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Outline

The baryonic matter in the Universe is almost invariably found in the form of plasma.
Since in astrophysics we are dealing with macroscopic scales, usually the plasma
dynamics is treated by using the magnetohydrodynamics (MHD) approximation.

In high-energy astrophysics we often employ (general) relativistic MHD, accounting for:

high-speed velocities (v → c),

extremely hot gases (cs → c/
√

3),

huge magnetic fields (cA → c),

strong gravity around compact objects (
p

GM/R → c).

Global MHD multidimensional simulations of the dynamics of such systems are already
challenging, typically non-ideal effects are neglected (though numerical viscosity and
resistivity are invariably present).

Here we present three case studies where non-ideal effects have to be considered in
the numerical modeling of relativistic plasmas:

fast reconnection models in resistive current sheets (Del Zanna et al. 2016),

mean-field dynamo in disks around Kerr black holes (Bugli et al. 2014),

covariant and 3 + 1 formalism for dynamo-chiral MHD (Del Zanna et al. in prep).
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The covariant equations for matter and fields
The equations for general relativistic hydrodynamics are those for baryon number (or
equivalently mass) conservation and energy-momentum conservation

∇µNµ = 0,

∇µTµν = 0,

supplemented by the second law of thermodynamics for the entropy current

∇µS µ ≥ 0.

In relativistic MHD Tµν is the total (matter and fields) energy-momentum tensor of the
system, and the above equations are unchanged. The electromagnetic field obeys

∇µFµν = −Iν , (∇ν Iν = 0)

∇µF?µν = 0,

where Fµν is the Faraday tensor and F?µν = 1
2 ε
µνλκFλκ its dual (c → 1, 4π → 1).

If we split the energy-momentum tensor and introduce the Lorentz force, we find

∇µTµνm = −∇µTµνf = −Iµ Fµν ,

where Tµνm and Tµνf are the matter and field contributions, the latter given by

Tµνf = FµλFνλ −
1
4 gµνFλκFλκ.
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Decomposition with uµ and the ideal MHD condition

If dissipative effects are neglected and we introduce the fluid velocity uµ, we have

Nµ = nuµ,

Tµνm = euµuν + p∆µν = (e + p)uµuν + pgµν ,

S µ = suµ,

where baryon density, energy density, kinetic pressure, and entropy density are

n = −Nµuµ, e = Tµνm uµuν , p = 1
3 ∆µνTµνm , s = −Sµuµ.

The Faraday tensor and its dual can also be split according to uµ

Fµν = uµeν − uνeµ + εµνλκbλuκ,

F?µν = uµbν − uνbµ − εµνλκeλuκ,

where eµ = Fµνuν and bµ = F?µνuν are the electric and magnetic fields in the
comoving frame (eµuµ = bµuµ = 0). In order to close the system we need to use a
relativistic Ohm’s law, which in the limit of a perfectly conducting plasma is

eµ = 0.

Thus the ideal MHD condition simply translates in the vanishing of the comoving
electric field, and only bµ enters the ideal MHD equations.
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The equations of ideal GRMHD

The field component of Tµν and the dual of the Faraday tensor simplify to

Tµνf = 1
2 b2uµuν + 1

2 b2∆µν − bµbν = b2uµuν + 1
2 b2gµν − bµbν ,

F?µν = uµbν − uνbµ.

The system of ideal GRMHD equations in conservative form is then

∇µ(ρuµ) = 0,

∇µ[(e + p + b2)uµuν + (p + 1
2 b2)gµν − bµbν ] = 0,

∇µ(uµbν − uνbµ) = 0,

in the unknowns ρ = nm, e, p, uµ, bµ, to be closed with an EoS p = P(ρ, e).

In the laboratory fixed frame and in a Minkowskian spacetime, we have

uµ = (Γ, Γv), bµ = (Γ(v · B),B/Γ + Γ(v · B)v), b2 = B2/Γ2 + (v · B)2.

