The TRACE spectrometer at SPES

A. Goasduff Dipartimento di Fisica e Astronomia - INFN Padova

SPES one-day Workshop

Probing Fundamental Symmetries and Interactions by low energy excitation with RIBs Feb. 1, 2018

Università degli Studi di Padova

Goals of the TRacking Array for light Charged Ejectiles (TRACE) project:

- High efficiency and high resolution
- High counting rate capabilities
- Light charged particles and ions identification

Goals of the TRacking Array for light Charged Ejectiles (TRACE) project:

• High efficiency and high resolution

► Silicon detectors

- High counting rate capabilities
- Light charged particles and ions identification

Goals of the TRacking Array for light Charged Ejectiles (TRACE) project:

- High efficiency and high resolution
- High counting rate capabilities

- Silicon detectors
- High segmentation
- Light charged particles and ions identification

Goals of the TRacking Array for light Charged Ejectiles (TRACE) project:

- High efficiency and high resolution
- High counting rate capabilities
- Light charged particles and ions identification
- Silicon detectors
- High segmentation
- Pulse Shape Analysis

Goals of the TRacking Array for light Charged Ejectiles (TRACE) project:

- High efficiency and high resolution
- High counting rate capabilities
- Light charged particles and ions identification
- Silicon detectors
- High segmentation
- Pulse Shape Analysis

Similar goals than other European projects: GASPARD, HYDE, ...

Goals of the TRacking Array for light Charged Ejectiles (TRACE) project:

- High efficiency and high resolution
- High counting rate capabilities
- Light charged particles and ions identification

- Silicon detectors
- High segmentation
- Pulse Shape Analysis

Similar goals than other European projects: GASPARD, HYDE, ...

\Longrightarrow The GHT collaboration

GHT Collaboration Agreement

Introduction

GHT (acronym for GASPARD, HYDE and TRACE, in reference to the corresponding initial projects) is an international collaboration aimed to develop a new detector for optimal study of reactions using low and intermediate energy mew type of compact, highly segmented, silicon arrey, fully integrated within next generation gamma detectors such as AGATA and PARIS. Such new type of Silicon-based array is also meant to offer state-off-the art particle identification to

The new arrays should be fulfill the following requirements:

• Compactness \implies Coupling with γ -ray array (AGATA, GALILEO, PARIS, ...)

The new arrays should be fulfill the following requirements:

- Compactness \implies Coupling with γ -ray array (AGATA, GALILEO, PARIS, ...)
- \bullet High energy resolution \implies High level density of the nuclei produced with ISOL

The new arrays should be fulfill the following requirements:

- Compactness \implies Coupling with γ -ray array (AGATA, GALILEO, PARIS, ...)
- High energy resolution \implies High level density of the nuclei produced with ISOL
- High angular resolution \implies Angular distribution in direct reactions

The new arrays should be fulfill the following requirements:

- Compactness
- High energy resolution
- High angular resolution

The proposed solution:

- \Longrightarrow Coupling with γ -ray array (AGATA, GALILEO, PARIS, ...)
- \implies High level density of the nuclei produced with ISOL
- \implies Angular distribution in direct reactions

The new arrays should be fulfill the following requirements:

- Compactness
- High energy resolution
- High angular resolution

The proposed solution:

- \implies Coupling with γ -ray array (AGATA, GALILEO, PARIS, ...)
- \implies High level density of the nuclei produced with ISOL
- \implies Angular distribution in direct reactions

• Trapezoid and square

The new arrays should be fulfill the following requirements:

- Compactness
- High energy resolution
- High angular resolution

The proposed solution:

- \implies Coupling with γ -ray array (AGATA, GALILEO, PARIS, ...)
- \implies High level density of the nuclei produced with ISOL
- \implies Angular distribution in direct reactions

- Trapezoid and square
- 2-3 layers of DSSSD:
 - 1st layer: 0.5 mm thick nTD
 - others: 1.5 mm thick FZ DSSSD

The new arrays should be fulfill the following requirements:

- Compactness
- High energy resolution
- High angular resolution

The proposed solution:

- \Longrightarrow Coupling with $\gamma\text{-ray}$ array (AGATA, GALILEO, PARIS, ...)
- \implies High level density of the nuclei produced with ISOL
- \implies Angular distribution in direct reactions

- Trapezoid and square
- 2-3 layers of DSSSD:
 - 1st layer: 0.5 mm thick nTD
 - others: 1.5 mm thick FZ DSSSD

The challenges:

• Coupling with γ -ray array $\implies \gamma$ -ray transparency

The new arrays should be fulfill the following requirements:

- Compactness
- High energy resolution
- High angular resolution

The proposed solution:

