

SPES project

1 febbraio 2018

Gianfranco Prete SPES Project leader

SPES one-day Workshop "Probing fundamental symmetries and interactions by low energy excitations with SPES RIBs" 1-2 February 2018 INFN, Pisa

OUTLOOK

- SPES goals
- Layout and components
- Installation planning
- Resources

Second generation ISOL facility integrated in the European road-map for

Nuclear Physics (EURISOL DS)

- 1_ Production of exotic beams
- 2_ Re-acceleration of exotic beams with the ALPI linac

(Mainly Neutron-rich ions by p-induced Fission on UCx)

Performance up-grade for a Second generation ISOL facility

 \Box More beam intensity: 10⁷-10⁸ pps (n-rich: 10¹³ fission/s

- □ More beam energy: 10 MeV/n
- □ More pure (selected) beam: 1/20.000

EURISOL Distributed Facility (DF) Initiative

Project to be submitted for the 2020 update of the ESFRI roadmap

Complementarities: Instrumentation eg. AGATA, FAZIA, GASPARD, PARIS Challenges: High-power targets & sources, purification of RIB

- A **distribute laboratory** for radioactive beams:
- More exotic beams available
- Coordination of competences to face EURISOL technologic challenges
- Joint effort to manage the activity at European level

First SPES Physics workshop: 2008

International workshop: 2010, 2014, 2016

One-day workshop:

- 2012, Napoli Transfer reactions,
- 2012, Firenze Coulomb Excitation
- 2013, Milano Collective excitations
- 2015, Milano Physics with non reaccelerated beams
- 2015, Caserta Nuclear astrophysics
- 2018, Pisa Fundamental symmetries and interactions

LOI n-rich RIBs

Path toward beam selectivity: in-target reaction \rightarrow ion-source \rightarrow mass separation

		19 Elements		BEAMS vs. Ion Source
Total beams	89	in 47 LOIs	LOI %	Plasma
Beams with 200_LRMS	47		53%	PIS
Benefit with 5.000_HRMS	3	\rightarrow 50 beams	56%	Surface sis
Benefit with 10.000_HRMS	17	\rightarrow 67 beams	75%	ionization
Benefit with 15.000_HRMS	15	\rightarrow 82 beams	92%	Resonant laser
Benefit with 20.000 HRMS	7	→ 89 beams	100%	LIS SIS PIS

Instrumentation@SPES: Tape system

SPES Lol's for beta decay station

1_Astrophysics: input for r and s process **2_Nuclear structure:** Shell evolution and nuclear shap **3 Exotic decay :** Pygmy resonance by β decay

Additional instrumentation and collaborations

Decay spectroscopy techniques to study neutron-rich fission fragments at SPES

Krzysztof P. Rykaczewski, Robert Grzywacz, Carl J. Gross, Daniel W. Stracener, Yuan Liu Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6371, USA in collaboration with
 C. Mazzocchi, A. Korgul, M. Karny, K. Miernik, U. of Warsaw, Warsaw, Poland W. Krolas, Institute of Nuclear Physics PAN, Krakow, Poland

MTAS = Modular Total Absorption Spectrometer

The physics of neutron-rich fission fragments – nuclear structure evolution as N >> Z

- spectroscopy near and above the neutron separation energy

- rapid-neutron capture half-lives and beta-delayed neutron branchings

- more detailed understanding of the anti-neutrino spectra from reactors

VANDLE = Versatile Array of Neutron Detectors for Low Energy

- societal impact in better data for modeling neutron-rich environments such as nuclear reactors

Left panel: 3D rendering of the compact geometry having 5 Triple Cluster Ge detectors with BGO shields. The tape is coming from the right side of the figure. In the right panel the simulated spectrum for the decay ${}^{33}\text{Si} \rightarrow {}^{33}\text{P}$ is shown in different simulated conditions.