E is now a derived quantity and the sourceless Maxwell equations are for B only

E = −v× B,
∂B
∂t

= ∇× (v× B), ∇ · B = 0,

the induction equation and the solenoidal condition, as in non-relativistic MHD.
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The ECHO code for GRMHD
For multi-dimensional simulations of relativistic plasmas the Firenze group developed
the shock-capturing Eulerian Conservative High Order code (Del Zanna et al. 2007),
solving the (G)RMHD system of conservation laws (here for a flat metric):

∂

∂t
(ρΓ) + ∇ · (ρΓv) = 0,

∂

∂t

“
wΓ2v + E × B

”
+ ∇ ·

“
wΓ2vv − EE + BB + (p + uem) I

”
= 0,

∂

∂t

“
wΓ2 − p + uem

”
+ ∇ ·

“
wΓ2v + E × B

”
= 0,

∂B
∂t

+ ∇× E = 0,

where w = e + p, uem = 1
2 (E2 + B2) and E = −v × B, p = P(ρ, e).

Extensions and sub-versions of ECHO (www.astro.unifi.it/echo/):

X-ECHO (Bucciantini & Del Zanna 2011) - GRMHD evolution in a variable
spacetime metric (under the extended conformally flat condition),
XNS - equilibrium configurations for magnetized rotating neutron stars,
ECHO-QGP (Del Zanna et al. 2013; Inghirami et al. 2016) - viscous RHD and
ideal RMHD for heavy-ion collisions.
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Resistive relativistic MHD simulations

Resistivity and fast reconnection models
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Reconnection in solar, space, and laboratory plasmas
Magnetic reconnection is one of the most efficient mechanisms to convert the energy
of a magnetically dominated plasma into heat and particle acceleration.

Energy release is typically violent and occurs on very rapid timescales. It is responsible
for solar flares, geomagnetic storms, and instabilities in fusion reactors.

Within classical MHD the magnetic field evolution is governed by the induction equation
with a resistivity coefficient η (flux freezing in ideal MHD with η = 0):

∂~B
∂t

= ∇× (~v × ~B) + η∇2~B

Fluid advection and Ohmic diffusion occur on very different timescales:

τA =
L
vA
, τD =

L2

η
, Lundquist number S =

L vA

η
=
τD

τA
� 1
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Spontaneous reconnection (tearing instability)

The linear stability of current sheets was investigated by Furth et al. (1963); Coppi et al.
(1976). In resistive MHD the equilibrium is unstable to the tearing mode leading to the
formation of X-points where reconnection occurs and plasmoids.

If measured on top of the only available scale, the sheet width a, the instability growth
rate γ = 1/τ is far too slow to explain solar flares (τ ∼ τA ∼ 103s, S ∼ 1012):

γ τ̄A ' 0.6 S̄−1/2, kmaxa ' 1.4 S̄−1/4 (τ̄A = a/vA, S̄ = a vA/η)

The same scaling is found for the reconnection rate of steady-state incompressible
models (Sweet-Parker, SP) in thin current sheets configurations.
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Tearing instability of a SP sheet (plasmoid instability)

Until 10 years ago, standard MHD reconnection was basically dead, only sub-MHD
Hall/kinetic effects were considered as viable mechanisms to produce faster rates.

Revival of one-fluid resistive MHD: discovery of the plasmoid instability of steady-state
Sweet-Parker (SP) current sheets (Loureiro et al. 2007; Lapenta 2008; Samtaney et al. 2009;
Bhattacharjee et al. 2009; Cassak et al. 2009; Huang & Bhattacharjee 2010).

The tearing mode applied to a SP current sheet with a = LS−1/2 leads to

γ τA ∼ S1/4 � 1, kmaxL ∼ S3/8 � 1

for S > Sc ∼ 104, once we normalize with the macroscopic τA and L.

