nuelock

Э

1/30

イロン イヨン イヨン イヨン

The elusive ²²⁹Th isomer - characterization of its properties

Benedict Seiferle LMU Munich

SPES-Nusprasen Workshop Pisa 1-2 February 2018

Outline

- 1. Motivation
- 2. Experimental Setup
- 3. Lifetime Measurements
- 4. Energy Measurements
- 5. Conclusion & Outlook

Outline

1. Motivation

- 2. Experimental Setup
- 3. Lifetime Measurements
- 4. Energy Measurements
- 5. Conclusion & Outlook

Optical Atomic Clocks

- ingredients:
 - \rightarrow frequency reference: laser locked to a narrow atomic transition
 - $\rightarrow\ \text{counter}$ or clockwork
- best atomic clock: Strontium lattice clock at NIST
 - \rightarrow frequency uncertainty [1]: 2.1×10^{-18}
 - \rightarrow precision is only limited by external electric and magnetic fields

Can one do better? - A nuclear optical clock

Idea: Use nuclear transition for time measurement [2]

• expected frequency uncertainty: 1.5×10^{-19} [3]

Expected advantages:

- nucleus is 5 orders of magnitudes smaller than the atom
 → highly resistant to external influences
- solid state clock feasible? [4]
 - $\rightarrow~10^{19}$ atoms in crystal lattice vs. 10^4 in an optical lattice

[2] E. Peik & C. Tamm, Europhys. Lett. 61 (2003) 181. [3] C. Campbell et al., Phys. Rev. Lett. 108 (2012) 120802. [4] W.G. Rellergert et al., Phys. Rev. Lett. 104 (2010) 200802.

Requirements for a nuclear clock transition

- laser access
 - $\rightarrow\,$ transition energy in the eV range
- small linewidth
 - \rightarrow lifetime in the range of at least some seconds

²²⁹Th - What is known so far

 lowest excitation energy of all known nuclear states

 $\rightarrow E_I = 7.8 \pm 0.5 \text{ eV} (\approx 159 \text{ nm}) [5]$

[5] B. R. Beck et al., Proceedings of the 12th International Conference on Nuclear Reaction Mechanisms, Varenna, 2009, (CERN Proceedings Series, 2009). [6] E. V. Tkalya et al., Phys. Rev. C 92, 054324 (2015) 7/30

²²⁹Th - What is known so far

lowest excitation energy of all known nuclear states

 $\rightarrow E_I = 7.8 \pm 0.5 \text{ eV} (\approx 159 \text{ nm}) [5]$

78 eV

229mTh

3/2+

[631]

[5] B. R. Beck et al., Proceedings of the 12th International Conference on Nuclear Reaction Mechanisms, Varenna, 2009, (CERN Proceedings Series, 2009). [6] E. V. Tkalya et al., Phys. Rev. C 92, 054324 (2015) 7/30

Why don't you simply build a nuclear clock?

- direct nuclear laser excitation has not been achieved so far
- lifetime is unknown
- transition energy is not known precisely

Experimental Objectives

- determine the lifetime
 - \rightarrow for internal conversion (section 3)
 - \rightarrow for γ -decay (outlook)
- improve the precision of the transition energy to better than 0.1 eV (ongoing)

イロト イヨト イヨト イヨト 二日

8/30

Outline

- 1. Motivation
- 2. Experimental Setup
- 3. Lifetime Measurements
- 4. Energy Measurements
- 5. Conclusion & Outlook

• populate 229m Th via the 2% decay branch of the 233 U α -decay

- populate 229m Th via the 2% decay branch of the 233 U α -decay
- create a pure 229m Th ion beam

- populate 229m Th via the 2% decay branch of the 233 U lpha-decay
- create a pure 229m Th ion beam
- neutralize the ^{229m}Th ions

- populate 229m Th via the 2% decay branch of the 233 U lpha-decay
- create a pure ^{229m}Th ion beam
- neutralize the ^{229m}Th ions
- detect the electron emitted during the internal conversion decay

