NEWS KickOff Meeting – July 17, 2017

NEWS Work Package 7

Advanced Superconducting Technologies for Particle Accelerators

Emanuela Barzi, Fermilab

Summary of WP7 Tasks

T6.1: Build and install the superconducting modules of the Mu2e Transport Solenoid (INFN, FNAL). The modules are in construction at the ASG Superconductors in Italy under a FNAL contract, with the active collaboration and supervision of INFN personnel.

T6.2: <u>Design and build</u> a 16 T Nb₃Sn accelerator dipole (FNAL, INFN). This includes coil design studies, magnetic analysis, design of mechanical structure for the 4-layer coils, and coil stress analysis at the three stages of magnet operation.

T6.3: Optimize state-of-the-art electrochemical techniques (US patent pending) for Nb_3Sn thin layer deposition on Nb and on Cu (POLIMI, FNAL, Faraday). <u>Applications</u> include performance improvement of superconducting Nb_3Sn wires for High Field Magnets, Radio-frequency cavities, superconducting magnetic shields.

WP7 Deliverables

D7.1 : 16 Tesla Dipole Designed [Month No. 24]

Verify the design studies, magnetic analysis, mechanical structure design, coil stress analysis at the three stages of magnet operation (i.e. room temperature, after cooling down at the temperature of operation of 4 K, and at nominal magnetic field operation).

<u>D7.2 : Nb₃Sn Deposition Technique Optimized on Niobium and</u> <u>Copper [Month No. 36]</u>

State of the art electrochemical techniques will be optimized to achieve the best uniformity of the deposit across the surface, the best purity and improve the adhesion of the film. Samples will be experimentally characterized.

Progress in Maximum Field in Accelerator Magnets

4

<u>US Magnet Development Program</u> <u>Cos-theta 15 T Dipole</u>

Coil:

- o 60-mm aperture
- o 4-layer graded coil
- W_{sc} = 68 kg/m/aperture

Mechanical structure:

- o 2-mm StSt coil-yoke spacer
- o Vertically split iron laminations
- o Aluminum I-clamps
- o 12-mm thick StSt skin
- o thick end plates and StSt rods
- o Cold mass OD<610 mm
- Fabrication status: in progress
- Planned magnet test: Spring 2018

32

15 T Dipole: Wire and Cable Parameters (FNAL)

Strand ID	RRP1	RRP2 =						
Stack design Ternary element	108/127 Ti	150/169 Ti	Coil	Cable N x d, mm	RRP® Strand	Cable length,	Cable $t_{mid} x$ w, mm^2	Lay angle,
Production year	2012	2014 -	15 T Dipola		Туре	111		ucg.
Diameter d, mm	0.7	1.0	15 T Dipole	$40 \ge 0.7$	RRP1	374	1 251 x 14 71	16.8
<i>I_c</i> (4.2K, 12 T), A	451-490	1,052-1,111	Laver	-10 X 0.7		5/7	1.231 X 14.71	10.0
<i>J</i> ₂ (4.2K, 12 T), A/mm ²	2,560-2,722	2,597-2,710	15 T Dipole					<u> </u>
I_c (4.2K, 15 T), A	229-245	566-619	In I Dipole	28 x 1	RRP2	420	1.803 x 14.79	15.5
J_c (4.2K, 15 T), A/mm ²	1,289-1,365	1,395-1,502 <u>-</u>	IIIIei Layei					
D_S , μ m	41	58			_			_
Twist pitch, mm	14-16	23-24	Both	cables	have	been	developed	d
Cu fraction λ, %	53.2-54.4	47.5-48.4	and then manufactured for magnet					
RRR	101-226	343-374	anu i		nuiac	luieu	ior mayn	Εl
Final HT step	640°C/50h	665°C/50h	prod	uction.				

"Nb₃Sn RRP® Strand and Rutherford Cable Development for a 15 T Dipole Demonstrator", E. Barzi, N. Andreev, P. Li, D. Turrioni, and A.V. Zlobin, IEEE Transactions on Applied Superconductivity, Vol. 26, Issue 4, Art. # 4804305.

15 T Dipole: Short Sample and Design Limits

* Magnet <u>design limit</u> is determined by mechanical constraints and it is 15 T.

FNAL-INFN 16 T Accelerator Dipole

- The challenge to solve for the INFN-FNAL collaboration is to push the <u>design limit</u> of these magnets to their superconducting potential (or <u>Short Sample limit</u>). To design and build a 16 T Nb₃Sn superconducting dipole, the design limit needs to be at least 17 T.
- Within the preferred magnet geometry, so-called *cos-theta*, i.e. the same design used in the Tevatron @ Fermilab and at LHC @ CERN, a number of strain management options will be investigated.

E. Barzi, NEWS KickOff Meeting – July 17, 2017

<u>Nb₃Sn Thin Films on Nb</u>

* An electro-chemical deposition technique to produce Nb₃Sn coatings was developed in the last few years by FNAL and the Politecnico di Milano.

* The Nb₃Sn phase is obtained by electrodeposition of Sn layers and Cu intermediate layers onto Nb substrates, followed by high temperature diffusion in inert atmosphere. In 2014, Nb₃Sn superconducting samples between 5.7 and 8.0 μ m in thickness were produced with a maximum obtained T_c of 17.68 K and B_{c20} ranging between 22.5 T and 23.8 T.

Nb₃Sn Thin Films on Nb –Past Results

The maximum obtained T_c was 17.68 K and the B_{c20} ranged between 22.5 T and 23.8 T

New FNAL Setup for Electro-chemical Deposition

E. Barzi, NEWS KickOff Meeting – July 17, 2017

Primary Goal for Nb₃Sn Thin Films

Reproduce the original recipe.

Potential for Research and Applications

- MAGNETS: An inexpensive way to produce Nb₃Sn thin films on Nb can be used as a test bed to try different alloy materials inexpensively and with fast turnaround to test their flux pinning properties to improve performance of wires and cables.
- SRF: Nb₃Sn coated cavities would produce High Q, High gradient and Low cost.