- \Longrightarrow Coupling with $\gamma\text{-ray}$ array (AGATA, GALILEO, PARIS, ...)
- \implies High level density of the nuclei produced with ISOL
- \implies Angular distribution in direct reactions

- Trapezoid and square
- 2-3 layers of DSSSD:
 - 1st layer: 0.5 mm thick nTD
 - others: 1.5 mm thick FZ DSSSD

The challenges:

- Coupling with γ -ray array $\implies \gamma$ -ray transparency
- Segmentation \implies \sim 10 000 electronic channels

The new arrays should be fulfill the following requirements:

- Compactness
- High energy resolution
- High angular resolution

The proposed solution:

- \Longrightarrow Coupling with $\gamma\text{-ray}$ array (AGATA, GALILEO, PARIS, ...)
- \implies High level density of the nuclei produced with ISOL
- \implies Angular distribution in direct reactions

- Trapezoid and square
- 2-3 layers of DSSSD:
 - 1st layer: 0.5 mm thick nTD
 - others: 1.5 mm thick FZ DSSSD

The challenges:

- Coupling with γ -ray array $\implies \gamma$ -ray transparency
- Segmentation \implies \sim 10 000 electronic channels
- Data acquisition system and integration with other arrays

• Large surface detectors with new geometries

- Large surface detectors with new geometries
 - Thin (500 μ m) and thick (1.5 mm)
 - Kapton connectors at 90°
 - Thin frames

- Large surface detectors with new geometries
 - Thin (500 μ m) and thick (1.5 mm)
 - Kapton connectors at 90°
 - Thin frames
- Highly segmented thin detectors

- Large surface detectors with new geometries
 - Thin (500 μ m) and thick (1.5 mm)
 - Kapton connectors at 90°
 - Thin frames
- Highly segmented thin detectors
- Pulse Shape Analysis
 - Highly uniform detectors
 - neutron transmuted silicon detectors
 - reverse-mount

- Large surface detectors with new geometries
 - Thin (500 μ m) and thick (1.5 mm)
 - Kapton connectors at 90°
 - Thin frames
- Highly segmented thin detectors
- Pulse Shape Analysis
 - Highly uniform detectors
 - neutron transmuted silicon detectors
 - reverse-mount

Two preamplifier solutions are being investigated:

• Current and charge output (IPN Orsay): iPACI

Two preamplifier solutions are being investigated:

- Current and charge output (IPN Orsay): iPACI
- Charge + extended dynamics (S. Capra A. Pullia): multichannel CSP ASIC

Università degli Studi di Milano

Two preamplifier solutions are being investigated:

- Current and charge output (IPN Orsay): iPACI
- Charge + extended dynamics (S. Capra A. Pullia): multichannel CSP ASIC

Intermediate stage between preams and digitizers: PLAS (R.Aliaga, A.Gadea) Input: Output:

- Different polarity and signal range
- Sampling at 200 MS/s
- Common Trigger Request signal

• 32 inputs with independent trigger R.J. Aliaga et al., NIM A 800 (2015)

- Generates timestamp for pulses
- Synchronizable with each other and/or GTS
- Low noise (11.5 ENOB spec)
- Single differential output

Two preamplifier solutions are being investigated:

- Current and charge output (IPN Orsay): iPACI
- Charge + extended dynamics (S. Capra A. Pullia): multichannel CSP ASIC

Intermediate stage between preams and digitizers: PLAS (R.Aliaga, A.Gadea) Input: Output:

- Different polarity and signal range
- Sampling at 200 MS/s
- Common Trigger Request signal

• 32 inputs with independent trigger R.J. Aliaga et al., NIM A 800 (2015)

- Generates timestamp for pulses
- Synchronizable with each other and/or GTS
- Low noise (11.5 ENOB spec)
- Single differential output

- 200 MS/s digitizers
- Compatible with AGATA/GALILEO GTS system
- Compatible with the new Trigger Processor
- Customization possible at the firmware level

CSIC

gar

Università degli Studi di Milano

Design and detectors of GASPARD-TRACE arrays:

- Elastic and inelastic scattering
- Transfer reaction with very light targets (d, ^{3,4}He, ...)
- Cluster transfer / Incomplete fusion with weakly bound ions (^{6,7}Li, ⁹Be)
- Multi-nucleon transfer with light ions
- Heavy-, light-nuclei break-up
- Cluster decay
- Fusion-Evaporation

Design and detectors of GASPARD-TRACE arrays:

- Elastic and inelastic scattering
- Transfer reaction with very light targets (d, ^{3,4}He, ...)
- Cluster transfer / Incomplete fusion with weakly bound ions (^{6,7}Li, ⁹Be)
- Multi-nucleon transfer with light ions
- Heavy-, light-nuclei break-up
- Cluster decay
- Fusion-Evaporation

Design and detectors of GASPARD-TRACE arrays:

- Elastic and inelastic scattering
- Transfer reaction with very light targets (d, ^{3,4}He, ...)
- Cluster transfer / Incomplete fusion with weakly bound ions (^{6,7}Li, ⁹Be)
- Multi-nucleon transfer with light ions
- Heavy-, light-nuclei break-up
- Cluster decay
- Fusion-Evaporation

SPES beams are well suited for direct reaction studies: Energy, intensity, emittance, purity

Direct reaction studies with TRACE

Direct reaction studies with TRACE

Lol for r-process studies at SPES using transfer reactions S. D. Pain et al.