$^{233}\mathrm{U}$ source and buffer gas stopping cell

- 233 U source (260 kBq) $\rightarrow ^{229m}$ Th recoil ions (84 keV)
- buffer gas stopping cell (40 mbar He) \rightarrow ²²⁹Th recoil ions are stopped
- electric RF- and DC-funnel guides ions towards a Laval Nozzle (Ø0.6 mm)
 - → supersonic gas jet created
 - $\rightarrow\,$ ions follow the jet into the next chamber

$^{233}\mathrm{U}$ source and buffer gas stopping cell

- 233 U source (260 kBq) $\rightarrow ^{229m}$ Th recoil ions (84 keV)
- buffer gas stopping cell (40 mbar He) \rightarrow ²²⁹Th recoil ions are stopped
- electric RF- and DC-funnel guides ions towards a Laval Nozzle (Ø0.6 mm)
 - → supersonic gas jet created
 - $\rightarrow\,$ ions follow the jet into the next chamber

Radio Frequency Quadrupole (RFQ)

- segmented RF-quadrupoles
 - \rightarrow f = 850 kHz
 - \rightarrow V_{pp} \approx 150 V
- DC-gradient
 - → guide the ions through the remaining buffer gas
 - $\rightarrow\,$ cooled ion beam
 - \rightarrow ion bunches

Quadrupole Mass Separator (QMS)

- ion beam contains ²³³U daughter isotopes
- QMS purifies ion beam [7]
 - $\rightarrow~m/\Delta m$ = 150 @ 80% efficiency
- behind the QMS: electrostatic lens

[7] Design values taken from: E. Haettner et al., Nuclear Inst. and Methods in Physics Research, A 880 (2018) 138-151.

Experimental Setup - Overview

Pure 229m Th ion beam/bunches:

continuous extraction mode:

- $\approx 10\ 000\ ^{229}\text{Th}^{3+}$ ions per second
- $\approx 8\ 000\ ^{229}\text{Th}^{2+}$ ions per second

continuous extraction mode: bunch mode:

- ≈400 ²²⁹Th³⁺/≈300 ²²⁹Th²⁺ ions per bunch @ 10 Hz repetition rate
- $\Delta \text{TOF}_{\text{FWHM}} < 10 \ \mu \text{s}$
 - \rightarrow high (peak) flux: 4×107 1/s

Lifetime Measurements

Measurements with ²³⁰Th:

- clear signal from ionic impact for $^{230}Th^{2+,3+}$

[8] B. Seiferle, L.v.d. Wense & P.G. Thirolf, PRL 118, 042501, (2017)

イロト イヨト イヨト イヨト

Lifetime Measurements

Measurements with ²³⁰Th:

clear signal from ionic impact for ²³⁰Th^{2+,3+}

Measurements with ²²⁹Th:

- signal remains after ion accumulation for ²²⁹Th^{2+,3+}
- ion neutralization on the detector triggers internal conversion decay

э

イロン イヨン イヨン ・

Lifetime Measurements

Measurements with ²³⁰Th:

clear signal from ionic impact for ²³⁰Th^{2+,3+}

Measurements with ²²⁹Th:

- signal remains after ion accumulation for ²²⁹Th^{2+,3+}
- ion neutralization on the detector triggers internal conversion decay

(日) (部) (注) (注) (三)

Outline

- 1. Motivation
- 2. Experimental Setup
- 3. Lifetime Measurements

4. Energy Measurements

5. Conclusion & Outlook

Experimental Setup - Overview

measure the kinetic energy of the IC electrons!

• replace MCP detector with metallic surface in an electron spectrometer

Experimental Setup - Overview

measure the kinetic energy of the IC electrons!

