Selected Overview of Searches for Chiral Effects in Heavy Ion Collisions

HUAN ZHONG HUANG (黃煥中)
Fudan University
&
University of California, Los Angeles

Chirality 2018 Workshop @ Galilei Institute

Thanks to Jinhui Chen, Subikash Choudhury, Wei Li, Jinfeng Liao, Xuguang Huang, Guoliang Ma, Aihong Tang, Gang Wang, Sergei Voloshin....
OUTLINE

1) CME and Charge Separation Across the RP
2) CMW and Background
3) Search for Chiral Vortical Effect
4) Future Perspective
QCD Domain Formation

Non-Abelian Gauge Theory
Dynamical by nature

The volume of the box is 2.4 by 2.4 by 3.6 fm.
The topological charge density
Animation by Derek Leinweber
Chiral Magnetic Effect (CME): finite chiral charge density induces an electric current along external magnetic field.

\[j_V = \frac{N_c e}{2\pi^2 \mu_A} B \Rightarrow \text{electric charge separation along } B \text{ field} \]

\[\gamma \text{ correlator} \]

A quantitative measure for extra charge fluctuation.

\[\gamma_1^{12} \]

\[\gamma = \left\langle \cos(\phi_\alpha + \phi_\beta - 2\psi_{RP}) \right\rangle \]

\[= \langle \cos() \cos() \rangle - \langle \sin() \sin() \rangle \]

\[\cong \left[\left\langle v_{1,\alpha} v_{1,\beta} \right\rangle + B_{in} \right] - \left[\left\langle a_\alpha a_\beta \right\rangle + B_{out} \right] \]

S. Voloshin, PRC 70 (2004) 057901

Directed flow

P-even quantity: sensitive to charge separation fluctuation

\[\gamma_1^{123} = \langle \cos(\phi_\alpha + 2\phi_\beta - 3\psi_3) \rangle \]
pA Data Illuminating!

$\Delta \gamma$ correlator in pA – largely background
Many reasons v_2 related background in pA and AA may be different!

Little room for CME signal in $\Delta \gamma$ at 5.02 TeV from CMS!
CMS Quantitative Approach to CME

Pb+Pb at 5.02 TeV v_2 Independent
CME < 3.8%

P+Pb at 8.16 TeV
CME < 6.6%

All at 95% C.L. (See Wei Li’s talk) Event-Shape Selected Analysis
ALICE Quantitative Approach to CME

Event-Shape Selected Analysis

Background – linear dependence on v_2
CME – also dependent on v_2
Measurement – combination of background and CME
→ fraction of CME contributions
(10-50)% centrality region: at 2.76 TeV Pb+Pb collisions
CME fraction upper limit 26-33% at 95% C.L.
depending on models of initial state!
Charge Dependent γ Measure

RHIC data

- Initial data publication on the topic
- We know better now about the residual background

H Measure

Against CME expectation, $\delta_{OS} > \delta_{SS}$

Indicate overwhelming background, larger than any possible CME effect.

Try combining information from γ and δ to retrieve the CME contribution, H

\[\gamma \equiv \langle \cos(\phi_1 + \phi_2 - 2\Psi_{RP}) \rangle = \kappa v_2 F - H \]
\[\delta \equiv \langle \cos(\phi_1 - \phi_2) \rangle = F + H, \]

\[10^4 \times [\delta \equiv \langle \cos(\phi_1 - \phi_2) \rangle] \]

At lower beam energies, charge separation starts to diminish.

If $\Delta \gamma$ is largely background, the background cannot be proportional to v_2 alone as suggested!
Difficult to Remove Charge Separation

\[H^\kappa = \frac{\kappa v_2 \delta - \gamma}{1 + \kappa v_2} \]

- \(\kappa \approx 2 - v_{2,F}/v_{2,\Omega} \approx 1.2 \):

 F and \(\Omega \) denote full phase space and finite detector acceptance, respectively.

- CME signal (\(\Delta H \)) decreases to 0 from 19.6 to 7.7 GeV and at LHC energies.

- The decomposition of \(\gamma \) into F and H is not unique.

Agree with CMS Statement!

the magnetic field is fixed. Using an event shape engineering technique, upper limits on the v_2-independent fraction of the three-particle correlator are estimated to be 6.6% for pPb and 3.8% for PbPb collisions at 95% confidence level. The results of this analysis, both the dominance of two-particle correlations as a source of the three-particle results and the similarities seen between PbPb and pPb, provide stringent constraints on the origin of charge-dependent three-particle azimuthal correlations and challenge their interpretation as arising from a chiral magnetic effect in heavy ion collisions.

To be precise, maybe useful to specify “at the 5.02 TeV LHC energy” in the CMS statement!

γ Correlator has major background contribution! CME contribution can be v_2 dependent as well! Background cannot be linear to v_2 solely if $\Delta \gamma$ is entirely due to background!
Is there a strong energy dependence in CME &
Is there a room for CME at 200 GeV and below?

Please see Gang Wang & Niseem Abdelrahman for STAR update!