2500 3000

OAK RIDGE NATI

Instrumentation @ SPES

 $\begin{array}{l} \mbox{PRISMA} \mbox{ large acceptance } \mbox{ magnetic spectrometer} \\ \Omega \approx 80 \mbox{ msr; } \mbox{ } B\rho_{max} = 1.2 \mbox{ Tm } \Delta A/A \simeq 1/200 \\ \mbox{ Energy acceptance } \simeq \pm 20\% \end{array}$

GALILEO γ-array

Instrumentation @ SPES

International Collaborations: itinerant detectors

SPES goals: applications

- Research and Production of Radio-Isotopes for Nuclear Medicine
- Advanced phase: in construction
 - LARAMED project: production of radioisotopes by proton induced reaction
 - ISOLPHARM project: production of radioisotopes by ISOL method, with very high specific activity (5-6 order of magnitude more than standard)
 - Possible INFN-industry joint venture for radioisotopes production
- Accelerator-based neutron source (Proton and Neutron Facility for Applied Physics) : NEPIR project (Technical Design)
- Design study
 - SPARE (MIUR Progetto Premiale 2015)
 - Participation to the international Union of Accelerator-based Neutron Sources (UCANS)

SPES infrastructure - layout

SPES layout and components

RIB reacceleration:

- new RFQ
- ALPI

1/20.000 Mass separator (Beam Cooler + HRMS) Elettrostatic beam transport Charge Breeder (n+) 1/1000 mass separator

ISOL bunkers 1/150 mass separator low energy experimental area Radioisotopes production area (LARAMED)

ISOL facility installation phases

Cyclotron and beam lines

- Proton beams (H- acceleration)
- Dual beam extraction
- Variable Energy 35-70 MeV
- Total current 750 microA

2017 cyclotron Work Package activity:

- 1. Completed the cyclotron commissioning
- 2. Personnel trained for operation and maintenance
- 3. LNL personnel start the cyclotron test up to Beam Dump at 70 MeV 500 microA

SPES CYCLOTRON

load work per year

Compact, high current, H- cyclotron: 70 MeV, 0.7 mA shared on 2 exits 2 proton beams are available at the same time

Beam sharing

2 weeks per shift

Beam preparation 2 days Beam on target 12 days

Beam on target \rightarrow 280 hours per shift

Each bunker will cool down for 14 days after target irradiation.

Expected Beam on target: 10.600 hours per year

			-
	Proton	N.rs of SHIFTS	Beam on target:
	Deam		
ISOL 1	250μΑ	10	2800
	40MeV		
Irradiation 1	500 µA	9	2500
	70MeV		
Irradiation 2	500 µA	10	2800
	70MeV		
ISOL 2	250 µA	9	2500
	40MeV		
Maintanance		7	7x14x24=2350
Cyclotron		19	19x12x24 = 5462
Operation			esperiment
			19X2x24= 912 beam
			preparation

Main Tasks	2017		2	2018			2019			2020)		20)21		
	Q1 Q2 Q3	Q4 0	21 Q2	Q3 Q	24	01	Q2 Q3	Q4	Q1 (22 Q	3 Q4	Q1	Q2	Q3	Q4	
															-	
								RIB								
PHASE 2B: ISOL SYSTEM and wien filter	PRELIMINARY	Y ASSEN	ЛBLY	INSTAL	LLATI	ON	HW COM	СОМ								
												\rightarrow	<u> </u>			
													<u> </u>			
													<u> </u>			
								RIB					<u> </u>			
PHASE 2B: 1+ beam line operation	PRELIMINAR	ASSEI	MBLY	INSTA	ALLAT	ION	HW COM	сом				_	<u> </u>			
									\square			_	<u> </u>			
								1	I			-		1		
			1	+ SOUR	CE							_	+			
PHASE ZA. ADIGE 1+ Source	INSTALL			COM	-											
													<u> </u>			
				нуу со		CB	R NADNAS CI				DID	COM				
PHASE ZA. CHARGE BREEDER & MIRINIS		ALLATI	UN			CDO				JFERA						
	<u> </u>							-	-	_	-		-		Ē	
								н\	N /	COM	/ with					
PHASE 3B: RFQ e bunchers		Constr	ruction 8	& installa	ation			CON	ЛМ	RF		' RIB	COM			
								con								
		T T	Ē	T T						-		ſ	F	[ſ	
PHASE 3A: 1+ beam line up to Charge Breeder						CONS	TRUCTION	IN	STALL		НW	-				
						00110			017122	· c	OMM					
		I		1 1									4	I	I	
PHASE 3A: BEAM COOLER		CONSTR	UCTIO	ON		INST	ALL	CO	ММ		1					
		construction														
											_	<u></u>	I			
PHASE 3A: HRMS			DE	DESIGN TENDER						СС	NSTR	UCTIC	N			