Relativistic resistive MHD simulations confirmed this scenario (Watanabe & Yokoyama
2006; Zenitani et al. 2010; Zanotti & Dumbser 2011; Takahashi et al. 2013, Takamoto 2013).
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The ideal tearing instability
For a generic dependence of the aspect ratio with S, the growth rate is

a/L ∼ S−α ⇒ γ ∼ τ̄−1
A S̄−1/2 = τ−1

A S−1/2S3/2α

thus, there is a critical value for an ideal tearing mode:

α = 1/3⇒ γ ∼ τ−1
A

For S = 1012 the threshold a/L ∼ S−1/3 = 104 is 100 times larger than the SP one. In
a dynamical thinning scenario reconnection occurs on ideal timescales, well before the
SP configuration can be realized (Pucci & Velli, 2014, Landi et al. 2015, Tenerani et al. 2015).

By solving the rescaled tearing instability equations, the dispersion relation γ(k) for a
varying S now clearly shows the expected ideal limit, provided S is large enough:

γmaxτA ' 0.6, kmaxa ' 1.4 S−1/6
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Reconnection in relativistic plasmas

In astrophysical sources it may explain several high-energy phenomena:

the SGR events of magnetars (Lyutikov 2003; Elenbaas et al. 2016)

jet launching in AGN/microquasar systems (Romanova & Lovelace 1992)

jet launching in GRB engines (Drenkhahn & Spruit 2002)

energy conversion in pulsar winds (Coroniti 1990, Sironi & Spitkovsky 2011)

gamma-ray flares observed in the Crab Nebula (Cerutti et al. 2013, 2014)

In (Del Zanna et al. MNRAS 460, 3753, 2016) the standard and ideal tearing instability has
been investigated, both analytically and numerically, for the relativistic MHD case.
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The relativistic MHD case

Consider now a relativistic plasma where both magnetic and thermal energy can be
comparable to the rest mass energy, so that in general

σ0 = B2
0/ρ0 ∼ 1, β0 = 2p0/B2

0 ∼ 1

The conservative form of resistive relativistic MHD in Minkowski spacetime is

∂t (ρΓ) + ∇ · (ρΓv) = 0

∂t (wΓ2v + E × B) + ∇ · (wΓ2vv − EE − BB + (p + uem)I) = 0

∂t (wΓ2 − p + uem) + ∇ · (wΓ2v + E × B) = 0

∂t B + ∇× E = 0

∂t E −∇× B = −J

with Γ = 1/
p

1− v2, w = e + p, uem = 1
2 (E2 + B2), p = P(ρ, e). The electric field is

not simply provided by E + v × B = 0 but in the resistive case must be evolved by
Maxwell’s equations, with the electric current provided by the relativistic Ohm law

eµ = ηjµ ⇒ J = (∇ · E)v + η−1 Γ[E + v × B − (E · v)v ]

IMEX (IMplicit-EXplicit) Runge-Kutta high-order methods to treat stiff terms ∝ η−1

employed in the ECHO code (Del Zanna et al. 2007, 2014).
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The tearing instability in relativistic MHD: linear analysis
We consider 2D, incompressible, linear perturbations of force-free current sheet

B0 = B0[tanh(x/a)ŷ + sech(x/a)ẑ]

and retrieve exactly the same equations of the classical MHD with the only exception
ρ0 → w0 + B2

0 as the plasma inertial term:

∂t B1 = ∇× (v1 × B0) + η∇2B1,

∂t (w0v1 + E1 × B0) = −∇(p1 + B0 · B1) + (B0 ·∇)B1 + (B1 ·∇)B0,

The maximum growth rate then depends of the relativistic Alfvén speed as

γmaxτ̄c ' 0.6 cA S̄−1/2, cA = B0/
q

w0 + B2
0 = 0.5 (σ0 = β0 = 1)

where τ̄c = a/c and S̄ = acA/η, here from 104 to 106. A similar study was previously
performed for lower S in the force-free electrodynamics regime (Komissarov et al. 2007).
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The ideal tearing instability in relativistic MHD
Let us study the tearing instability for the critical (inverse) aspect ratio

a/L = S−1/3 = 0.01, S = LcA/η = 106

Single-mode runs show a clear linear phase and the predicted dispersion relation.

