

Atomic parity violation with radioactive ions & the muX experiment

Andreas Knecht, Paul Scherrer Institut

Particle physics & radioactive ions

- Electric dipole moments: Fr-210, Ra-225, Rn
- Weak interaction studies: large range of isotopes

Atomic parity violation: Fr, Ra

PAUL SCHERRER INSTITU

Why atomic parity violation?

Davoudiasl, Lee, Marciano, Phys. Rev. D 92, 055005 (2015)

PAUL SCHERRER INSTITU

- Running of the Weinberg angle as a function of momentum transfer
- APV fixes the low momentum value

Possible New Physics

Davoudiasl, Lee, Marciano, Phys. Rev. D 89, 095006 (2014)

Possible new physics in the form of a new dark Z boson hides at low momentum!

Andreas Knecht

Detection of APV

Weak Interaction in Atoms Interference of EM and Weak interactions

SPES-Nusprasen Workshop, 1. - 2. 2. 2018

Benefit of Fr, Ra

K. Jungmann, L. Willmann, Workshop on Muonic Atom Spectroscopy (2016)

Other results:

 $45.9 \cdot 10^{-11} iea_0 (-Q_w/N)$ (R. Pal*et al.*, Phys. Rev. A **79**, 062505 (2009), Dzuba *et al.*, Phys Rev. A **63**, 062101 (2001).)

Need reliable charge radius at <0.2% accuracy for atomic theory</p>

Andreas Knecht

SPES-Nusprasen Workshop, 1. - 2. 2. 2018

Charge Radii from Laser Spectroscopy

- Wealth of information on nuclear properties from laser spectroscopy
- Need electron scattering or muonic atom spectroscopy for absolute radii

Muonic Atom Spectroscopy

PAUL SCHERRER INSTITUT

- Muonic energy levels highly sensitive to nuclear charge distribution due to large overlap
- Using QED calculations and model for nuclear charge distribution allows to extract charge radius

Large effect:

 E_{1s} (Z=82) ~ 19 MeV (point nucleus) \rightarrow 10.6 MeV (finite size)

Muonic Atom Spectroscopy

- Impressive precision in the extracted charge radius can be achieved
- For ²⁰⁸Pb: <r²>^{1/2} = 5.5031(11) fm 2x10⁻⁴ relative precision

TABLE V. Experimental muonic transition energies (keV) in ²⁰⁸ Pb (recoil corrected).					
Transition	Kessler (Ref. 9)	Hoehn (Ref. 27)	This experimen		
$2p_{3/2}$ - $1s_{1/2}$	5962.770(420)		5962.854(90)		
$2p_{1/2}$ - $1s_{1/2}$	5 777.910(400)		5 778.058(100)		
$3d_{3/2}-2p_{1/2}$	2 642.110(60)	2642.292(23)	2 642.332(30)		
$3d_{5/2}$ -2p_{3/2}	2 500.330(60)	2500.580(28)	2 500.590(30)		
$3d_{3/2}-2p_{3/2}$	2 457.200(200)		2 457.569(70)		
$3p_{3/2}-2s_{1/2}$	1 507.480(260)		1 507.754(50)		
$3p_{1/2}-2s_{1/2}$			1 460.558(32)		
$2s_{1/2}-2p_{1/2}$	1215.430(260)		1215.330(30)		
$2s_{1/2}-2p_{3/2}$	1 030.440(170)		1030.543(27)		
$5f_{5/2}-3d_{3/2}$	1 404.740(80)		1 404.659(20)		
$5f_{7/2}$ - $3d_{5/2}$	1 366.520(80)		1 366.347(19)		
$5f_{5/2}-3d_{5/2}$			1 361.748(250)		
$4f_{5/2}-3d_{3/2}$	971.850(60)	971.971(16)	971.974(17)		
$4f_{7/2}-3d_{5/2}$	937.980(60)	938.113(13)	938.096(18)		
$4f_{5/2}-3d_{5/2}$			928.883(14)		
$4d_{3/2}-3p_{1/2}$			920.959(28)		
$4d_{5/2}-3p_{3/2}$			891.383(22)		
$4d_{3/2}-3p_{3/2}$			873.761(63)		

Andreas Knecht

SPES-Nusprasen Workshop, 1. - 2. 2. 2018

Muonic Atom Spectroscopy

- 2p 1s energy is highly sensitive to charge radius
- What is the limiting factor?