Prog. Part. Nucl. Phys. 86 (2016) 86.

• SPES beams have excellent overlap with r-process nuclides of interest for n capture

Lol for r-process studies at SPES using transfer reactions S. D. Pain et al.

Prog. Part. Nucl. Phys. 86 (2016) 86.

- SPES beams have excellent overlap with r-process nuclides of interest for n capture
- Transfer reactions can provide input (energies, quantum numbers and spectroscopic factors) to calculations of direct and resonant neutron capture cross sections

Lol for r-process studies at SPES using transfer reactions S. D. Pain et al.

- SPES beams have excellent overlap with r-process nuclides of interest for n capture
- Transfer reactions can provide input (energies, quantum numbers and spectroscopic factors) to calculations of direct and resonant neutron capture cross sections
- Recent advances in surrogate reaction theory

TABLE 1: Example experiments that could be performed with projected Phase 1 beams from SPES. In each case, data from the (d_2p) , (d_1) and (d_1) the reactions could be acquired simultaneously. In the case of experiments motivated primarily be constraining n-capture cross sections, the (d_2p) reaction of foremost interest, but data on pickup reactions would also be acquired in such a measurement.

Beam	Projected intensity	Reactions	Primary motivation
^{80,81} Ge	8×10^{4}	(d,t) (d, ³ He)	structure
81 Ge	1×10^{4}	(d,p) (d,t) (d, ³ He)	n-capture
78,80,81 Ga	8×10^4 , 1.5×10^4 , 3.5×10^3	(d,p) (d,t) (d, ³ He)	n-capture
⁸⁴ Se	7×10^{4}	(d,t) (d, ³ He)	structure
^{129,131} Sn	8.7×10^6 , 1.7×10^6	(d,p) (d,t) (d, ³ He)	n-capture
¹³⁰ Sn	4×10^{6}	(d,t) (d, ³ He)	structure
^{132}Sb	9×10^{5}	(d,p) (d,t) (d, ³ He)	structure
¹³⁴ Sb	1.5×10^{4}	(d,p) (d,t) (d, ³ He)	n-capture
$^{132,134,136,138}\mathrm{Te}$	2×10^7 , 5.8×10^6 , 2.7×10^5 , 1.1×10^4	(d,p) (d,t) (d, ³ He)	structure, n-capture
137 Xe	4×10^{4}	(d,p) (d,t) (d, ³ He)	n-capture
138,140,142 Xe	$5.6 \times 10^{6}, 3.4 \times 10^{5}, 1.8 \times 10^{4}$	$(d,p) (d,t) (d,^{3}He)$	structure, n-capture

Lol for r-process studies at SPES using transfer reactions S. D. Pain et al.

- SPES beams have excellent overlap with r-process nuclides of interest for n capture
- Transfer reactions can provide input (energies, quantum numbers and spectroscopic factors) to calculations of direct and resonant neutron capture cross sections
- Recent advances in surrogate reaction theory
- Final r-process abundances are sensitive to neutron-capture cross sections during freeze-out

Phys. Rev. C 79 (2009) 045809

Nuclear Astrophysics studies with SPES

• β-decay station and associated detectors (see talk of A. Gottardo)

- Measurement of the decay characteristics of nuclei around *A* = 90 relevant to the *r*-process nucleosynthesis [T. Kurtukian-Nieto et al.]
- Lols for measurements at SPES on β-decay properties of nuclei belonging to the *s*-process path [S. Cristallo et al.]
- Study of beta-decay properties of neutron-rich isotopes approaching the r-process path [D. Testov et al.]

Reaction studies with TRACE

- Lols transfer reaction measurements at SPES for r-process nucleosynthesis [S.D. Pain et al.]
- Measurement of astrophysical relevant reactions induced by α , protons and neutrons at the Gamow peak using the Trojan Horse method [M.La Cognata. et al.]
- Direct Reactions at SPES: Shell Evolution and Nuclear Astrophysics around Z ~ 50 and N ~ 82 [D. Mengoni et al.]
- Measurements at SPES of n-capture cross sections on radioactive nuclei interesting for *s*-process nucleosynthesis [O. Trippella et al.]