• replace MCP detector with metallic surface in an electron spectrometer

$$E_I = E_e + E_B$$

<ロト < 部ト < 言ト < 言ト こ の Q () 18/30

イロト イヨト イヨト イヨト 二日

18/30

Neutralization on a surface

- electrons are delocalized
- *E_B* will reflect surface properties

Neutralization on a surface

- electrons are delocalized
- *E_B* will reflect surface properties

Surface cleanliness

- monolayer formation time @ 10^{-8} mbar: \approx 300 s
- cleanliness affects the surface properties
 - $\rightarrow\,$ work function reduction
 - $\rightarrow\,$ binding energies of e^- ($\approx\,$ eV)

Neutralization on a surface

- electrons are delocalized
- *E_B* will reflect surface properties

Surface cleanliness

- monolayer formation time @ 10^{-8} mbar: \approx 300 s
- cleanliness affects the surface properties
 - $\rightarrow\,$ work function reduction
 - $\rightarrow\,$ binding energies of e^- ($\approx\,$ eV)

We need surface-independent measurement principle!

Monochromatic light source $h\nu$ + metallic surface:

- electron binding energies are broadly distributed
- zero binding energy: fermi-edge
 - \rightarrow electron from fermi edge have maximum kinetic energy E_{\max}

Monochromatic light source $h\nu$ + metallic surface:

- electron binding energies are broadly distributed
- zero binding energy: fermi-edge
 - \rightarrow electron from fermi edge have maximum kinetic energy E_{\max}

イロト イポト イヨト イヨト

Measure kinetic energy with spectrometer:

- apply offset voltage to sample U
- spectrometer work-function W_S
 - $\rightarrow E_{\max} = h\nu W_S U$
 - \rightarrow independent from sample work-function

 $h\nu = E_{\max} + U + W_S$

- collect ^{229m}Th on a metal surface
- electrons are delocalized
 - \rightarrow replace $h\nu$ with E_I

 $E_I = E_{\max} + U + W_S$

<ロト < 部ト < 差ト < 差ト 差 の Q (~ 20 / 30

- collect ^{229m}Th on a metal surface
- electrons are delocalized
 - \rightarrow replace $h\nu$ with E_I

Magnetic Bottle Spectrometer [9]

- (IC) electrons are emitted from a metallic sample
- strong permanent magnet → strongly inhomogeneous magnetic field
- magnetic coil \rightarrow weak homogenous magnetic field
 - $\rightarrow\,$ electrons are collected and guided towards weak magnetic field
 - $\rightarrow\,$ collimated electron beam
- retarding field analyzer
 - $\rightarrow\,$ electrons with energy larger than some blocking voltage reach detector

[9] Y. Yamakita et al., Review of Scientific Instruments 71, 3042 (2000).

イロト イボト イヨト イヨト 二日

Magnetic Bottle Spectrometer [9]

What kind of spectra do we expect?

- integrated spectrum
- how to obtain Emax?
 - $\rightarrow\,$ fit indefinite integral of the Fermi function to high-energy part of the spectrum

What kind of spectra do we expect?

- integrated spectrum
- how to obtain Emax?
 - $\rightarrow\,$ fit indefinite integral of the Fermi function to high-energy part of the spectrum

22/30

$h u = E_{\max} + U + W_S$

- calibration: measure $U + W_S$ (O U = -15 V)
- spectrometer is calibrated with three lines
 - $\rightarrow h\nu = 4.888 \text{ eV} (\text{Hg discharge 254 nm})$
 - $\rightarrow h\nu =$ 6.705 eV (Hg discharge 185 nm)
 - $\rightarrow h\nu = 7.897 \text{ eV} (F_2 \text{ excimer laser 157 nm})$

$h u = E_{\max} + U + W_S$

- calibration: measure $U + W_S$ (@ U= -15 V)
- spectrometer is calibrated with three lines
 - $\rightarrow h\nu = 4.888 \text{ eV} (\text{Hg discharge 254 nm})$
 - \rightarrow $h\nu$ = 6.705 eV (Hg discharge 185 nm)
 - $\rightarrow h\nu = 7.897 \text{ eV} (F_2 \text{ excimer laser 157 nm})$

