Realistic Shell-Model Calculations for Double Beta-Decay

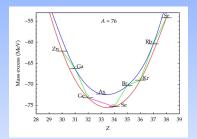
Nunzio Itaco

Università della Campania "Luigi Vanvitelli" Istituto Nazionale di Fisica Nucleare - Sezione di Napoli

Probing fundamental symmetries and interactions by low energy excitations with SPES RIBs

Double β -decay

Double β -decay is the rarest process yet observed in nature.

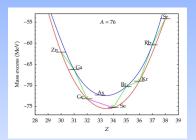


Maria Goeppert-Mayer (1935) suggested the possibility to detect $(A, Z) \rightarrow (A, Z+2) + e^- + e^- + \overline{\nu}_e + \overline{\nu}$

Historically, G. Racah (1937) and W. Furry (1939) were the first ones, to suggest to test the neutrino as a Majorana particle, considering the process: $(A, Z) \rightarrow (A, Z + 2) + e^- + e^-$

Double β -decay

Double β -decay is the rarest process yet observed in nature.

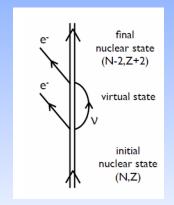


 Maria Goeppert-Mayer (1935) suggested the possibility to detect

 $(A,Z) \rightarrow (A,Z+2) + e^- + e^- + \overline{\nu}_e + \overline{\nu}_e$

 Historically, G. Racah (1937) and W. Furry (1939) were the first ones, to suggest to test the neutrino as a Majorana particle, considering the process:
 (A, Z) → (A, Z + 2) + e⁻ + e⁻

Double β -decay is the rarest process yet observed in nature.



- Maria Goeppert-Mayer (1935) suggested the possibility to detect
 (A, Z) → (A, Z+2)+e⁻+e⁻+v_e+v_e)
- Historically, G. Racah (1937) and W. Furry (1939) were the first ones, to suggest to test the neutrino as a Majorana particle, considering the process:

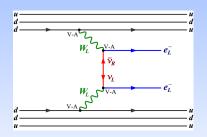
 $(A,Z) \rightarrow (A,Z+2) + e^- + e^-$

The detection of the $0\nu\beta\beta$ decay is nowadays one of the main targets in many laboratories all around the world, triggered by the search of "new physics" beyond the Standard Model.

Its detection

- would correspond to a violation of the conservation of the leptonic number
- may provide more informations on the nature of neutrinos (neutrino as a Majorana particle, determination of its effective mass, ..).

The inverse of the $0\nu\beta\beta$ -decay half-life is proportional to the squared nuclear matrix element (NME). This evidences the relevance to calculate the NME



$$\left[T_{1/2}^{0\nu}\right]^{-1} = G^{0\nu} \left|M^{0\nu}\right|^2 \langle m_{\nu} \rangle^2$$

- G⁰^{νν} is the so-called phase-space factor, obtained by integrating over she single electron energies and angles, and summing over the final-state spins
- $\langle m_{\nu} \rangle = |\sum_{k} m_{k} U_{ek}^{2}|$ effective mass of the Majorana neutrino, U_{ek} being the lepton mixing matrix

Calculating nuclear matrix elements

Nuclear matrix elements may play a major role in several processes whose interest goes beyond the realm of Nuclear Physics

• $0\nu\beta\beta$ decay \Rightarrow

$$\left[T_{1/2}^{0\nu}\right]^{-1} = G^{0\nu} \left|M^{0\nu}\right|^2 \langle m_{\nu} \rangle^2$$

● Dark matter ⇒

$$\frac{d\sigma}{dp^2} = \frac{2}{(2J_i+1)\pi v^2} \sum |\langle i|\mathcal{L}_{\chi}|f\rangle|^2$$

• fundamental symmetries \Rightarrow

$$\langle i | \mathcal{L}_{leptons-nucleons} | f
angle = \langle i | \int dx j^{\mu}(x) J_{\mu}(x) | f
angle$$

