On the Universality of the Chern-Simons Diffusion Rate

Aldo L. Cotrone

Florence University

QCD Chirality Workshop, March 21, 2018

Work in collaboration with Francesco Bigazzi (INFN, Florence) and Flavio Porri (Florence University) arXiv:1803.nnnnn

The Chern-Simons diffusion rate

Definition:

$$Q(x) = \frac{1}{32\pi^2} \text{Tr} F \tilde{F}$$

Change in the Chern-Simons number

$$\Delta N_{CS} = \int d^4x \, Q(x)$$

Chern-Simons diffusion rate

$$\Gamma_{CS} = \frac{\langle (\Delta N_{CS})^2 \rangle}{Vt} = \int d^4x \langle Q(x)Q(0) \rangle$$
 $V = \text{volume}, \quad t = \text{time}$

Note: Minkowski correlator, real time physics, no reliable computational methods.

The Chern-Simons diffusion rate

On a state with temperature T (e.g. Quark-Gluon Plasma):

- Γ_{CS} relevant for Chiral Magnetic Effect [Fukushima-Kharzeev-Warringa 2008].
- Kubo formula:

$$\Gamma_{CS} = -\lim_{\omega \to 0} \frac{2T}{\omega} \operatorname{Im} G_R(\omega, \vec{k} = 0)$$

Thus: compute retarded correlator $G_R(\omega, \vec{k} = 0)$.

Effective theory result [Moore-Tassler 2010]:

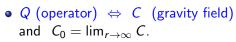
$$\Gamma_{CS} \sim c \cdot \lambda^5 \log \frac{1}{\lambda} \cdot T^4$$

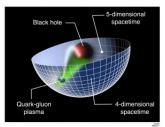
$$\lambda = g_{YM}^2 N_c$$
 't Hooft coupling

Note: c is non-perturbative; result valid at $\alpha_s \ll 1$.

Holography in one slide

$$\langle e^{-\int C_0 Q}
angle_{FT} = e^{-S_{gravity}(C_0)}$$
[Maldacena, Witten, Gubser-Klebanov-Polyakov 1997]





- C_0 determines C via equations of motion.
- Plug the solution in gravity action: $S_{gravity}(C_0)$.
- Perform functional derivatives w.r.t. C_0 , getting n-point functions.
- Note: large N_c , large λ .

Apply to CS diff rate in $\mathcal{N}=4$ SYM [Son-Starinets 2002]

• Background is $BH - AdS_5 \times S^5$, generated by N_c D3-branes:

$$ds^2 = e^{2A(r)} \left[-f(r)dt^2 + \frac{dr^2}{f(r)} + d\vec{x}_3^2 \right] + \dots \qquad f(r_h) = 0$$

D3-brane action contains

$$\int d^4x \, C \, F \tilde{F}$$

 \Rightarrow gravity field dual to Q is RR-potential C.

Apply to CS diff rate in $\mathcal{N}=4$ SYM [Son-Starinets 2002]

• Action for C in 5d:

$$\int d^5x \sqrt{-g_5} \left[-\frac{1}{2} \partial_\mu C \partial^\mu C \right]$$

- Solve eq of motion for $C \Rightarrow \text{Retarded correlator } G_R$.
- Use Kubo, result

$$\Gamma_{CS} = \frac{\lambda^2}{256\pi^3} T^4 = \frac{1}{2^7 \pi^5} \left(\frac{\lambda}{N_c}\right)^2 sT$$

s =entropy density.

Comments:

- $\mathcal{N}=4$ SYM a bit different from QCD.
- Other holographic results look different, eg:
 - ullet $\mathcal{N}=4$ SYM with magnetic field B [Basar-Kharzeev 2012]:

$$\Gamma_{CS} = \Gamma_{CS}(B=0) \cdot f(B)$$

• $\mathcal{N}=4$ SYM with anisotropy *a* [Bu 2014]:

$$\Gamma_{CS} = \Gamma_{CS}(a=0) \cdot g(a)$$

Witten model of holographic Yang-Mills [Craps et al 2012]:

$$\Gamma_{CS} = \frac{1}{2\pi} \frac{\lambda^3}{3^6 \pi^2} \frac{1}{M_{KK}^2} T^6$$

- · ...
- Situation different from universal $\frac{\eta}{s}=\frac{1}{4\pi}$ [Kovtun-Son-Starinets 2004].