Phase 2B

ISOL bunkers

- Proton beam front-end
- ISOL front-end
- TIS (HV platform)
- First Electrostatic triplet
- Wien Filter

072-

- Beam instrumentation
- Second Electrostatic triplet

Phase 2B

Low Energy beam line to Tape Station

Low energy experimental area

Phase 2A: Installation of Charge Breeder and n+ beam line

Matching into ALPI SC linac

RF development and control

PIAVE Superconductive RFQ

5 and 10 MHz structures

ALPI upgrades and Operation

L.

						-		-				-		—					e	xo								
ALPI Upgrades		20)17			20)18			20	19			20	20			20)21									
<u>Al</u>		Upg	rad	e fo	r SP	<u>ES</u>																						
Cryogenic Plant various upgrades																												
New Cold Box Control system and HW Commissior	ning																											
Valve Boxes for CR01-CR02 and CR21-CR22	Γ														L													
Relocation of PIAVE CMs into ALPI (CR01-CR02																												
New cryostats (CR21-CR22) Design															Τ													
New Cryostats tender and realization																												
R&D on Resonator Sputtering																												
Cavity Realization and tests																												
Assembly of full CR21 and CR21 on ALPI beam line								5						40														
Construction of magnets for ADIGE and ALPI							×	5 7					Ċ	$\langle \rangle_{h}$														
Replacement of 10 ALPI lenses with new ones							<i>د//</i>						9/		I.													
First RNB beams in ALPI						X S	۶ ۲					20.	2 C															
TAP activities	Γ	20)17		Π	20)18			2019		2019		2019		2019		2019				20	20			20)21	
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q 3	Q4	Q1	Q2	Q3	Q								
Tandem Sp. Maint. and availability																												
PIAVE Sp. Maint. (since 2015) and availability																												
ALPI Repl.of the cryog. CS and availability															T													
ALPI Repl.of the cryog. CS and availability															†													

Operations

<u>Upgrades</u>

	Agreement preparations, tenders, project phases
	Construction
Color Legend	Hardware Commissioning of machine parts
	Assembly of components or plants
	Assembly, if clustered w/others in particular LNL periods
	Beam Commissioning

12.4

12.2

12.0

11.8

11.6

Euregy Max [MeV/A] 11.0 10.8 10.6 10.4

> 10.2 10.0

> > 9.8

9.6

9.4

5.00

component	Status December 2017	milestones
HRMS high resolution mass separator	 Physical design ready, integration with beam cooler and beam lines under way Preliminary dipole design and feasibility check with potential manufacturer done 	 Critical Design Review in April 2018 Authorization to tender October 2018 Commissioning 2022
Beam Cooler	Collaboration with LPC_Caen for Beam Cooler development (expertise: SCIRaC - SPIRAL2)	Construction 2018Commissioning 2020
Normal conductive RFQ	6 modules of RFQ in construction. First 4 electrodes under dimensional commissioning (delivered in April 2017) 2nd set of 4 electrodes brazed in May 2017	Constraction 2018Installation 2019-2020
1+ Beam line transfer	Electrostatic triplets of quadrupoles designed Electrostatic dipoles under construction Vacuum systems delivered	 Tender for triplets 2018 Installation 2019 - 2020
Safety	Safety system analysis and design: Bid assigned (PILZ), risk analysis completed	 Design completed 2018 Installation and commissioning 2019

Installation phases

Main Tasks	2017 2018				201	.9		2020		2021	20	22					
	Q1	Q2	Q3 (24	Q1	Q2 Q3	Q4	Q1	Q2 (Q3 Q4	Q1	Q2 Q3 Q4	Q1	Q2 Q3	Q4	Q1 Q2	Q3 Q4
PHASE 2a: CHARGE BREEDER & MRMS installation																	
													i			1	
PHASE 2B: ISOL SYSTEM and wien filter												Experi	me	nts w	th r	ion-	
PHASE 2B: 1+ beam line operation												reacce	eler	ated b	ns 202	20	
-																	
PHASE 3A: 1+ beam line up to Charge Breeder																	
PHASE 3B: bunchers & RFQ																	
-		_					_	_		_	_				_		
PHASE 3A: BEAM COOLER																	
PHASE 3A: HRMS																	