We thus find that the ideal tearing mode effectively grows, independently on S, as

γmax ' 0.6cA/L ∼ c/L

that is on light-crossing times, as requested to explain explosive events in high-energy
astrophysical sources.
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The fully nonlinear case

In the fully nonlinear and multi-mode case secondary reconnection events occur and
the initial ∼ 5 islands of the tearing instability start to merge.

Colors refer to to |∇ × B| in log scale. The final evolution is very rapid and we end up
with a situation with an X-point, two symmetric exhausts, and a major plasmoid where
additional instabilities occur.

We do not clearly see the plasmoid instability because we have adopted periodical
boundaries along the current sheet.
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MHD shocks and Petschek fast reconnection

We find a quasi-stationary Petschek scenario for relativistic plasmas (Lyubarsky 2005):
channels delimited by slow shocks originating from the X-point,
fast magnetosonic jets propagating in the exhausts and feeding the plasmoid,
maximum velocity in funnels does not exceed the external cA (here 0.5),
we measure R ' 0.05− 0.06, matching the expected fast reconnection rate:

R ≡ MA =
|vx |
cA

=
π

4 ln S
,

universal growth of perturbations in t/τA for various σ0 and β0, up to cA = 0.98.
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Application to magnetars giant flares

The (standard) tearing instability in current sheets above large coronal loops has been
recently employed to model giant flares (SGRs) in magnetars (Elenbaas et al. 2016).

The observed e-folding and peak times in the gamma-ray light curves are

τe ∼ 0.1− 1 ms, τpeak ∼ 1− 10 ms

Our model for fast reconnection predicts, independently on S (thus on microphysics!):

τe '
1
γmax

'
L

0.6cA
' 0.2 ms, (L ' 5R? = 50 km, cA ' c)

provided a thinning process has shrunk the current sheet down to δ/L ∼ S−1/3. A
similar mechanism may operate at Crab Nebula’s termination shock (Olmi et al. 2016).
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Mean-field dynamo in GRMHD
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Mean-field dynamo in classical MHD

We know that in stellar interiors and protostellar disks the magnetic field is amplified by
mean-field dynamo processes: correlated small-scale fluctuations in velocity and
magnetic field provide a mean electromotive force and amplify seed magnetic fields.

Within classical MHD consider small-scale turbulent fluctuations in the fields v e B:

v(x , t) = v0(x , t) + δv(x , t), B(x , t) = B0(x , t) + δB(x , t)

[assumption of kinematic regime⇒ v0(x , t) fixed].

The resistive induction equation for the mean magnetic field reads:

∂t B0 = ∇× (v0 × B0) + ηr∇2B0 + ∇× E

E = 〈δv × δb〉 ' αB0 − β∇× B0

⇓

∂t B = ∇× (v × B) + α∇× B + (ηr + β)∇2B [E ′ = −αB + (ηr + β)J]

Differential rotation⇒ Generation of toroidal field (Ω effect)

Toroidal field⇒ Generation of poloidal field (α effect)

BP ⇒ BT ⇒ BP ⇒ . . .

Exponentially growing α− Ω dynamo modes, damped by resistivity.

L. Del Zanna - Chirality 2018, Arcetri Relativistic MHD for astrophysical plasmas



Resistivity and fast reconnection models
Mean-field dynamo in GRMHD

Dynamo-Chiral resistive relativistic MHD

The mean-field dynamo process
Kinematic dynamo in accretion tori

Amplification of magnetic fields in relativistic plasmas

The amplification of ordered magnetic fields on large scales is supposed to be crucial
for many high-energy astrophysical processes too:

jets from AGNs and micro-quasars

Blandford-Znajek mechanism from Kerr Black Holes (AGNs, GRBs)

formation of magnetars with B ∼ 1015−17 G (GRBs?)

For relativistic plasmas we need to generalize the classical dynamo model to GRMHD.

