

Production of Radioactive Ion Beams at Legnaro

Alberto Andrighetto LNL-INFN

Talk Overview

-The SPES RIB Source

- The RIB +1 line.

- Possible first RIB's @ SPES.

The RIB source complex

The SPES TIS UNIT

Target materials have to meet some specific mandatory requirements:

- They have to be solid -> Safety requirement
- They have to be refractory (the higher the reachable temperature the better the release) -> ISOL requirement

In addition

- Their emissivity value should be high (higher emissivity means better thermal radiative exchange.)
- They should be easy to produce/purchase

Target concepts: state of art

Isotope production: UC_x target

FLUKA& MCNPX calculations experimentally validated @ ORNL

Comparison 40 MeV p-> UC_x v.s. ThC (Fluka)

Alberto Andrighetto

stituto Nazionale li Fisica Nucleare

SPES beams (light): non fissile targets

Alberto Andrighetto

itituto Nazionale i Fisica Nucleare

SPES -Nusprasen Workshop Pisa February 2018

SPES beams (medium): non fissile targets

Alberto Andrighetto

SPES -Nusprasen Workshop Pisa February 2018

SPES beams (heavy): non fissile targets

Alberto Andrighetto

SPES - Nusprasen Workshop Pisa February 2018

The TIS Unit

Target material and UCx production

On-line testing of the SPES target material and architecture @ ORNL (2010-2012)
 A0 MeV, 50 nA proton beam on a UCx target

Experimental Yield with UCx target

Irradiation by 40 MeV, 50 nA proton beam, ionization with plasma ion source

T_{1/2} (s)

Isotope	$T_{1/2}$ (s)	$\mathrm{Yield}(\mathrm{ions}/\mathrm{s}{\cdot}\mu\mathrm{A})$	$\varDelta \mathrm{Yield}~(\mathrm{ions/s}{\cdot}\mu\mathrm{A})$	$\varDelta \mathrm{Yield}/\mathrm{Yield}$
72 Cu	6.60	$2.19\cdot 10^5$	$4.30 \cdot 10^3$	0.01963
⁷⁸ Zn	1.47	$1.22 \cdot 10^{5}$	$3.62 \cdot 10^{3}$	0.02967
^{79g} Ge	19.00	$1.31 \cdot 10^{6}$	$4.05 \cdot 10^{4}$	0.03092
⁸¹ As	34.00	$7.15 \cdot 10^{5}$	$1.59 \cdot 10^{4}$	0.02224
⁸¹ Ga	1.22	$2.20 \cdot 10^{5}$	$6.55 \cdot 10^{3}$	0.02977
${}^{83g}Se$	22.40 m	$3.30 \cdot 10^{6}$	$3.23 \cdot 10^{4}$	0.00979
⁸⁷ Kr	$1.27 \ { m h}$	$1.09 \cdot 10^{7}$	$1.04 \cdot 10^{6}$	0.09541
^{88}Br	16.30	$1.15 \cdot 10^{7}$	$2.31 \cdot 10^{5}$	0.02009
^{90}Br	1.91	$9.94 \cdot 10^{5}$	$4.01 \cdot 10^{4}$	0.04080
⁹² Kr	1.84	$1.55 \cdot 10^{6}$	$2.42 \cdot 10^4$	000.561
⁹³ Rb	5.80	$3.25 \cdot 10^{5}$	$1.03 \cdot 10^4$	0.03169
^{93}Sr	7.45 m	$1.10 \cdot 10^{7}$	$1.12 \cdot 10^5$	0.01018
^{94}Sr	1.23 m	$6.30 \cdot 10^{6}$	$1.91 \cdot 10^5$	0.03032
⁹⁵ Y	10.30 m	$2.05 \cdot 10^{6}$	6.66 N	0.03249
¹¹⁹ Ag	2.10	$2.96 \cdot 10^{7}$	210^{5}	0.00834
¹²⁰ <i>g</i> Ag	1.23	$1.52 \cdot 10^{7}$	$4.32 \cdot 10^{5}$	0.02842
^{120m} In	47.30	4.23 · 10 ⁷	$1.02 \cdot 10^{6}$	0.02411
¹²¹ Ag	0.78	5.53 · 106	$1.44 \cdot 10^{5}$	0.02604
^{123m} Cd	1.82	1.08 45	$1.60 \cdot 10^{5}$	0.01481
¹²³ gIn	5.98	$122 \cdot 10^{8}$	$2.03 \cdot 10^{6}$	0.01664
¹²⁴ Cd	1.29	$8.24 \cdot 10^{6}$	$1.63 \cdot 10^{5}$	0.01978
^{132}Sn	38.19	$2.14 \cdot 10^{6}$	$2.80 \cdot 10^{4}$	0.01308
^{133m} I	9.00	$1.04 \cdot 10^{7}$	$1.54 \cdot 10^{5}$	0.01481
¹³³ Sb	2.50 m	$9.77 \cdot 10^{6}$	$3.72 \cdot 10^{5}$	0.03808
¹³⁴ <i>g</i> I	$52.50 \mathrm{~m}$	$1.40 \cdot 10^{8}$	$2.77 \cdot 10^{7}$	0.19786
¹³⁴ Te	41.80 m	$4.90 \cdot 10^{7}$	$7.70 \cdot 10^{6}$	0.15714
¹³⁷ Xe	3.83 m	$4.58 \cdot 10^{7}$	$2.88 \cdot 10^{6}$	0.06288
^{140}Cs	1.06 m	$1.44\cdot 10^6$	$4.85 \cdot 10^{4}$	0.03368
^{141}Ba	18.30 m	$2.48\cdot 10^6$	$3.24 \cdot 10^{5}$	0.13065