Muonic Atom Spectroscopy

- Nuclear polarization is the dominating factor that in the end determines the accuracy of the extracted charge radius
- Typically assumed uncertainty: 10 - 30%
- Nuclear excitation spectra important
- Looking for theorists that want to tackle these calculations with modern methods

TABLE II. Theoretical nuclear polarization corrections in ²⁰⁸ Pb.										
Energy (MeV)	Γ	$B(E\lambda)\uparrow (e^2b^{2\lambda})$	1s _{1/2} (eV)	2s _{1/2} (eV)	$\begin{array}{c} 2p_{1/2} \\ (e\mathbf{V}) \end{array}$	2p _{3/2} (eV)	$3p_{1/2}$ (eV)	3p _{3/2} (eV)	$\frac{3d_{3/2}}{(eV)}$	$\frac{3d_{5/2}}{(eV)}$
2.615	3-	0.612	135	12	90	84	26	26	111	-63
4.085	2+	0.318	198	20	182	180	76	84	6	4
4.324	4+	0.155	14	1	8	7	2	2	1	1
4.842	1-	0.001 56	7	1	9	-8	0	0	1	1
5.240	3-	0.130	27	2	16	15	5	5	2	2
5.293	1-	0.002 04	9	2	-27	-19	0	-1	1	1
5.512	1-	0.003 80	16	3	90	- 53	-1	-1	1	1
5.946	1-	0.000 07	0	0	3	- 30	0	0	0	0
6.193	2+	0.050 5	29	3	22	21	7	7	0	0
6.262	1-	0.000 24	1	0	3	5	0	0	0	0
6.312	1-	0.000 22	1	0	3	4	0	0	0	0
6.363	1-	0.000 14	1	0	2	2	0	0	0	0
6.721	1-	0.000 75	3	1	6	7	0	1	0	0
7.064	1-	0.001 56	6	1	9	11	-1	-1	0	0
7.083	1-	0.000 75	3	1	4	5	-1	-1	0	0
7.332	1-	0.002 04	8	1	10	11	-2	-2	0	0
Tota	ıl low-lyi	ng states	458	48	233	242	111	117	123	-53
13.5	0+	0.047 872	906	315	64	38	24	15	1	0
22.8	0+	0.043 658	546	147	43	26	15	10	0	0
13.7	1-	0.537 672	1454	221	786	738	255	258	66	54
10.6	2+	0.761 038	375	37	237	222	67	68	33	30
21.9	2+	0.566 709	207	21	108	99	29	29	8	7
18.6	3-	0.497 596	77	7	40	36	11	11	3	2
33.1	3-	0.429 112	53	5	25	23	7	7	2	1
	> 3 ^a		176	15	80	71	21	21	4	4
Tota	l high-ly	ing states	3794	768	1383	1253	429	419	117	98
	Tota	1	4252	816	1616	1495	540	536	240	45

^aValues from Ref. 7. Positive NP values mean that the respective binding energies are increased.

Bergem et al., PRC 37, 2821 (1988)

What About Radioactive Atoms?

- Most of the stable isotopes have been measured with muonic atom spectroscopy
- In a few special cases also radioactive isotopes, e.g. americium

The paper describes the americium target as "modest weight of 1 gram"

Measurements in ultra-thin targets

- Radioprotection laws more strict nowadays
 - Can only use 0.2 µg of 241-Am in PSI experimental hall
 - ▶ Can use 5 µg of 226-Ra
- For "normal" stopping need O(100 mg)
- Use the "magic" of muonic hydrogen/deuterium atoms and transfer reactions!