$h u = E_{\max} + U + W_S$

- calibration: measure $U + W_S$ (@ U= -15 V)
- spectrometer is calibrated with three lines
 - $\rightarrow h\nu =$ 4.888 eV (Hg discharge 254 nm)
 - \rightarrow $h\nu$ = 6.705 eV (Hg discharge 185 nm)
 - $\rightarrow h\nu$ = 7.897 eV (F₂ excimer laser 157 nm)

= •) ((• 23 / 30

$h u = E_{\max} + U + W_S$

- calibration: measure $U + W_S$ (@ U= -15 V)
- spectrometer is calibrated with three lines
 - $\rightarrow h\nu =$ 4.888 eV (Hg discharge 254 nm)
 - \rightarrow $h\nu$ = 6.705 eV (Hg discharge 185 nm)
 - \rightarrow $h\nu$ = 7.897 eV (F₂ excimer laser 157 nm)

- for the following measurements
 - $\rightarrow~U+W_S$ = -10.59 $\pm 0.05~{\rm eV}$

25/30

IC Electron Measurements

- collect bunched ^{229m}Th²⁺ ion beam on a platinum surface (set to -15 V)
- -15 V blocking voltage
- clear (decay) signal
 - $\rightarrow E_I >$ 4.4 eV

- collect bunched ^{229m}Th²⁺ ion beam on a platinum surface (set to -15 V)
- -15 V blocking voltage
- clear (decay) signal

 $\rightarrow E_I >$ 4.4 eV

- = 19.0 V blocking voltage correspond to 8.41 \pm 0.05 eV
- clear signal above Poisson distributed noise

- = 19.0 V blocking voltage correspond to 8.41 \pm 0.05 eV
- clear signal above Poisson distributed noise

▶ < ≣ ▶ ≣ ∽) < (~ 26 / 30

- = 19.0 V blocking voltage correspond to 8.41 \pm 0.05 eV
- clear signal above Poisson distributed noise

▶ < ≣ ▶ ≣ ∽) < (~ 26 / 30

Outline

- 1. Motivation
- 2. Experimental Setup
- 3. Lifetime Measurements
- 4. Energy Measurements
- 5. Conclusion & Outlook

Outlook

Lifetime Measurement of the γ decay channel (... and someday Th nuclear laser spectroscopy)

- requires long storage times (without any direct manipulation)
 - → Cryogenic Paul Trap (CryPTEx design, MPIK Heidelberg [10])
- Sympathetic laser cooling with Sr⁺

Conclusion

- ²²⁹Th is a special nucleus
 - $\rightarrow\,$ lowest energy of all known nuclear levels
 - $\rightarrow\,$ nuclear optical clock
- lifetime measurement of the internal conversion decay channel
 - \rightarrow $t_{\rm 1/2}=7~\mu{\rm s}$
 - $\rightarrow\,$ how strong is the surface-dependence?
- energy measurement of IC electrons ongoing

nuelock

Thank you for your attention!

Benedict Seiferle¹, Lars von der Wense¹, Nicolas Arlt¹, Benjamin Kotulski¹, Mustapha Laatiaoui^{2,3}, Jürgen B. Neumayr¹, Hans-Jörg Maier¹, Hans-Friedrich Wirth¹, Christoph Mokry^{3,4}, Jörg Runke^{2,4}, Klaus Eberhardt^{3,4}, Christoph E. Düllmann^{2,3,4}, Norbert G. Trautmann⁴ & Peter G. Thirolf¹
 1 Ludwig-Maximilians-Universität München, 2 GSI Helmholtzzentrum für Schwerionenforschung GmbH, 3 Helmholtz-Institut Mainz 4 Johannes Gutenberg-Universität Mainz.

DFG Deutsche Forschungsgemeinschaft

イロト イボト イヨト イヨト 二日

lorizon 2020 Suropean Union funding or Research & Innovation

30/30