Installation phases

Allocated Manpower

Staff effort increased for installation: + 10 FTE /15 staff

Revisione dicembre 2017 analisi globale costo totale

	year	tot allocated	Expected to complete	Tot Meuro
gen-13	2012	19,0	30,6	49,6
dic-13	2013	20,9	31,5	52,4
dic-14	2014	23,7	30,6	54,3
dic-15	2015	30,7	23,6	54,3
dic-16	2016	35,2	19,8	55,0
dic-17	2017	39,0	18,3	57,2
dic-18		49,1	8,2	57,2
dic-19		54,8	2,4	57,2
dic-20		57,2	0,0	57,2

2013: building upgrade (more infrastructures)
2014: budget revision
2016: building upgrade and low energy beam line

Main highlights 2017:

- Completed the Cyclotron commissioning
- Started the installation phase of Charge breeder and mass separator
- Completed the prototype test of:
 - ISOL system
 - first selection system (wien filter)
 - transport line components (electrostatic triplets and dipole)

Expected milestones:

- 2020 first experiments with low energy exotic beams (non re-accelerated)
- 2021 first experiments with re-accelerated exotic beams
- 2022 operation of High resolution mass separator

Grazie dell'attenzione

ISOL and in-flight RIBs international Facilities

Laboratory	New RIB projects	Beam to experiment	notes
LNL	SPES	2020 (no reacc) 2022 (reacc 10A MeV)	Second generation ISOL_UCx
CERN	HIE_ISOLDE	2017 (reacc 5A MeV) 2021 (High Intensity to be funded)	Second generation ISOL_UCx
TRIUMF	ARIEL	2020 (no reacc)	Second generation ISOL_UCx
CIAE Beijing	BRIF	(2014 cyclotron commissioned)	ISOL under construction
VECC Kolkata	ANURIB	(2025)	ISOL design study
Corea	RISP	2022	In-flight & ISOL_UCx
GANIL	SPIRAL2	2023	High intensity Fusion- Evaporation
GSI	FAIR	2025	In-flight
MSU	FRIB	2022-24	In-flight
RIKEN	RIBF	2006	In-flight
ANL	CARIBU	2010	252Cf Catcher

Details about the requested beams at SPES according to the Letters of Intent

47 LOIs submitted to SAC15% with non re-accelerated RIBs21% with 132Sn19 elements, 89 isotopes

		19 Elements	
Total beams	89		LOI %
Beams with 200_LRMS	47		53%
Benefit with 5.000_HRMS	3	\rightarrow 50 beams	56%
Benefit with 10.000_HRMS	17	\rightarrow 67 beams	75%
Benefit with 15.000_HRMS	25	\rightarrow 82 beams	92%
Benefit with 20.000_HRMS	7	\rightarrow 89 beams	100%

Planning for installation PHASE 2B (ISOL system and low energy RIB production)

Phase 2B: ISOL system – low energy beam line to Tape Station		20)17			20)18			20	19	
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
A6 room (bunker)					-							
test with stable beams: ionization and trasport (ISOL laboratory)												
install. of the main plants and subs. required in the ISOL rooms												
mech. Install. of the proton and iSOL FrontEnd												
beam line test with stable ion beams												
primary and secondary beam lines commissioning												
Laser installation end test												
A5 and A13 rooms (experimental hall)					_							
completion of the general 1+ beam line design & layout												
construction of the electrostatic dipoles and triplets												
magnetic dipole construction												
installation of the main components of the 1+ beam line												
operation with stable ion beams along the 1+ beam line												
SPES facility	_	_	_	_	_	_		_	_	_	_	
RIBs delivered at the tape station												