≥

- Hydrogen gas quasi transparent for µd ⊳ at ~5 eV (Ramsauer-Townsend effect)
- \triangleright µd reaches target and transfers to µRa
- Measure emitted X-rays from cascade ₽

Transfer Reactions

- Stop in 100 bar hydrogen target with ⊳ 0.25% deuterium admixture
- Form muonic hydrogen μp
- Transfer to deuterium forming μd , gain binding energy of 45 eV

μd

Optimize conditions

- Maximum efficiency at 0.25% deuterium concentration and a stopping point with part of the stopping distribution inside the target
- ▶ Reach a efficiency of around 7% of incoming muons hitting the target as µd atom

100 bar hydrogen target

- Target sealed with 0.6 mm carbon fiber window plus carbon fiber/ titanium support grid
- Target holds up to 350 bar
- 8 mm stopping distribution (FWHM) inside 15 mm gas volume
- Target disks mounted onto the back of the cell

Entrance & veto detectors

- Entrance detector to see incoming muon
- Veto scintillators to form anti-coincidence with decay electron

SPES-Nusprasen Workshop, 1. - 2. 2. 2018

Optimize detection efficiency

- ▶ piE1 beam line at PSI
- ~10 kHz μ- at 28 MeV/c
- 11 germanium detectors in an array from French/UK loan pool, Leuven, PSI

Target	Size	Backing	N_γ / N_μ	ϵ
50 nm Au	$4.9~\mathrm{cm}^2$	Cu	$(10.9 \pm 0.3) \times 10^{-5}$	10.0%
10 nm Au	$4.9~\mathrm{cm}^2$	Cu	$(6.9 \pm 0.2) \times 10^{-5}$	6.3%
$3 \mathrm{nm} \mathrm{Au}$	$4.9~\mathrm{cm}^2$	Cu	$(3.6 \pm 0.1) \times 10^{-5}$	3.3%
3 nm Au	$4.9~\mathrm{cm}^2$	kapton	$(3.2 \pm 0.1) \times 10^{-5}$	2.9%
3 nm Au	$1 \ \mathrm{cm}^2$	Cu	$(1.3 \pm 0.1) \times 10^{-5}$	1.2%

- Detected 2p-1s gammas per incoming muon for various targets
- Not all µd converted in thin targets
- Can still reliably see gammas from 5 μ g gold target (1 cm², 3 nm)

PAUL SCHERRER INSTITUT

Measurement

- Measurement with 5 µg gold target as proof-of-principle
- Data taken during 18.5 h
- Ready for radioactive radium target this year

Other radioactive isotopes

Isotope	Half-life	Max. Activity	Max. Mass	
²²⁶ Ra	1600 y	200 kBq	5 µg	
²⁴⁸ Cm	350'000 y	5 kBq	32 µg	
²⁰⁹ Po	102 y	200 kBq	0.3 µg	

- Isotopes without measured charge radius
- Maximum activity based on current regulations and without major modifications to experimental area infrastructure (100 x approval limit)

Benefit from more absolute measurements

M. Kowalska, Workshop on Muonic Atom Spectroscopy (2016)

PAUL SCHERRER INSTITUT

When data for at least 3 isotopes exists (i.e stable isotopes):

Combine absolute radii (transitions in muonic atoms and/or electron scattering) and isotope shifts in optical transitions to derive more precise F and K_MS values

 $\delta\nu^{A_{i},A'} \frac{m_{A_{i}} m_{A'}}{m_{A_{i}} - m_{A'}} = K_{MS} + F \delta\langle r^{2} \rangle^{A_{i},A'} \frac{m_{A_{i}} m_{A'}}{m_{A} - m_{A'}}$ $\delta \langle r^2 \rangle^{A,A'} \frac{m_{A} m_{A'}}{m_{A} - m_{A'}} = -\frac{K_{MS}}{F} + \frac{1}{F} - \delta \nu^{A,A'} \frac{m_{A} m_{A'}}{m_{A} - m_{A'}}$ K_{MS} fitted value (with uncertainty) F $-m_{A'}$ $\delta \langle r^2
angle_{A,A'} rac{m_{A,mA'}}{m_{A}-m_{A}}$ modified δr^2 (fm² u) But if there are Isotope fewer stable pair A, A' slope \overline{F} isotopes ... See Na, Mn, Cu, Ga Isotope • • • pair A,A'' $\delta\nu^{A,A'} \frac{m_{A}m_{A'}}{m_{A}-m_{A'}}$ Ψ modified isotope shift (GHz u)