The calculation of the NME

The nuclear matrix element (NME) is expressed as

$$M^{0
u} = M^{0
u}_{GT} - \left(rac{g_V}{g_A}
ight)^2 M^{0
u}_F - M^{0
u}_T \; ,$$

where

$$M_{GT}^{0\nu} = <0_{f}^{+} \mid \sum_{m,n} \tau_{m}^{-} \tau_{n}^{-} H_{GT}(r_{mn}) \vec{\sigma}_{m} \cdot \vec{\sigma}_{n} \mid 0_{i}^{+} >$$
$$M_{F}^{0\nu} = <0_{f}^{+} \mid \sum \tau_{m}^{-} \tau_{n}^{-} H_{F}(r_{mn}) \mid 0_{i}^{+} >$$

$$\overline{m,n}$$

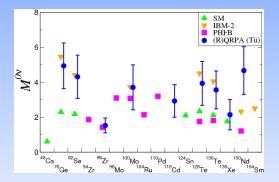
$$\mathcal{M}_{T}^{0\nu} = <0_{f}^{+} \mid \sum_{m,n} \tau_{m}^{-} \tau_{n}^{-} \mathcal{H}_{T}(r_{mn}) \left[3\left(\vec{\sigma}_{m} \cdot \hat{r}_{mn}\right)\left(\vec{\sigma}_{n} \cdot \hat{r}_{mn}\right) - \vec{\sigma}_{m} \cdot \vec{\sigma}_{n}\right] \mid 0_{i}^{+} >$$

The calculation of the NME

To describe the nuclear properties detected in the experiments, one needs to resort to nuclear structure models.

The calculation of the NME

To describe the nuclear properties detected in the experiments, one needs to resort to nuclear structure models.



• The spread of nuclear structure calculations evidences inconsistencies among results obtained with different models

Shell model \Rightarrow well-established approach to obtain a microscopic description of both collective and single-particle properties of nuclei

Napoli-Caserta group

- L. Coraggio (INFN-NA)
- L. De Angelis (INFN-NA)
- T. Fukui (INFN-NA)
- A. Gargano (INFN-NA)
- N. I. (UNICAMPANIA and INFN-NA)
- F. Nowacki (IPHC-CNRS Strasbourg)

Two alternative approaches

 $V_{NN}~~(+V_{NNN}) \Rightarrow$ many-body theory \Rightarrow $H_{
m eff}$

The eigenvalues of *H*err belong to the set of eigenvalues of the full nuclear hamiltonian

Two alternative approaches

- phenomenological
- microscopic

V_{NN} (+ V_{NNN}) \Rightarrow many-body theory \Rightarrow $H_{\rm eff}$

Definition

The eigenvalues of $H_{
m eff}$ belong to the set of eigenvalues of the full nuclear hamiltonian

Two alternative approaches

- phenomenological
- microscopic

V_{NN} (+ V_{NNN}) \Rightarrow many-body theory \Rightarrow $H_{\rm eff}$

Definition

The eigenvalues of $H_{
m eff}$ belong to the set of eigenvalues of the full nuclear hamiltonian

Two alternative approaches

- phenomenological
- microscopic

V_{NN} (+ V_{NNN}) \Rightarrow many-body theory \Rightarrow $H_{\rm eff}$

Definition

The eigenvalues of $H_{\rm eff}$ belong to the set of eigenvalues of the full nuclear hamiltonian

Two alternative approaches

- phenomenological
- microscopic

 V_{NN} (+ V_{NNN}) \Rightarrow many-body theory \Rightarrow $H_{\rm eff}$

Definition

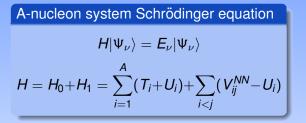
The eigenvalues of $H_{\rm eff}$ belong to the set of eigenvalues of the full nuclear hamiltonian

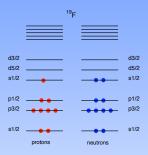
della Campania Luigi Vanvitelli

Workflow for a realistic shell-model calculation

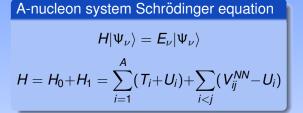
- Choose a realistic NN potential (NNN)
- 2 Determine the model space better tailored to study the system under investigation
- Oerive the effective shell-model hamiltonian and operators by way of a many-body theory
- Calculate the physical observables (energies, e.m. transition probabilities, ...)