Comments:

- $\mathcal{N}=4$ SYM a bit different from QCD.
- Other holographic results look different, eg:
 - \bullet $\mathcal{N}=4$ SYM with magnetic field B [Basar-Kharzeev 2012]:

$$\Gamma_{CS} = \Gamma_{CS}(B=0) \cdot f(B) = \frac{1}{2^7 \pi^5} \left(\frac{\lambda}{N_c}\right)^2 sT$$

• $\mathcal{N}=4$ SYM with anisotropy a [Bu 2014]:

$$\Gamma_{CS} = \Gamma_{CS}(a=0) \cdot g(a) = \frac{1}{2^7 \pi^5} \left(\frac{\lambda}{N_c}\right)^2 sT$$

• Witten model of holographic Yang-Mills [Craps et al 2012]:

$$\Gamma_{CS} = \frac{1}{2\pi} \frac{\lambda^3}{3^6 \pi^2} \frac{1}{M_{KK}^2} T^6 = \frac{1}{2^7 \pi^5} \left(\frac{\lambda}{N_c} \right)^2 sT$$

- ...
- Situation different from universal $rac{\eta}{s}=rac{1}{4\pi}$ [Kovtun-Son-Starinets 2004].

Or does it?!

All existing calculations done in "wrapped brane models".

"Wrapped brane models"

Dp-brane action

$$S = -\tau_p \int d^{p+1} x \, e^{-\phi} \sqrt{-\det(g + 2\pi\alpha' F)} + \tau_p \int \sum_{n} C_n \wedge e^{2\pi\alpha' F}$$

with

 τ_p = brane tension = charge

 ϕ = dilaton

g = metric

F = YM gauge field on the brane

 $C_n = RR$ potentials

Wrap Dp-brane on
$$(p-3)$$
-cycle Ω_{p-3} \Downarrow 4d gauge theory in IR

Expanding at low energies

$$\mathcal{L} = -\frac{1}{4g_{YM}^2} \text{Tr} F^2 - \frac{\theta_{YM}}{32\pi^2} \text{Tr} F \tilde{F}$$

with

$$\begin{array}{lcl} \displaystyle \frac{1}{g_{YM}^2} & = & \displaystyle \tau_p (2\pi\alpha')^2 \int_{\Omega_{p-3}} d^{p-3} x \, \mathrm{e}^{\frac{p-7}{4}\phi} \sqrt{\det(g_E)} \\ \\ \theta_{YM} & = & \displaystyle \tau_p (2\pi\alpha')^2 \int_{\Omega_{p-3}} C_{p-3} \end{array}$$

Thus: Gravity field dual to Q is $\int_{\Omega_{p-3}} C_{p-3} \equiv \tilde{C}$.

Action of \tilde{C} in 5d from reduction of 10d action of dC_{p-3} :

$$\frac{1}{2\kappa_5^2} \int d^5 x \sqrt{-g_5} H \left[-\frac{1}{2} \partial_\mu \tilde{C} \partial^\mu \tilde{C} \right]$$

with

$$H = \frac{g_{YM}^4}{(8\pi^2)^2}$$
$$\downarrow 1$$

Chern-Simons diffusion rate has "universal" form

$$\Gamma_{CS} = \frac{\alpha_s^2}{(2\pi)^3} sT$$

¹[Son-Starinets 2002, Gursoy-latrakis-Kiritsis-Nitti-O'Bannon 2013]

Comments:

- Checked also in $\mathcal{N}=4$ SYM with flavors and $\mathcal{N}=1$ models.
- Can calculate first $1/\lambda$ correction: Γ_{CS} decreases [Bu 20014]. Is holographic result an upper bound on Γ_{CS} ?
- Problem in extending result to other models: identification of coupling λ and gravity field dual to Q.