The Maxwell equations in covariant form are

∇µFµν = −Iν , ∇µF∗µν = 0

F µν = u µeν − uνe µ + εµνλκbλuκ, Iµ = q0uµ + jµ

A fully covariant formulation of Ohm’s law for resistive plasma with dynamo action was
proposed by Bucciantini & Del Zanna (2013)

eµ = ηjµ + ξbµ

(ξ ≡ −αdyn, η = ηr + βdyn)
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Implementation within 3 + 1 GRMHD

In the GRMHD ECHO code (Del Zanna et al., 2007) the usual 3 + 1 split is adopted

ds2 =−α2dt2 + γij (dx i + β i dt)(dx j + β j dt)

Maxwell’s equations are solved in the form

γ−1/2∂t

“
γ1/2B

”
+ ∇× (+αE + β × B) = 0, (∇ · B = 0)

γ−1/2∂t

“
γ1/2E

”
+ ∇× (−αB + β × E) = −(αJ − qβ), (∇ · E = q)

Ohm’s law in the 3 + 1 language is

Γ[E + v × B − (E · v)v ] = η(J − qv) + ξΓ[B − v × E − (B · v)v ]

The equation for the electric field, using the sources q and J, is

γ−1/2∂t (γ
1/2E) + ∇× (−αB + β × E) + (αv − β)∇ · E =

− αΓ η−1{[E + v × B − (E · v)v ]− ξ[B − v × E − (B · v)v ]}

Resistive terms ∝ η−1 can evolve on time scales τη � τh, though dynamo terms do
not add extra complexity. We employ IMEX methods (Pareschi & Russo 2005; Palenzuela et
al. 2009; Bucciantini & Del Zanna 2013; Dionysopoulou et al. 2013; Del Zanna et al. 2014).
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Kinematic dynamo in accretion tori

As a first astrophysical application: α− Ω kinematic dynamo in thick accretion tori
around maximally rotating Kerr Black Holes with the ECHO code (Bugli et al. 2014).

Cξ = ξR
η

= 5

CΩ = ∆ΩR2

η
= 400

γPc = 0.39

τ/Pc = 8.4

(Pc = 76.5GMBH/c3)
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The mean-field dynamo process
Kinematic dynamo in accretion tori

Butterfly diagrams
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By following the paths taken by maxima vs time butterfly diagrams can be created.
Changing the sign of ξ we invert the direction of migration of magnetic fields, and a
situation as observed in the solar cycle can be reproduced.

Periodical reactivation of Blandford-Znajeck effect may be explained by dynamo in disk,
since the frequency of the accreting field is related to the microphysics and not to Pc .

Similar results are found in 3D MHD simulations of stratified disks with shearing box
local models, due to fully developed turbulence and MRI (Davis et al. 2010).
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The Chiral Magnetic Effect

The Chiral Magnetic Effect (CME) in a plasma of unbalanced left- and right-handed
relativistic fermions is the quantum phenomenon of electric charge separation leading
to a (macroscopic) current along the magnetic field (Vilenkin 1980, Kharzeev 2014).

This may be important in condensed matter or quark-gluon plasmas, mainly for

heavy-ion collisions (Kharzeev 2004, Voloshin 2004, Huang 2016),

the early Universe (Vilenkin & Leahy 1982, Tashiro et al. 2012),

possibly neutron star interiors (Dvornikov & Semikov 2015, Sigl & Leite 2016).

Introducing a CME conductivity, we then assume the presence of an additional current

JCME = σCMEB, σCME ∝ µA,

where µA is the chiral chemical potential. The related axial charge evolves in time as

∂t nA + ∇ · JA ∝ E · B,

so regions of non-ideal MHD (also reconnection sites?) may be sources of CME.

CME is known to lead to small-scale magnetic field amplification of dynamo-type and to
turbulent cascade (Rogachevskii 2017, Brandenburg 2017, Schober et al. 2018).
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Analogy between CME and mean field dynamo

Let us consider the mean-field MHD, where the Ohm law takes the form

E ′ ≡ E + v × B = −αdynB + ηJ,

where αdyn is the turbulent dynamo coefficient and η the combined Ohmic and
turbulent resistivity. This can also be rewritten in terms of conduction coefficients as

J = σE E ′ + σBB,

where σE = 1/η and σB = αdyn/η.