SPES On line test (Power deposition)

4) Full scale (40 mm.) SiC @ Ithemba, p=66 MeV, 60 microA for thermal dissipation studies → On-line testing of the SPES target architecture @ iThemba (May 2014)

1° disk: 1365 ± 30°C	1390
Box: 1230 ± 25°C	1267
Dump on chamber: 728°C ± 10°C	750

iThemba LABS: funded to build an RIB target/ion-source like SPES

Characterization of the SPES ion sources (17 different stable beams accelerated so far... + 2 under development)

INFN Istituto Nazionale di Fisica Nucleare

Characterization of the SPES Surface Ion Source

Characterization of the SPES Plasma Ion Source

tituto Nazionale

The RIB +1 line

(First Low Energy RIB at SPES)

SPES - Nusprasen Workshop Pisa February 2018

The 1+a beam line operation: The general layout

1+ beam line from **<u>TIS</u>** to **<u>tape system</u>**

STEP1: Low Energy, Low Intensity Beam for first experimental studies

STEP2: ALPI Beam for 'High' Energy experimental studies

Alberto Andrighetto

SPES -Nusprasen Workshop Pisa February 2018

RIB Bunker set-up

RIB Bunkers: Layout

subsystem name	design status	construction status	delivery date estimation
protonic front-end	90%	20%	September 2018
radioactive font-end (removable)	90%	60%	July 2018
radioactive font-end (fixed)	90%	90%	done
diagnostic box 1	100%	80%	March 2018
Wien filter (electrostatic)	100%	90%	March 2018
Wien filter (magnetic)	100%	tender	Dec 2018
steerer box	100%	80%	March 2018
diagnostic box 2	100%	70%	March 2018
quadrupole triplet	100%	90%	March 2018

1+A beam line operation: Devices to TS

Devices	Number
ETQ (triplets)	6
ED (el. Dipole)	3
Steerer	6
MD (mag. Dipole)	1
Diagnostic Box	4 + 5

1+ A beam line operation: Layout

subsystem name	design status	construction status	delivery date estimation
Quadrupole triplets	100%	tender	November 2018
Electrostatic Dipole (prot)	100%	50%	January '18; Nov. 18 for others
Frames	80%	tender	July 2018
Diagnostic box (no detector)	10%	0%	Dec 2018
Magnet Dipole	100 %	tender	Dec 2018
Steerer box (prot)	100%	10%	done, End '18 for others
Tape System	70%	30% (?)	Dec 2018

1+ beam line operation: devices

electrostatic triplet of quads

Prototype tested; Purchase Tender launched

<u>magnetic dipole</u> documentation ready for the Purchase Tenders

<u>electrostatic dipole</u> Prototype tested; internal production start

tape system

In construction (4 devices)

electrostatic steerers Prototype tested; internal production start

diagnostic box documentation ready for the call for Tenders

exotic beams for science

Possible first SPES RIBs

(first physics experimental campaign)

Alberto Andrighetto

SPES - Nusprasen Workshop Pisa February 2018

LOI users requirements

LIS Beams

SIS & PIS Beams

LOIs & UCx target: RIBs Low Energy (overview)

nucl. sy.	yield (pps) @ 20 μA	selectivity (%)	ion source type	main contaminants (if sel. < 60%)	notes	LOI reference
123 Sn	1.28E+09	12	LIS	In	low selectivity beam	38
121 Sn	2.02E+08	6.6	LIS	In	low selectivity beam	38
83 Ge	2.47E+07	100	LIS	-	selective beam	27
82 As	1.07E+07	71	LIS	-	selective beam	27
110 Ag	9.60E+06	100	LIS	-	selective beam	38
80 Ga	3.05E+06	100	LIS	-	selective beam	27
134 Sn	2.49E+06	3	LIS	In, Cs, Ba	low selectivity beam	10
84 As	1.86E+06	69	LIS	-	selective beam	27
82 Ga	3.29E+05	100	LIS	-	selective beam	10; 27
108 Ag	2.58E+05	38	LIS	Rb, Sr, In	low selectivity beam	38
84 Ge	6.61E+04	100	LIS	-	selective beam	10; 27
83 Ga	6.06E+04	100	LIS	-	selective beam	10; 27
96 Rb	9.89E+07	31	SIS	Sr	easy beam	37
147 Cs	4.91E+04	1.7	SIS	Ва	easy beam	10
100 Rb	4.49E+04	1.2	SIS	Sr	easy beam	10
86 Br	7.73E+07	42	PIS	As, Se, Kr	low selectivity beam	44
139 I	5.94E+06	1.5	PIS	Xe, Cs, Ba	low selectivity beam	10
140 I	9.17E+05	0.1	PIS	Xe, Cs, Ba	low selectivity beam	10
141	1.40E+05	0.1	PIS	Xe, Cs, Ba	low selectivity beam	10

Conclusions

SPES - Nusprasen Workshop Pisa February 2018

Goals: beam delivery & RIB Source Commissioning

The 'demonstrative' (first) beam:

The collaboration network for SPES-RIB

Alberto Andrighetto

tituto Nazionale

Conclusion

Thanks for your attentio EMPIRE Few results without them ...

Alberto Andrighetto

SPES -Nusprasen Workshop Pisa February 2018