DCh and δ -rays

10 tracks of protons superimposed

δ-rays

10 tracks of ⁴He superimposed

10 tracks of ⁹Be superimposed

10 tracks of ⁶Li superimposed

10 tracks of ¹¹B superimposed

10 tracks of ¹²C superimposed

10 tracks of ¹⁶O superimposed

Of course one should weight by energy loss in the cells...

Beam Monitor simulation: 12C @200 MeV/u Ecut for δ -rays 5 keV

Approx. Analytical Estimates

Spin 0 particles

$$\frac{dN_{\delta}}{dT\,dx} = \frac{1}{2}Kz^2\frac{Z}{A}\frac{1}{\beta^2}\frac{\left(1-\beta^2 T/W_{\text{max}}\right)}{T^2}$$

$$W_{\text{max}} = \frac{2mc^2\beta^2\gamma^2}{1+2\gamma mE/M+(m/M)^2}$$

Gas: Ar-CO2 80/20; E = 200 MeV/u

e⁻ 60 keV →~ 0.5 cm in gas

after analytical integration:

Z	Wmax	N _δ (E _δ >5 keV)/cm	<Ε _δ >	$N_{\delta}(E_{\delta}>60 \text{ keV})/\text{cm}$	<Ε _δ >
1	486 keV	~0.1	21.8 keV	0.005	137 keV
2	u	0.3	"	0.019	и
3	u	0.6	"	0.045	u
4	u	1.1	"	0.078	и
5	u	1.8	"	0.121	и
6	u	2.6	"	0.175	и
7	u	3.5	"	0.238	и
8	u	4.6	u	0.310	u

- For Z>2 fragments we may have problems
- Can we cut electrons with a discrimination threshold? May be not so simple:
 - We can loose protons and cells crossed by Z>2 particles only with a small portion of track
 - in any case fluctuations in energy loss, both in physics and in multiplication gain, are large