Helical Orbit Spectrometer for SPES and its possible applications

Nuclear structure studies with low intensity beams \rightarrow direct reactions

- Elastic Scattering (density distribution of p,n)
- Inelastic Scattering (excited states, collectivity, B(E2),B(E3))
- One nucleon transfer (single particle states, astrophysical processes)
- Two nucleon transfer (pair correlations)

Two-body reactions in inverse kinematics: easier to detect the light reaction partner

Problems:

- Low energy particles identification
- Strong angular dependence
- Kinematical compression at large lab. angle
- Low intensity beam (detection efficiency)

Helical Orbit Spectrometer

MAIN IDEA:

- Large-bore solenoid with a magnetic field (2-5 Tesla), uniform in the volume
- · Beam intercepts a target inside the solenoid along its magnetic axis
- Light charged particles ejected from the target follow an helical orbit and are focused on the solenoid main axis.
- Detection: position sensitive Si array placed around the beam axis allowing for beam transport and recoil measurement

Solenoid Kinematics

Particles trajectories can be defined by the orientation of the \vec{V}_{lab} relative to solenoid axis

 $\mathbf{V}_{\mathbf{L}}$ defines the radius of cyclotron motion for a particle of mass A and charge q in B field

$$r = v_{\perp} m/qB$$
 $T_{cycl} = 2\pi r/\nu = 2\pi m/Bq = 65.6 m/Bq$ (ns)

The position at which particles return to solenoid axis varies according to:

 $z = v_{par} T_{cyc}$

What we need to measure:

- Particles **ToF**
- Impact point z
- E_{lab}

Derived quantities:

- m/q
- E_{cm}
 Θ_{cm}

 $\Theta_{cm} = \arccos(qeB_2 - 2\pi mV_{cm}/(2\pi\sqrt{2mE_{lab}} + m^2V_{cm}^2 - mV_{cm}qeBz/\pi)$ $E_{cm} = E_{lab} + 1/2mV_{cm}^2 - V_{cm}eqBz/2\pi$

Helical Orbit Spectrometer: from (E_{lab}, Θ_{lab}) to (E_{lab}, z)

Advantages:

- Particle identification through ToF = T_{cvcl}
- Enhanced Q-value resolution
- No kinematical compression effects ($\Delta E_{lab} = \Delta E_{cm}$)

What it can be studied depends on :

- Two-body Kinematics
- Solenoid Size
- Solenoid B intensity
- Array

The quality of the results:

- B field degree of homogeneity
- type/shape of the detection array
- beam energy resolution
- beam spot size

	lon	T _{cyci} = Te	T _{cycl} = ToF (ns)	
		B = 2 Tesla	B = 3 Tesla	
	р	32.8	21.9	
	p d, Alfa ²⁺	65.6	43.7	
	t	98.4	65.6	
_{cm})	³ He	49.1	32.7	

D(¹³⁴Sn,p)¹³⁵Sn @ 6A MeV

Solenoid

Main parameter governing spectrometer acceptar

- B intensity
- Radius(R)
- Lenght (L)
- The extent of the magnetic field and array geometry imposes limits on the acceptance region

Impact point along the solenoid axis

Requirements:

- Variable field to optimize the focalization of particles (p,d,t,a) on the detector array
- Homogenous field size: Radius 40 cm Length ~100-120 cm

Solenoid magnetic field homogeneity

Helios uses a solenoid built for NRM with a B field homogeneity of the order 10⁻⁴

Region of homogeneity Lenght \approx 2 Radius

Simulations: Solenoid with a degree of homogeneity of the order of 10⁻³ and 10⁻⁴

 Δx (Sole_ideal – Sole_10⁻³) = f(E,Theta_lab) Es: proton 6 MeV, Θ_{lab} =10° Δx = 1.2 mm

 Δx (Sole_ideal – Sole_10⁻⁴) = f(E,Theta_lab)

Es: proton 6 MeV, Θ_{lab} =10° Δx = 0.5 mm

Detection system: Si array

Array geometry depends on the kinematics

Es:(d,p) (t,p) (3 He,d) (3 He, α)

Setup Si di HELIOS

Es: (p,p') (p,d) (³He,t)

Detectors:

• Position sensitive Si, thickness: 1000-1500 μ m

Geometry:

- Array with a regular polygonal cross-section
- Array lenght: 500 800 mm
- Two opposite requirements (beam trasport particle detection

Detection system: Si array geometry

Strip or Bidim Si detectors: improvement in the determination of the emission angle (θ_{lab})

Array with hexagonal or octagonal cross section reduce finite size detector effects

Detection system

Recoil detector:

- Dependent on the reaction investigated and on the beam purity
- Implication in the Si array geometry in forward direction

HPGe detectors array for gamma detection:

- Coincidence measurement particle-gamma
- Resolution Improvement
- Gamma detection in inelastic scattering reactions
- J^p determination of unknown states
- Level scheme determination
- Geometry
- Working condition in B field
- Detector Efficiency
- Detector Resolution

Study to use HPGe in magnetic field (F. Recchia (Pd))

SOLE model using OPERA

Activities:

- Detailed map of the magnetic field
- Charged particles transport simulations with measured field
- Test of the performances with a tandem beam

Octupole deformations corresponding to reflection asymmetry or "pear shaped" nuclei:

Z ≈ 34, 56, 88 and N ≈ 34, 56, 88, 134

Evidences in :

²²⁰Rn (Z=86,N=134), ²²⁴Ra(Z=88,N=136) at ISOLDE-CERN through Coulomb excitation experiments

Octupole moments in nuclei & permanent EDM moments.

A measurable electric dipole moment could be induced by the so called Schiff moment, a quantity sensitive to details of charge distribution

Importance of nuclear structure and comparison with model predictions

See Talk P. Butler

What would be interesting to measure?

• B(E3) strenght

```
Which nuclei at SPES ?
Region: Z \approx 56 and N \approx 88 (Barium isotopes for example)
```

How?

- Inelastic scattering (p,p')
- Detection using an helical orbit spectrometer
- High detection efficiency
- Possible with low intensity beams ($\approx 10^4 10^5 \text{ pps}$)

Conclusions

- Properties of Helical Orbit Spectrometer for SPES
- Main advantages of (E_{lab},z) detection
- Detection Array main features
- Study of an Helical Orbit Spectrometer @ LNS
- Possible application to pear-shaped nuclei

LNL: G. De Angelis, F. Gramegna, T. Marchi (SPECMAT), A. Gottardo, A. Lombardi Pd: F. Recchia, M. Mazzocco LNS: D.Santonocito, A. Di Pietro, P. Figuera, C. Maiolino, R.Alba Na: J. Pierroutsakou, C. Parascandolo