + (Yiys W)

where WW1) is the Wilson term added to the Dirac equation to suppress doublers.

The axial anomaly is realized if arsten, Smit (1981)

2

—. . 9 a pa
(YiysWap) =~ @E -B

which has been confirmed numerically in non-expanding systems.

Tanji, Mueller, Berges (2016);
Mueller, Hebenstreit, Berges (2016);
Mace, Mueller, Schlichting, Sharma (2017)
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Anomaly equation in the expanding geometry

ABJ anomaly equation in the 7-7) coordinates

—a (7§7) + 8:ji + /f‘ ZmMzb +—E“ B®

boost-invariant background

Axial charge density per unit transverse are and unit rapidity

d N5
d2:l?J_d’r]

= 775 (2)

T 2 T
:—/ 7' 03 j dT'—I—%/ T E*-B®dr’
0 ™ Jo
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Anomaly equation in the expanding geometry

ABJ anomaly equation in the 7-7) coordinates

—a (7§7) + 8:ji + /ﬂ" 2mM¢ +—E“ B®

boost-invariant background

Axial charge density per unit transverse are and unit rapidity

N )
= T
d2.’L'J_dT] . T 2 T
:_/ / f(,j5d7— _|_ g TIECL_BadT/
0

472
| diffusion source term |

* In a uniform system or at very early times, the diffusion term is negligible. Then the axial
charge density can be computed solely from the gauge fields. Lappi, Schlichting (2017)
* Otherwise, one needs to solve the Dirac equation.
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Uniform Glasma

Take the limit of the flux tube width — o

() : typical energy scale of the Glasma
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* Similar behavior to that with the MV initial condition.
* In this uniform system, the decay of the fields is a purely nonlinear effect.
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Uniform Glasma

m/Q = 0.01
Verification of the anomaly relation Ny = Ny =48, N, =512
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dN5 9 1 excess of right-quarks over left-quarks per flavor in a box with
" d?xydn /Q7 =004 =: 1fmA2 transverse area and one unit of rapidity.

For Q@ =1 GeV
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Glasma flux tubes

The profile of flux tubes in the transverse plane

* Two flux tubes to satisfy the periodic b.c.
* Distorted Gaussian to have both E and B.
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Glasma flux tubes

The profile of flux tubes in the transverse plane
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Glasma flux tubes

The profile of flux tubes in the transverse plane
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Glasma flux tubes

The profile of flux tubes in the transverse plane
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Glasma flux tubes

The profile of flux tubes in the transverse plane
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Glasma flux tubes
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Glasma flux tubes

Verification of the space-averaged anomaly relation
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Glasma flux tubes

Verification of the space-averaged anomaly relation
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The monotonic increase corresponds
to the decaying E-B ~ 1/7.
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Glasma flux tubes

Local anomaly budget
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For Q7 21 the diffusion term takes some fraction of the anomaly budget.
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» The axial charge production in the longitudinally expanding geometry can
be described by the real-time lattice simulations with the Wilson fermion.

» The classical gauge fields having nonzero E- B exhibit nontrivial behaviors.

» Because the axial charge density is related with the time integral of £-B,
it depends on the time history and it can remain even after E- B dies out.

» In inhomogeneous gauge fields, we need solving the Dirac equation to
properly compute the axial charge production including its diffusion
dynamics.

e Real-time simulations of CME in the expanding system
by applying a U(1) magnetic field.

 More realistic configurations?