Isotopes at SPES

- Isotopes without muonic data with sufficient yield at SPES to reach µg ion numbers in a few days
- Sufficiently long lived for transport
- Need to carefully study activity and regulations for lower half-life isotopes
- ▶ We'll continue to develop the method towards lower target masses
 → more radioactive elements can be

measured

5.47E+10

1.89E+11

4.08E+09

1.68E+10

4.96E+10

1.07E+11

6.05E+10

Sn

Sn

Sn

Te

L

L

Cs

Cs

Cs

Cs

Ba

131

133

134

135

136

137

140

6.93E+05

7.49E+04

6.52E+07

7.26E+13

1.14E+06

9.49E+08

1.10E+06

- Particle physics interest in radioactive ions in connection with the study of EDM, weak interaction and atomic parity violation
- Muonic atom spectroscopy able to measure absolute charge radii needed for atomic theory in APV
- muX collaboration developed method of using microgram targets for muonic atom spectroscopy enabling the measurement of high-activity targets
- Several isotopes with sufficient yield at SPES identified that could be measured with our method

muX Collaboration

A. Adamczak¹, A. Antognini^{2,3}, N. Berger⁴, T. Cocolios⁵, R. Dressler², R. Eichler², P. Indelicato⁶, K. Jungmann⁷, K. Kirch^{2,3}, A. Knecht², J. Krauth⁴, J. Nuber², A. Papa², R. Pohl⁴, M. Pospelov^{8,9}, E. Rapisarda², P. Reiter¹⁰, N. Ritjoho^{2,3}, S. Roccia¹¹, N. Severijns⁵, A. Skawran^{2,3}, F. Wauters⁴, and L. Willmann⁷ ¹Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland ²Paul Scherrer Institut, Villigen, Switzerland ³ETH Zürich, Switzerland ⁴University of Mainz, Germany ⁵KU Leuven, Belgium ⁶LKB Paris, France ⁷University of Groningen, The Netherlands ⁸University of Victoria, Canada ⁹Perimeter Institute, Waterloo, Canada ¹⁰Institut für Kernphysik, Universität zu Köln, Germany ¹¹CSNSM, Université Paris Sud, CNRS/IN2P3, Orsay Campus, France

Scattering cross sections

PAUL SCHERRER INSTITU

Array Detection Efficiency

Detector Efficiency Ge1-10

Transfer Probability in Gold

The Weinberg angle or weak mixing angle is a parameter in the Weinberg–Salam theory of the electroweak interaction, part of the Standard Model of particle physics, and is usually denoted as ∂_W . It is the angle by which spontaneous symmetry breaking rotates the original W^0 and B^0 vector boson plane, producing as a result the Z^0 boson, and the photon.

$$\left(\begin{array}{c} \gamma \\ Z^0 \end{array}\right) = \left(\begin{array}{c} \cos\theta_{\rm W} & \sin\theta_{\rm W} \\ -\sin\theta_{\rm W} & \cos\theta_{\rm W} \end{array}\right) \left(\begin{array}{c} B^0 \\ W^0 \end{array}\right)$$

It also gives the relationship between the masses of the W and Z bosons (denoted as m_W and m_Z),

$$m_{\rm Z} = rac{m_{\rm W}}{\cos heta_{\rm W}} \; .$$

The angle can be expressed in terms of the $SU(2)_L$ and $U(1)_Y$ couplings (weak isospin g and weak hypercharge g', respectively),

$$\cos heta_{
m W} = rac{g}{\sqrt{g^2+g'^2}} \qquad ext{and} \qquad \sin heta_{
m W} = rac{g'}{\sqrt{g^2-g'^2}} \; .$$

The electric charge is then expressible in terms of it, $e = g \sin \theta_W = g' \cos \theta_W$; see the Figure.

As the value of the mixing angle is currently determined empirically, it has been mathematically defined as^[1]

$$\cos \theta_{
m W} = rac{m_{
m W}}{m_{
m Z}}$$
. https://en.wikipedia.org/wiki/Weinberg_angle

K. Jungmann, L. Willmann

Experimental Method

N. Fortson, Phys. Rev. Lett. 70, 2383-2386 (1993)

Radium Activity

- 5 µg corresponds to 200 kBq of 226-Ra and all daughters
- Highest gamma emitters:
 214-Pb, 214-Bi
- Gamma rate: ~400 kHz

