IXPE

Overview and activities

Luca Baldini luca.baldini@pi.infn.it

Università and INFN-Pisa

NEWS KO meeting

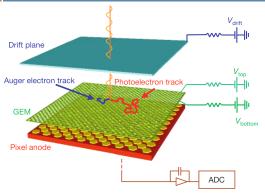

IXPE Imaging X-ray Polarimetry Explorer

X-ray polarimetry

-XIPE (ESA M4)

The situation at the time of the proposal submission

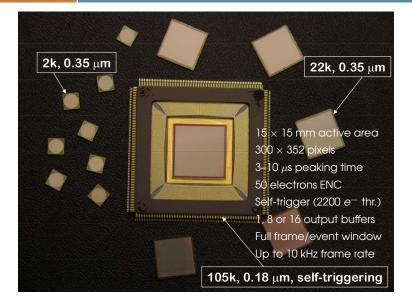
-IXPE (NASA SMEX)



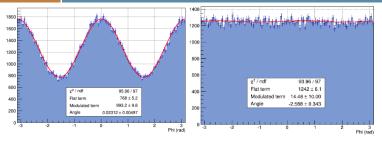
▷ Three (out of 6) missions in phase study for the last ESA and NASA calls are specifically devoted to X-ray polarimetry.

Photoelectric X-ray polarimetry

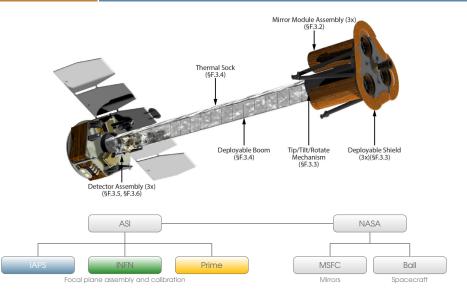
The Gas Pixel Detector


\triangleright Basic components:

- ▷ gas-filled absorption gap acting as detection medium;
- ▷ Gas Electron Multiplier (GEM) providing gas amplification;
- \triangleright finely pixelized readout anode for signal collection.
- \triangleright Sensitive down to very low energy (\sim 1 keV).
- \triangleright Fully two-dimensional (imaging).
- ▷ Highly azimuthally symmetric (no need of rotation).


The heart of the XIPE/IXPE proposals

A custom VLSI readout ASIC developed at INFN


Performance of the GPD as a focal-plane polarimeter Measuring four things at once

- \triangleright Modulation factor: 0.2 (0.7) at 2 (8) keV.
 - $\,\vartriangleright\,$ Stability over \sim 3 years demonstrated with a sealed detector.
- \triangleright Residual modulation for unpolarized radiation \sim 0.1%.
- $ho \sim$ 90 μ m spatial resolution at 5.9 keV, measured (\ll track length).
 - $\,\vartriangleright\,$ Good match for a 20 arcsec-type X-ray optics with \sim 4 m focal length.
- $ho~\sim$ 15% energy resolution (FWHM) at 5.9 keV.
 - $\rhd\,$ Enough for spectrally-resolved polarimetry (in a few energy bins) when statistics allow it.
- \triangleright μ s-type time resolution.
 - \triangleright More than adequate for the shortest time scales of interest.

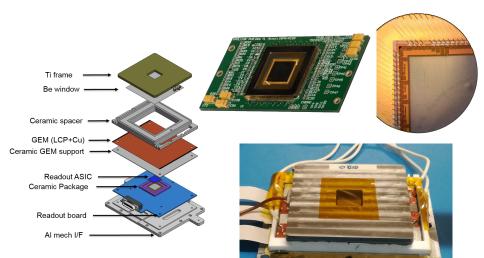
The situation now

IXPE has been selected by NASA as the next SMEX

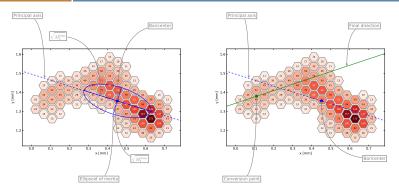
IXPF

After more than 4 decades, the recent development of the photoelectron tracking gas counter has now enabled a meaningful exploration of X-ray polarimetry within a SMEX envelope.

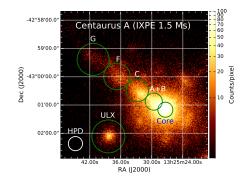
The physical scales and conditions probed by IXPE require a high-energy polarimetry capability and are not achievable by other current or planned missions.


-Verbatim from the NASA selection debrief package.

- ▷ Three identical telescopes, each including GPD and optics:
 - ▷ Provide full redundancy, mitigate possible residual systematic effects.
- \triangleright Mass and power budget (total): \sim 300 kg, \sim 200 W:
 - $\rhd~\sim$ 15 kg, \sim 20 W for the three detector units;
 - $ho~\sim$ 85 kg for the mirror module assembly.
- Focal length: 4 m (deployable boom, launched in stowed configuration).
- ▷ Pegasus launch from Kwajalein on or after November 20, 2020.
 - \triangleright 2-year mission on a 540 km circular orbit at nominal 0° inclination.
 - ▷ One (simple) operation mode: point-and-stare at known targets.


Hardware development and calibration

Synergies: MSFC


Event-level analysis Synergies: KTH, SLAC, MSFC

- ▷ Analysis is done event-by-event.
- Track reconstruction: energy, time, absorption point, direction of emission of the photoelectron (providing polarization information).
- Event selection: performance optimization and background rejection.
 - ▷ Ongoing collaboration with our Swedish colleagues on XIPE.

Science-analysis software and observation simulation Synergies: SLAC, MSFC

- Develop an observation-simulation framework to inform the compilation of the observation plan.
 - \triangleright Germane to the framework developed by SLAC for Fermi-LAT.
- ▷ Develop the tools to extract and interpret the polarization information from the photon list.
 - ▷ Again: vast experience at SLAC for Fermi-LAT.