Planning for installation PHASE 2A – 3B Exotic beam re-acceleration

Phase 2B: Charge breeder (w/1+ source) - MRMS - to RFQ		2017			2018				2019					20	20		2021			
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Tests at LPSC on CB contaminants																				
Experimental Phase 1 (SI+PIS before the CB)																				
CB characterization with MRMS (no injected beam)																				
CB characterization with MRMS (w/injected beam)																				
Beam Line completion MRMS to RFQ																				

	Study phase, bid, preparatory work
Color Legend	Construction and installation
	Beam Commissioning

Phase 3B: Bunchers – RFQ preaccelerator	2017			2018				2019			2020				2021			
	Q1	Q2	Q3	Q4	Q1	Q2 (23 C	4Q2	L Q2	Q3	Q4	Q1	Q2	Q3 0	24	21 0	2 Q3	3 Q4
Bunchers (tender/construction)																		
Beam Line completion MRMS to RFQ																		
Beam injection tests to RFQ Input																		
Installation from RFQ to ALPI																		
RFQ Construction and Installation																		
RFQ HW Commissioning																		
Beam Commissioning Phase 3B. (RFQ-to-ALPI)																		

Scheduled plan for LARAMED RILAB (L3b/c -xs meas.) bunker installation

<u>Main Tasks</u>	2017		2018			2019				2020				2021						
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2 (23	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
L3(b+c) room (bunker) - civil construction																				
completion of the bunker design & layout																				
civil contruction (+ praparatory activities stage)																				
installation of bunker door and pressure drop system																				
L3(b+c) room (bunker) - beamline																				
completion of the general beam line design & layout																				
install. of the main plants and subs. required in the room																				
cabling & piping for the apparati inside the L3(b+c) room																				
mech. Install. of the proton beam line and ancillaries																				
prot. beam line test with low int. prot. beam in the low power FC																				
L3(b+c) room (bunker) - xs target station																				
completion of the general beam line design & layout																				
construction and test of the XS target system (prototype)																				
construction of the XS target station final version																				
mech. Install. of the xs target station and ancillaries																				
xs target station commissioning																				
xs beam line commissioning																				

Agreement preparations, tenders, project phases

Design & Construction

Beam Commissioning

SPES Lol's for beta decay station

1_F.C.L.Crespi (INFN_Mi, Italy) **Pygmy Dipole States** in Neutron-rich Zr and Kr Isotopes Investigated with Beta Decay

2_T. Kurtukian-Nieto (CENBG, IN2P3/CNRS / Université Bordeaux, France)

Measurement of the decay characteristics of nuclei around A=90 relevant to **the r-process nucleosynthesis**.

3_K.P. Rykaczewski (ORNL Oak Ridge, USA) **Nuclear structure** of neutron-rich nuclei determined through beta decay spectroscopy of fission fragments

4_A.Gottardo (IPNO, France)

Shell structure and collective excitations and resonances at and beyond N=50 with decay spectroscopy

5_S.Cristallo (INAF, Italy) Letter of Intents for measurements at SPES on beta-decay properties of nuclei belonging to **the s-process path**.

6_A.Nannini (INFN_Fi, Italy) Electron conversion measurements at SPES 1+ beam line: measurement of **E0 transitions** in 96Sr

7_D.Testov (JINR, Dubna, Russia) Study of beta-decay properties of neutron-rich isotopes approaching **the r-process path**. Astrophysics: input for r and s process Nuclear structure: Shell evolution and nuclear shape Exotic decay : Pygmy resonance by Bdecay

SPES Lol's for beta decay station

1_Astrophysics: input for r and s process **2_Nuclear structure:** Shell evolution and nuclear shap **3 Exotic decay :** Pygmy resonance by β decay

Additional instrumentation and collaborations

Decay spectroscopy techniques to study neutron-rich fission fragments at SPES

Krzysztof P. Rykaczewski, Robert Grzywacz, Carl J. Gross, Daniel W. Stracener, Yuan Liu Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6371, USA in collaboration with C. Mazzocchi, A. Korgul, M. Karny, K. Miernik, U. of Warsaw, Warsaw, Poland W. Krolas, Institute of Nuclear Physics PAN, Krakow, Poland