This form is exactly the same as that for chiral-MHD, where the first contribution is the
usual conduction electric current and the second that due to CME.

We propose that the corresponding covariant form applies to the fields in the comoving
frame of the fluid as

jµ = σE eµ + σBbµ

where we recall that

q0uµ + jµ = Iµ = ∇νFµν , eµ = Fµνuν , bµ = F∗µνuν ,

and that the same machinery employed to model resistive and mean-field dynamo
effects in (G)RHMD (Bucciantini & Del Zanna 2013) can be applied as it is to CME.
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Dynamo-Chiral resistive relativistic MHD equations
Let us now rewrite the equations in the rest frame of the observer (lab frame). We have

uµ = Γ(1, v), eµ = Γ(v · E,E + v× B), bµ = Γ(v · B,B− v× E),

with Γ = 1/
p

1− v2, so that if Iµ = (q, J), the conduction current transverse to uµ is

jµ = Iµ − q0uµ = (q − Γq0, J − Γq0v)

The time and spatial components of Ohm’s law are then

q − Γq0 = σE Γ(v · E) + σBΓ(v · B)

J − Γq0v = σE Γ(E + v× B) + σBΓ(B− v× E)

and combining the two, Ohm’s law for Dynamo-Chiral resistive relativistic MHD is

J = qv + σE Γ[E + v× B − (v · E)v ] + σBΓ[B− v× E − (v · B)v ]

in which we can employ, directly from the Gauss constraint

q = ∇ · E

The above Ohm’s law must be inserted in Maxwell equations and coupled to the
conservation laws for mass and total momentum-energy, as seen before.
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3 + 1 GRMHD equations for a curved spacetime

The Dynamo-Chiral form of Ohm’s law applies unchanged to the full 3 + 1 GRMHD
system (Del Zanna et al. in prep). The equations for a curved manifold are:

∂t (
√
γD) + ∂k [

√
γ(αDvk − βk D)] = 0,

∂t (
√
γSi ) + ∂k [

√
γ(αSk

i − β
k Si )] =

√
γ( 1

2αSlm∂iγlm + Sk∂iβ
k − E∂iα),

∂t (
√
γE) + ∂k [

√
γ(αSk − βkE)] =

√
γ(αSlmKlm − Sk∂kα),

∂t (
√
γBi ) + [ijk ]∂j (αEk + [klm]

√
γβ l Bm) = 0,

∂t (
√
γE i )− [ijk ]∂j (αBk − [klm]

√
γβ l Em) = −√γ(αJ i − β i q),

with the two non-evolutionary constraints

∂k (
√
γBk ) = 0, ∂k (

√
γEk ) =

√
γ q,

where D = ρΓ is the mass density, Si the momentum flux, and E the energy density, all
measured in the Eulerian frame. The extrinsic curvature term is

αSlmKlm = 1
2 Slm(βk∂kγlm − ∂tγlm) + Sl

m∂lβ
m,

to be found from Einstein’s equations (or assigned).
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Summary

Non-ideal effects are commonly neglected in relativistic hydro/MHD simulations, here
we have shown three cases where they are important:

When magnetic fields are so strong such that cA → c, the reconnection process must
be studied in the appropriate resistive relativistic MHD regime (Del Zanna et al. 2016).
The tearing instability may occur on light-crossing times if a/L ∼ S−1/3 (ideal tearing).

Turbulence is expected to provide a dynamo process in (general) relativistic plasmas
too. We have derived an Ohm’s law in both covariant and 3 + 1 form and applied to
disks around Kerr black holes (Bucciantini & Del Zanna 2013; Bugli et al. 2014).

A unified set of equations for Dynamo-Chiral resistive relativistic MHD has been
derived in both covariant and 3 + 1 form, valid for curved manifolds, ready for
numerical integration (Del Zanna et al. in prep).

Thank you!
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