Effective shell-model hamiltonian





Effective shell-model hamiltonian

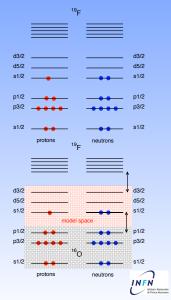


Model space

$$|\Phi_i\rangle = [a_1^{\dagger}a_2^{\dagger} \dots a_n^{\dagger}]_i |c\rangle \Rightarrow P = \sum_{i=1}^d |\Phi_i\rangle\langle\Phi_i|$$

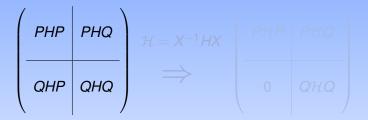
Model-space eigenvalue problem

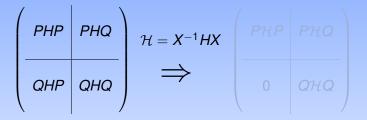
$$H_{\rm eff} P |\Psi_{lpha}
angle = E_{lpha} P |\Psi_{lpha}
angle$$

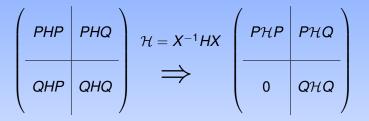


Nunzio Itaco

SPES one-day Workshop - Pisa, 1-2 February 2018







$$\left(\begin{array}{c|c} PHP & PHQ \\ \hline \\ QHP & QHQ \end{array} \right) \begin{array}{c} \mathcal{H} = X^{-1}HX \\ \Longrightarrow \\ \hline \\ 0 \\ Q\mathcal{H}Q \\ \end{array} \right)$$

Folded-diagram expansion

 \hat{Q} -box vertex function

$$\hat{Q}(\epsilon) = PH_1P + PH_1Qrac{1}{\epsilon-QHQ}QH_1F$$

 \Rightarrow Recursive equation for $H_{\rm eff} \Rightarrow$ iterative techniques (Krenciglowa-Kuo, Lee-Suzuki, ...)

$$\mathcal{H}_{ ext{eff}} = \hat{Q} - \hat{Q}^{\prime} \int \hat{Q} + \hat{Q}^{\prime} \int \hat{Q} \int \hat{Q} - \hat{Q}^{\prime} \int \hat{Q} \int \hat{Q} \int \hat{Q} \cdots$$

generalized folding

The perturbative approach to the shell-model $H^{\rm eff}$

$$\hat{Q}(\epsilon) = PH_1P + PH_1Qrac{1}{\epsilon - QHQ}QH_1P$$

The *Q*-box can be calculated perturbatively

$$\frac{1}{\epsilon - QHQ} = \sum_{n=0}^{\infty} \frac{(QH_1Q)^n}{(\epsilon - QH_0Q)^{n+1}}$$

The diagrammatic expansion of the \hat{Q} -box

The perturbative approach to the shell-model $H^{\rm eff}$

$$\hat{Q}(\epsilon) = PH_1P + PH_1Q \frac{1}{\epsilon - QHQ}QH_1P$$

The Q-box can be calculated perturbatively

$$\frac{1}{\epsilon - QHQ} = \sum_{n=0}^{\infty} \frac{(QH_1Q)^n}{(\epsilon - QH_0Q)^{n+1}}$$

The diagrammatic expansion of the *Q*-box

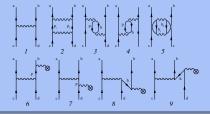
The perturbative approach to the shell-model $H^{\rm eff}$

$$\hat{Q}(\epsilon) = PH_1P + PH_1Q rac{1}{\epsilon - QHQ}QH_1P$$

The Q-box can be calculated perturbatively

$$\frac{1}{\epsilon - QHQ} = \sum_{n=0}^{\infty} \frac{(QH_1Q)^n}{(\epsilon - QH_0Q)^{n+1}}$$

The diagrammatic expansion of the \hat{Q} -box



Effective operators

 $\Phi_{\alpha} =$ eigenvectors obtained diagonalizing H_{eff} in the reduced model space $\Rightarrow |\Phi_{\alpha}\rangle = P|\Psi_{\alpha}\rangle$

$$\langle \Phi_lpha | \hat{oldsymbol{O}} | \Phi_eta
angle
eq \langle \Psi_lpha | \hat{oldsymbol{O}} | \Psi_eta
angle$$

Effective operators

 $\Phi_{\alpha} =$ eigenvectors obtained diagonalizing H_{eff} in the reduced model space $\Rightarrow |\Phi_{\alpha}\rangle = P|\Psi_{\alpha}\rangle$

$$\langle \Phi_{\alpha} | \hat{O} | \Phi_{\beta} \rangle \neq \langle \Psi_{\alpha} | \hat{O} | \Psi_{\beta} \rangle$$

Effective operator \hat{O}_{eff} : definition

$$\langle \Phi_{\alpha} | \hat{O}_{\mathrm{eff}} | \Phi_{\beta} \rangle = \langle \Psi_{\alpha} | \hat{O} | \Psi_{\beta} \rangle$$