Mass number

Clustering is a phenomenon existing at all scales:

• Strongly bound cluster: α

Mass number

Clustering is a phenomenon existing at all scales:

- Strongly bound cluster: α
- Appearance of cluster states ⇔ Separation threshold

Mass number

Clustering is a phenomenon existing at all scales:

- Strongly bound cluster: α
- Appearance of cluster states ⇔ Separation threshold
- Hoyle state in ¹²C

Phys. Rev. C 83 (2011) 054319

Clustering is a phenomenon existing at all scales:

- $\bullet\,$ Strongly bound cluster: $\alpha\,$
- Appearance of cluster states ⇔ Separation threshold
- Hoyle state in ¹²C
- Smooth transition between ND and cluster states

Phys. Rev. C 83 (2011) 054319

Clustering is a phenomenon existing at all scales:

- $\bullet\,$ Strongly bound cluster: $\alpha\,$
- Appearance of cluster states ⇔ Separation threshold
- Hoyle state in ¹²C
- Smooth transition between ND and cluster states

How to study these states:

- Cluster transfer reaction (⁶Li,d), (⁷Li,t), ...
- Breakup into the clusters
- Cluster decay
- ...

Clustering is a phenomenon existing at all scales:

- $\bullet\,$ Strongly bound cluster: $\alpha\,$
- Appearance of cluster states ⇔ Separation threshold
- Hoyle state in ¹²C
- Smooth transition between ND and cluster states

How to study these states:

- Cluster transfer reaction (⁶Li,d), (⁷Li,t), ...
- Breakup into the clusters
- Cluster decay

• ...

SPES LOI: Search for deformed oblate structures in ⁹⁶Y by γ -spectroscopy and cluster transfer reactions with a ⁹⁵Sr SPES beam. B. Fornal, S. Leoni ...

MUGAST+AGATA @ GANIL + SPIRAL1 beams

The MUGAST array:

- 5 GASPARD trapezoidal detectors backward
- 2 TRACE square DSSSD around 90 degrees
- 4 MUST2 telescopes forward

The physics campaign:

- Shell-evolution far from stability
- Shape-coexistence
- Reaction dynamics
- Nuclear astrophysics
- ...

Possible experimental campaign in 2019

Letters of intent for the MUGAST campaign

• Shell structure evolution & deformation:

- Mapping of neutron orbitals around N = 28
- Oblate driving force in n-deficient nuclei above ⁵⁶Ni
- Shape transition along and across N = 28
- Interplay of single-part and collective structures in ⁴⁶Ca
- Shell evolution toward the island of inversion
- Island of Inversion and shape coexistence in ^{30,31}Mg
- ⁷⁵Kr: Shape coexistence in characterization in light Kr

Neutron-proton pairing:

np-pairing in fp-shell

Astrophysics:

- Breakout from hot CNO to rp-process
- Explosive H-burning in Novae
- s-process ⁷⁹Se(n,γ)
- s-process 60 Fe(n, γ)

• Reaction dynamics:

Space-time characterization of emitting sources in HI collisions

F.Flavigny, O.Sorlin et al. A.Goasduff, D.Mengoni, et al. L.Fortunato, D.Mengoni et al. S.Leoni et al. A.Matta, W.Catford, N.Orr, et al. B.Fernandez-Dominguez et al. A.Matta, W.Catford, N.Orr, et al

M. Assié et al.

C.Diget et al. N. de Séréville, F. Hammache et al. G.de Angelis et al. A.Matta, W.Catford, N.Orr, et al.

G. Verde, et al.

The protoTRACE array:

- 8 segmented TRACE prototypes
- Barrel/cube configuration
- GALILEO digitizers @ 100 MS/s

- Shell-evolution near the stability
- Shape-coexistence
- Exotic structures in nuclei

The protoTRACE array:

- 8 segmented TRACE prototypes
- Barrel/cube configuration
- GALILEO digitizers @ 100 MS/s

- Shell-evolution near the stability
- Shape-coexistence
- Exotic structures in nuclei

The protoTRACE array:

- 8 segmented TRACE prototypes
- Barrel/cube configuration
- GALILEO digitizers @ 100 MS/s

- Shell-evolution near the stability
- Shape-coexistence
- Exotic structures in nuclei

The protoTRACE array:

- 8 segmented TRACE prototypes
- Barrel/cube configuration
- GALILEO digitizers @ 100 MS/s

- Shell-evolution near the stability
- Shape-coexistence
- Exotic structures in nuclei

The protoTRACE array:

- 8 segmented TRACE prototypes
- Barrel/cube configuration
- GALILEO digitizers @ 100 MS/s

- Shell-evolution near the stability
- Shape-coexistence
- Exotic structures in nuclei

Conclusion

Timeline

Conclusion

THANK YOU FOR YOUR ATTENTION