MTAS = Modular Total Absorption Spectrometer

VANDLE = Versatile Array of Neutron Detectors for Low Energy

The physics of neutron-rich fission fragments

- nuclear structure evolution as N >> Z
- spectroscopy near and above the neutron separation energy
- rapid-neutron capture half-lives and beta-delayed neutron branchings
- societal impact in better data for modeling neutron-rich environments such as nuclear reactors
- more detailed understanding of the anti-neutrino spectra from reactors

Instrumentation @ SPES

ATS @ SPES within the NUCL-EX collaboration (LNL, Bologna, Fi, Pd, Mi, Na) + LNS_Stream

ACTAR : Active Target Detector Starting activity with ACTAR collaboration:

ENSAR2 GDS network and PRIN national project (submitted)

The **ACTAR TPC** collaboration is actually composed by: Centre d'Etudes Nucleaires de Bordeaux Gradignan (CENBG), France Grand Accelerateur National d'Ions Lourds (GANIL), France Institut de Physique Nucleaire d'Orsay (IPNO), France Institut de Recherche sur les lois Fondamentales de l'Univers (IRFU), France University of Leuven (KUL), Belgium

Beam

200 (ILIII) 150 (ILIIII) VANN

50

Universidade de Santiago de Compostela (USC), Santiago, Spain

Micro-megas technology for the amplification region : low

cost 5€/cm

Courtesy of R. Raabe & G.F. Grinyer

GDS – Network within

43

Istituto Nazionale di Fisica Nucleare

≈250 mm

Heavy

200

Light

X_{MAYA} (mm)

100

ENSAR2 – INFN WP leader F.G. -8th Japan Italy Synposium 7-10 March 2016

- □ LARAMED: use of cyclotron for production of standard and new radioisotopes by proton induced reactions
- ISOLPHARM: use of ISOL technique to produce radioisotopes with very high specific activity (5-6 order of magnitude more than standard)

LARAMED

Production of radionuclides for medicine using the SPES cyclotron (production&research)

Joint Research lab of INFN, CNR, Universities and external companies:

- Cross Section measurements through target activation
- High power targets tests
- Radio-isotope/radio-pharmaceutical Production test facility (^{99m}Tc, ⁶⁴Cu, ⁶⁷Cu, ⁸²Sr, ...)

Production laboratory in Joint Venture

with external companies: Selected isotopes of medical interest Sr-82/Rb-82 generator T1/2: 25.6 d EC 100% / 1.3 min photons 511keV, 776keV

Facility under construction

ARRONAX (Nantes) – SPES collaboration: Isotopes and high-Power target developments A.Duatti

STATUS:

- Building and infrastructures under development
- Design of radiochemistry labs
- Design of beam line and target management
- Contract with company for radioisotopes production to be finalized

ISOLPHARM*

Use of ISOL technique for Direct isotope on-line separation : very high specific activity (10⁴⁻⁵ than standard)

After 2 days of irradiation: 4.1E+15 atoms of ⁸⁹Sr = 18 mCi (patient dose: 4 mCi every 6 months).

* INFN Patent

Collaboration with Pd_University (Pharmacy) and hospitals for preliminary test

A.Andrighetto

Neutron facility at SPES

Neutron production by interaction of protons with heavy and light targets

□ Fast neutron production: ~ $6 \cdot 10^{14} \text{ s}^{-1}$ □ Neutron flux Φ_n @ 2.5 m: 5×10⁸ n cm⁻² s⁻¹

Continuum spectra: SEE, Single Event Effect study

Quasi mono-energetic spectra

Per il confronto fra le facility di fasci esotici si devono considerare molti parametri

- La competitività del progetto va analizzata in dettaglio rispetto alla capacità di fornire fascio per gli esperimenti.
- Le facility per fasci radioattivi hanno specificità che le rendono complementari:
 - le facility ISOL forniscono fasci di più alta purezza e precisione
 - le facility in-flight forniscono fasci di ioni «neutron-poor»
 - Il processo ISOL è piu' lento e non è efficiente per produrre isotopi a bassa vita media
 - solo la reazione di fissione produce ioni «neutron-rich»
 - La tecnica ISOL è ideale per produrre isotopi «neutron-rich»

Dettaglio dei fasci richiesti nelle LOI

Two (main) methods for RIB production

Rare-isotope beam physics is a rapidly growing field worldwide with major production facilities using the so-called in-flight approach and the ISOL (isotope separation on-line) method,

In the **ISOL facilities**, the rare isotopes are produced inside a thick target at rest. They effuse out of the target matrix as neutral atoms and are ionized by a method that depends on the chemical element (for example using resonant laser ionization). The ions are then electrostatically accelerated to several tens of keV and formed into a beam, mass separated, and delivered to the experiments or post-accelerated.