Inclusion of the anomaly

Anomaly

$$\partial_{\mu}J_{A}^{\mu}=-\mathbf{q}Q$$

holographically reproduced by Stuckelberg action [Klebanov et al 2002]

$$\frac{1}{2\kappa_{5}^{2}}\int d^{5}x\sqrt{-g_{5}}\left[-\frac{1}{2}\left(\partial_{\mu}C+\frac{\textbf{q}}{A}A_{\mu}\right)\left(\partial^{\mu}C+\frac{\textbf{q}}{A}A^{\mu}\right)-\frac{1}{4}F_{\mu\nu}F^{\mu\nu}\right]$$

 A^{μ} : gravity field dual to J_A^{μ} ; q: anomaly coefficient.

From dimensional reduction of main holographic models

(D3/D7, Maldacena-Nunez, Klebanov-Strassler, Witten-Sakai-Sugimoto)

Inclusion of the anomaly

Repeat holographic calculation of G_R .

Only two possible solutions:

- q = 0 (no anomaly), or
- $\bullet \ \Gamma_{CS}(q \neq 0) = 0.$

It's a general result (mild assumptions).

Inclusion of the anomaly

Why expected:

- Via anomaly $\partial_{\mu}J_{A}^{\mu}=-qQ,\ \Gamma_{CS}\sim\langle QQ\rangle\sim\langle\partial J_{A}\partial J_{A}\rangle.$
- $Q_A = \int d^3x J_A^t$ not conserved (anomaly), thus

$$\Gamma_{CS} \sim \langle \mathcal{Q}_A(t o \infty) \mathcal{Q}_A(0)
angle_R = 0$$

Decay rate Γ:

With only gapped modes

$$\langle \mathcal{Q}(t)\mathcal{Q}(0)\rangle_R\sim e^{-\Gamma t}$$

- Holography: Γ from quasi-normal modes of gravity field A^{μ} dual to J_A^{μ} on black hole spacetime.
- General expected behavior at small q from equations of motion and numerics in [Jimenez Alba-Landsteiner-Melgar 2014]:

$$\Gamma \sim q^2$$

On the Universality of the Chern-Simons Diffusion Rate

Conclusions:

- Holography seems to point towards a large coupling universality of Γ_{CS} in terms of s, T, α_s .
- Can use the result for estimates in the QGP, e.g. if
 - $\alpha_s(T_c) \sim 1/2$
 - ullet $S(T_c)\sim 10\,T_c$ [Borsanyi et al 2013, Bazavov et al 2014]

$$\Gamma_{CS}(T_c) \stackrel{\psi}{\sim} 10^{-2} T_c^4$$
.

- With anomaly $\Gamma_{CS} = 0$.
- Decay rate goes as $\Gamma \sim q^2$.

On the Universality of the Chern-Simons Diffusion Rate

Conclusions:

- Holography seems to point towards a large coupling universality of Γ_{CS} in terms of s, T, α_s .
- Can use the result for estimates in the QGP, e.g. if
 - $\alpha_s(T_c) \sim 1/2$
 - ullet $s(T_c)\sim 10\,T_c$ [Borsanyi et al 2013, Bazavov et al 2014]

$$\Gamma_{CS}(T_c) \stackrel{\Downarrow}{\sim} 10^{-2} T_c^4.$$

- With anomaly $\Gamma_{CS} = 0$.
- Decay rate goes as $\Gamma \sim q^2$.

Thank you for your time!

The Chern-Simons diffusion rate

Γ_{CS} relevant for Chiral Magnetic Effect

[Fukushima-Kharzeev-Warringa 2008]

Axial anomaly:

$$\partial_{\mu}J_{A}^{\mu}=-2Q$$

- ΔN_{CS} generates a $\Delta_{chirality} \Rightarrow \mu_A \neq 0$ (chemical potential).
- $\Delta_{\it chirality} + \vec{B} \ \Rightarrow \vec{J}^{\it em} = \sigma_{\it CME} \vec{B}, \ \sigma_{\it CME} = rac{e^2}{2\pi} \mu_{\it A}.$