Effective operators

 $\Phi_{\alpha} =$ eigenvectors obtained diagonalizing H_{eff} in the reduced model space $\Rightarrow |\Phi_{\alpha}\rangle = P|\Psi_{\alpha}\rangle$

$$\langle \Phi_{\alpha} | \hat{O} | \Phi_{\beta} \rangle \neq \langle \Psi_{\alpha} | \hat{O} | \Psi_{\beta} \rangle$$

Effective operator \hat{O}_{eff} : definition

$$\langle \Phi_{\alpha} | \hat{O}_{\rm eff} | \Phi_{\beta} \rangle = \langle \Psi_{\alpha} | \hat{O} | \Psi_{\beta} \rangle$$

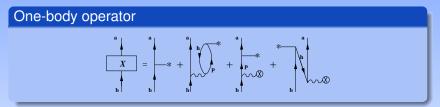
 $\hat{O}_{\rm eff}$ can be derived consistently in the MBPT framework

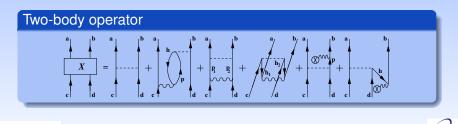
$$\hat{O}_{\rm eff} = (P + \hat{Q}_1 + \hat{Q}_1 \hat{Q}_1 + \hat{Q}_2 \hat{Q} + \hat{Q} \hat{Q}_2 + \cdots)(\chi_0 + \chi_1 + \chi_2 + \cdots) ,$$

K. Suzuki and R. Okamoto, Prog. Theor. Phys. 93, 905 (1995)

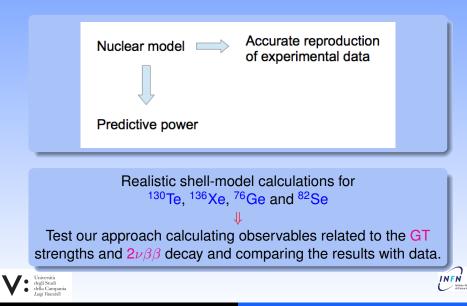
The shell-model effective operators

We arrest the χ series at χ_0 , and expand it perturbatively:





Nuclear models and predictive power

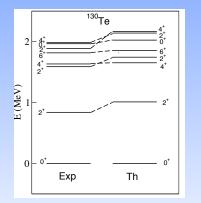


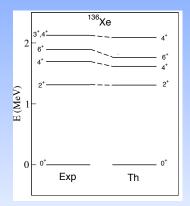
Realistic Shell-Model Calculations

- ⁷⁶Ge,⁸²Se: four proton and neutron orbitals outside double-closed ⁵⁶Ni → 0f_{5/2}, 1p_{3/2}, 1p_{1/2}, 0g_{9/2}
- ¹³⁰Te, ¹³⁶Xe: five proton and neutron orbitals outside double-closed ¹⁰⁰Sn → 0g_{7/2}, 1d_{5/2}, 1d_{3/2}, 2s_{1/2}, 0h_{11/2}

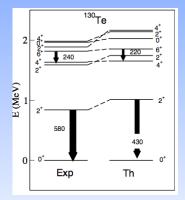
Highlights Recent Accepted	Authors Referees Search Press About No.	
Volume 95, Issue	6	
HIGHLIGHTED ARTICLES RAPID COMMUNICATIONS	HIGHLIGHTED ARTICLES	>
	Entror Regention rear Imm. Calculation of Gamow-Teller and two-neutrino double-β decay properties for ¹³⁶ Te and ¹³⁶ Xe with a realistic nucleon-nucleon potential L Corago. L De Angest. TheuA. Respins. and N taxo Prev Rev C8 4624 2007 - Nature 32 Jaw 2007	
<	The authors tacket the important subject of nuclear matrix elements growing double's discuss in a trans-process and the model acatuation. They derive the table model effective instancion and the discuss-filter and transcentistic matrix of the the two-neutron bards of dataset of the and the discuss the table model the two-neutron bards of dataset of the and the discuss the table model and the discuss of the data set of the discuss of the dataset of the the two-neutron bards of dataset of the data which the	>

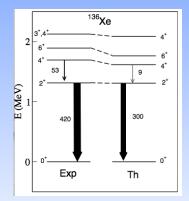
Spectroscopic properties: ¹⁰⁰Sn core



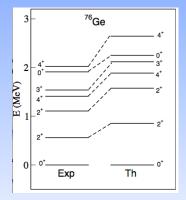


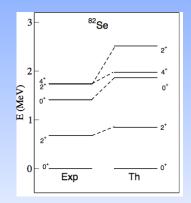
Spectroscopic properties: ¹⁰⁰Sn core (B(E2)s in e²fm⁴)