With **in-flight facilities**, the primary heavy-ion beam hits a thin target at energies of some tens to hundreds of MeV/u. Rare isotopes are produced in the target and immediately emerge at energy similar to the primary beam. The rare-isotope beam is formed independently of the chemical element and can be separated using a combination of electric and magnetic fields. The beam is then delivered to the experiments at the same high energy.

The two different production processes are complementary as they provide access to different beams for different applications. ISOL production allows the production of many different isotopes but is limited by the chemical selection (refractory elements don't diffuse out of the target matrix) and the half-life of the isotope (the half-life limit is about 5 ms).

In-flight production provides rare isotopes of all chemical elements (no target or ion source selectivity) and can reach very short half-lives (sub-ms). Ultimately, in-flight facilities will have a larger range of produced isotopes available for experiments. The secondary beam, however, is often less mass resolved (different charge states are simultaneously produced, limiting unambiguous identification) and can have poorer beam quality (higher longitudinal and transversal energy spread). It has discovery potential for new isotopes but will not provide for most of the science sought.

For example, the high energy beams (50–1000 MeV/u) of rare isotopes are not suitable for probing the relevant regime for nuclear astrophysics. To provide partial access and to take advantage of the inherent beam properties of ISOL-type facilities, recent programs have started at several in-flight facilities (RIKEN, MSU, GSI) to establish low-energy programs by stopping high-energy rare-isotope beam in a gas-stopper cell from which it can be extracted to form a low-energy beam for use with stopped or post-accelerated beams. Once fully developed, such systems will be able to provide the good beam quality needed for efficient post-acceleration, however, they are still limited in yields of rare isotopes.

The **advantages of ISOL-type beams** are the high intensity, excellent beam quality, and variable beam energy for experiments with stopped or post accelerated beam.

The ISOL technique is the only method that can provide very high beam intensities of specific rare isotopes for experiments in nuclear astrophysics or for the high-precision experiments aiming to discover physics beyond the SM.

Existing and operational major in-flight facilities (E > 50 MeV/u) are:

- GSI Darmstadt, Germany
- HIRFL-CSR, Institute of Modern Physics Lanzhou, China
- NSCL, Michigan State University, U.S.A.
- RIBF, RIKEN, Japan
- SPIRAL, GANIL, France

New in-flight facilities under construction are:

- FAIR Darmstadt, Germany
- FRIB Michigan, U.S.A.

Major planned in-flight facilities are

• RISP, Institute for Basic Science, Daejeon, Rep. of Korea

Existing major ISOL facilities are:

- ALTO, Orsay, France
- CARIBU, ATLAS, ANL, U.S.A. (based on a Cf-252 radioactive source)
- HRIBF, ORNL, U.S.A. (currently not operational)
- IGISOL, Jyvaskyla, Finland
- ISAC, TRIUMF, Canada
- ISOLDE, CERN, Switzerland

New or major upgrades for ISOL facilities are:

- ANURIB, VECC, India
- ARIEL, TRIUMF, Canada
- BRIF, Bejiing, China
- HIE-ISOLDE, CERN, Switzerland
- RISP, Institute for Basic Science, Daejeon, Rep. of Korea
- SPES, INF Legnaro, Italy
- SPIRAL2, GANIL, France

Beam Sharing (example)