Intriguing Observation from CMS:

\[\gamma_{112} = \langle \cos(\varphi_\alpha + \varphi_\beta - 2\Psi_2) \rangle \]
\[= \langle \cos(\varphi_\alpha - \Psi_2)\cos(\varphi_\beta - \Psi_2) \rangle - \langle \sin()\sin() \rangle \]
\[= \langle \cos(\varphi_\alpha - \varphi_\beta)\cos^2(\varphi_\beta - \Psi_2) \rangle - \langle \sin()\sin() \rangle \]
\[\rightarrow \kappa_2 < \cos(\varphi_\alpha - \varphi_\beta)\rangle<\cos^2(\varphi_\beta - \Psi_2)\rangle \]

\[\gamma_{123} = \langle \cos(\varphi_\alpha + 2\varphi_\beta - 3\Psi_3) \rangle \]
\[= \langle \cos(\varphi_\alpha - \Psi_3)\cos^2(\varphi_\beta - \Psi_3) \rangle - \langle \sin()\sin() \rangle \]
\[= \langle \cos(\varphi_\alpha - \varphi_\beta)\cos^3(\varphi_\beta - \Psi_3) \rangle - \langle \sin()\sin() \rangle \]
\[\rightarrow \kappa_3 < \cos(\varphi_\alpha - \varphi_\beta)\rangle<\cos^3(\varphi_\beta - \Psi_3)\rangle \]

Why are \(\kappa_2 \) and \(\kappa_3 \) almost the same?
No CME? Unknown Correlations?
Chiral Magnetic Wave

CMW → Electric Quadrupole Moment

\[\nu_2^{\pm} = \nu_2 \mp rA_{ch} \quad A_{ch} = \frac{N^+ - N^-}{N^+ + N^-} \]
Local charge conservation may introduce A_{ch} dependence of $\Delta v_2(\pi)$. Then one should see \textit{slope-for-Δv_3 / slope-for-Δv_2} \sim v_3/v_2 (Bzak & Bozek PLB 726 239 (2013)). Our measurement for Δv_3 indicates that such mechanism alone cannot explain data.
ALICE Improved Approach for Slope

$\frac{dN_{ch}}{d\eta} v_2(2) - \langle A x v_2(2) \rangle$

$0.2 < p_T < 5.0 \text{ GeV/c}$

$-0.8 < \eta < 0.8$

Different centrality dependence from STAR data!
ALICE Slopes for v_3 and v_4

Not exactly the same magnitude as slopes for v_2
Room for CMW signal?
Need good background model!
STAR (0.20 TeV)-ALICE (2.76 TeV)-CMS (5.02 TeV)

Background levels are different!
Little room for CMW signal at 5.02 TeV
Chiral Vortical Effect

Chiral Magnetic Effect vs Chiral Vortical Effect

Chirality Imbalance (μ_A)

Magnetic Field ($\omega \mu_e$) \hspace{1cm} Fluid Vorticity ($\omega \mu_B$)

↓ \hspace{1cm} ↓

Electric Charge (j_e) \hspace{1cm} Baryon Number (j_B)

D. Kharzeev, D. T. Son, PRL 106 (2011) 062301

\[\langle \cos(\phi_A + \phi_P - 2\Psi_{RP}) \rangle \]

correlate Λ–p to search for the Chiral Vortical Effect
same baryon number: \(\Lambda p \) and \(\bar{\Lambda} \bar{p} \)

opposite baryon number: \(\Lambda \bar{p} \) and \(\bar{\Lambda} p \)

“same B” is systematically lower than “oppo B” in the mid-central and peripheral collisions, consistent with the CVE expectation.
Baryon-Baryon Correlation

Λ-p correlation – different from Λ-h and K_{S}p correlation! CVE?
STAR Measurement for Lambda Polarization WRT the Reaction Plane

1) Larger effect at lower beam energy!
2) Difference between Lambda and Anti-Lambda?

See STAR updates from Aihong Tang Takafumi Niida

and talks by Lisa and Voloshin

1) Larger effect at lower beam energy!
2) Difference between Lambda and Anti-Lambda?
Intriguing and Puzzling

Energy dependent intriguing observations!
There is a charge separation effect
 -- separate CME and background ?!
There is an extra-v_2 due to charge asymmetry
 -- electric quadrupole due to CMW or ?
There is a baryon-baryon separation effect
 -- CVE or ? Vortical Fluidity – Yes!

More insight and towards a definitive answer:
 -- establish B field and its consequence
 -- effect correlating CME/CVE/CMW
Isobar Collision Running 2018

$^{96}_{44}$Ruthenium and $^{96}_{40}$Zirconium:

Up to 10% variation in B field

<table>
<thead>
<tr>
<th></th>
<th>$^{96}{44}$Ru+$^{96}{44}$Ru vs $^{96}{40}$Zr+$^{96}{40}$Zr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow</td>
<td>\leq</td>
</tr>
<tr>
<td>CMW</td>
<td>$>$</td>
</tr>
<tr>
<td>CME</td>
<td>$>$</td>
</tr>
<tr>
<td>CVE</td>
<td>$=$</td>
</tr>
</tbody>
</table>
Isobars: charge separation

- Projection from 1.2B events shows difference in ΔH
- The ratio is 5σ above 1 (3σ with 400M events)
- If it's v_2-driven, the ratio will follow eccentricity (be 1 or below 1)
Maybe a Better Beam Energy for Chirality Searches

Optimal Beam Energy: 15-50 GeV

Low beam energy A+A reduces short-range non-flow background!
Event Selection Technique Sensitive to By

\[\frac{B_y}{m^2} \]

\[\langle v_2 \rangle \]

\[|y(p/\overline{p})| < 0.5 \]
\[0.5 < p_T^{p/\overline{p}} < 2.0 \text{ GeV/c} \]

Net-protons

Another handle for event selection

Subikash Choudhury
Fudan University

Au+Au @ 27 GeV
Experimental Window of Opportunity

1) Isobaric running to see B field effect @200 GeV in 2018
2) Au+Au data from low RHIC energies to observe B magnitude and life-time difference 2018 +
3) If promising, another run for isobaric system may be proposed

There must be some background – yet no satisfactory background model can explain all features in data – any room for CME/CMW? Definitive Answer?
THE END