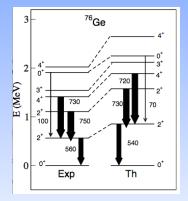


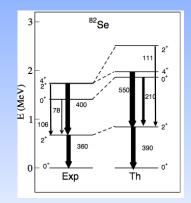
Spectroscopic properties: ⁵⁶Ni core





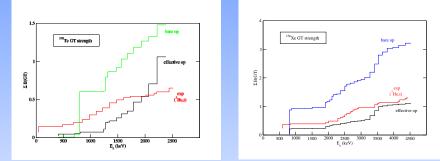
Spectroscopic properties: ⁵⁶Ni core (B(E2)s in e²fm⁴)





GT[–] strength distribution: ¹⁰⁰Sn core

degli Studi della Campania *Luigi Vanvitelli*

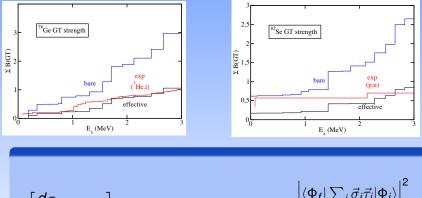


$$\left[\frac{d\sigma}{d\Omega}(q=0)\right] = \hat{\sigma}B_{exp}(GT) \Rightarrow B_{th}(GT) = \frac{\left|\langle \Phi_f | \sum_j \vec{\sigma}_j \vec{\tau}_j | \Phi_j \rangle\right|^2}{2J_i + 1}$$

Nunzio Itaco SPES one-day Workshop - Pisa, 1-2 February 2018

GT⁻ strength distribution: ⁵⁶Ni core

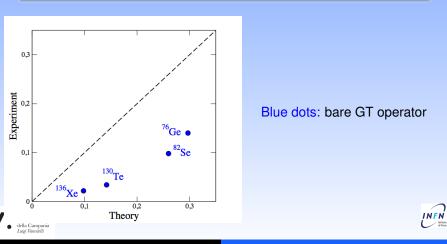
Università degli Studi della Campania Luigi Vanvitelli



$$\left\lfloor \frac{d\sigma}{d\Omega}(q=0) \right\rfloor = \hat{\sigma} B_{exp}(GT) \Rightarrow B_{th}(GT) = \frac{\left\lfloor \langle \Psi_f \mid \sum_j \sigma_j \rangle \right\rfloor}{2J_j + 2J_j}$$

INFN INFN IFfice Nacional IFfice Nacional

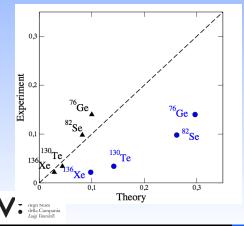
$2\nu\beta\beta$ nuclear matrix elements



Nunzio Itaco SPES one-day Workshop - Pisa, 1-2 February 2018

$2\nu\beta\beta$ nuclear matrix elements

$$M_{2\nu}^{\rm GT} = \sum_{n} \frac{\langle \mathbf{0}_{f}^{+} || \vec{\sigma} \tau^{-} || \mathbf{1}_{n}^{+} \rangle \langle \mathbf{1}_{n}^{+} || \vec{\sigma} \tau^{-} || \mathbf{0}_{i}^{+} \rangle}{E_{n} + E_{0}}$$



Blue dots: bare GT operator Black triangles: effective GT operator

Nunzio Itaco SPES one-day Workshop - Pisa, 1-2 February 2018

Conclusions and perspectives

 RSM calculations provide a satisfactory description of observed GT-strength distributions and 2ν2β NME

Conclusions and perspectives

 RSM calculations provide a satisfactory description of observed GT-strength distributions and 2ν2β NME

- $2\nu\beta\beta$
 - Role of real three-body forces and two-body currents (present collaboration with Pisa group)
 - Evaluation of the contribution of three-body correlations (blocking effect)
- $0\nu\beta\beta$
 - Derivation of the DGT effective operator to calculate the DGT strength distribution (experiments @ RNCP Osaka, RIBF RIKEN, LNS Catania)
 - Derivation of the two-body effective operator

Realistic Shell-Model Calculations for Double Beta-Decay

Nunzio Itaco

Università della Campania "Luigi Vanvitelli" Istituto Nazionale di Fisica Nucleare - Sezione di Napoli

Probing fundamental symmetries and interactions by low energy excitations with SPES RIBs