ROOM	BTL name	MAIN USE	MAX ENERGY AND CURRENT BEAM (protons)	
A6	L1	SPES ISOL TARGET 1	40 MeV, 250uA	
A8	L1B	TBD		
A9	L2	NEUTRONS (NEPIR)	35-70 MeV, 50 uA	and the second s
A9	L3	NEUTRONS (NEPIR)	TBD (low power)	
RI3	L3b	LARAMED-INFN	35-70 MeV, 200uA	Es ♣ 2A more action with action at the second seco
A15	L3c	LARAMED-INFN	35-70 MeV, low power	
RI1	L4	RADIOISOTOPE PRODUCTION	35-70 MeV, 500-700uA	
RI2	L4b	RADIOISOTOPE PRODUCTION	35-70 MeV, 500-700uA	TEN WENN W
A4	L6	SPES ISOL TARGET 2	40 MeV, 250uA	

STATIONS	we	ek 1	we	ek 2	we	ek 3	we	ek 4	week 5		week 5		week 5		week 6		week 6		week 6		week 6		week 6		week 6		week 6		week 6		week 6		week 6		week 6		week 6		week 6		week 6		week 6		week 6		week 6		week 6		week 6		week 6		week 6		week 6		week 7		week 8		we	ek 9	wee	ek 10
	Energy	Current	Energy	Current	Energy	Current	Energy	Current	Energy	Current	Energy	Current																																																						
ISOL (SPES)	40	250	40	250	ISOL m	ainten.	40	250	40	250	ISOL m	ainten.	ISOL mainten.		40	250	40	250																																																
RI Production	40	≤ 450	40	≤ 450	> 40	> 350	40	≤450	40	≤ 450	>40 > 350		>40 > 350		40	≤450	40	≤ 450	CYCLO	otron Enance																																														
Other Apps.					> 40	< 350					>40	< 350	> 40	< 350																																																				

Validation of the SPES-Charge Breeder

		EFFICIENCY* [%]									
ION	0	SPES	Best	SPES-							
ION	Ŷ	req	LPSC	CB							
Cs	26	≥ 5	8,6	11,7							
Xe	20	≥ 10	10,9	11,2							
Rb	19	≥ 5	6,5	7,8							
Ar	8	≥ 10	16,2	15,2							

11,7plasma chamberMaterials

- Cleaning & conditioning
- vacuum

INFN-LPSC: Study for CB contaminants reduction

Development at LPSC (Grenoble). Upgraded PHOENIX booster as Part of a MoU in the frame of the European Associated Laboratories (LEA-Colliga)

- 2015 Commissioning at LPSC
- 2015 Delivery to LNL
- 2016-17 Installation and test

Assembly of 1+Source Front-End SPES production, similar to ISOL source

*results obtained for the same 1+ injected current

RIB Bunker set-up

1+ beam line operation: Electrostatic Dipole

Labora	ITTesto Nazionale di Fisica Nucleare nori Nazionali di Legnaro	exotic beams for science	5							
	MANAGEMENT SYSTEM OF SPES QUALITY AND SAFETY									
		PROGETTAZIONE MECCANICA DEL	Rev.	00						
Code doc.	DOC_00000XX	DIPOLO ELETTROSTATICO PER IL TRASPORTO DEL FASCIO LUNCO LA		1.1:0						
		LINEA 1+ DELL'EDIFICIO SPES		1 di 9						

1

Contenuto

Questo documento riassume i criteri seguiti è i punti salienti relative al lavoro di progettazione del dipole elettrostatico (steerer) per la curvature del fascio di ioni 1+ instabili prodotti nell'ambito del progetto SPES. Nel documento sarà inserita la descrizione della fase di progettazione del prototipo.

Rev.	Data	Writer	Verifica.	Approvazione	Motivo revisione
01	12 February 2017	A. Monetti A.Andrighetta			Prima emissione.

Prototype tested & Manufactured by LNL Workshop

1+ beam line operation: Steerers

Current (nA)

0

39

Position Status

34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 Channel-d_channel=1mm +

BP2 Horizontal profile

36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 Channel-d channel=1 mm

XY 🔳

Command

IN

оυт

osition Status

OUTSIDE

 40
 38
 36
 32
 30
 28
 26
 24
 22
 20
 18
 16
 14
 12
 10
 8
 6
 4

 Channel - d Channel - a Ch

36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 Channel-d_channel=1 mm

Ουτ

 $\Delta V x = 300 V$

OUTSIDE

