Helical Orbit Spectrometer for SPES and its possible applications

Nuclear structure studies with low intensity beams \rightarrow direct reactions

- Elastic Scattering (density distribution of p, n)
- Inelastic Scattering (excited states, collectivity, B(E2),B(E3))
- One nucleon transfer (single particle states, astrophysical processes)
- Two nucleon transfer (pair correlations)

Two-body reactions in inverse kinematics: easier to detect the light reaction partner

Problems:

- Low energy particles - identification
- Strong angular dependence
- Kinematical compression at large lab. angle
- Low intensity beam (detection efficiency)

Helical Orbit Spectrometer

MAIN IDEA:

- Large-bore solenoid with a magnetic field (2-5 Tesla), uniform in the volume
- Beam intercepts a target inside the solenoid along its magnetic axis
- Light charged particles ejected from the target follow an helical orbit and are focused on the solenoid main axis.
- Detection: position sensitive Si array placed around the beam axis allowing for beam transport and recoil measurement

Solenoid Kinematics

Particles trajectories can be defined by the orientation of the $\overrightarrow{\mathbf{V}}_{\text {lab }}$ relative to solenoid axis

$\mathbf{V}_{\mathbf{\perp}}$ defines the radius of cyclotron motion for a particle of mass A and charge q in B field

$$
r=v_{\perp} m / q B
$$

$$
T_{\mathrm{cyc}}=2 \pi r / v=2 \pi m / B q=65.6 \mathrm{~m} / \mathrm{Bq}(\mathrm{~ns})
$$

The position at which particles return to solenoid axis varies according to:

$$
\mathrm{z}=\mathrm{v}_{\mathrm{par}} \mathbf{T}_{\mathrm{cyc}}
$$

What we need to measure:
Derived quantities:

- Particles ToF
- Impact point \mathbf{z}
- $E_{\text {lab }}$
- m / q
- $E_{c m}$
- $\Theta_{c m}$

$$
\begin{aligned}
& \Theta_{c m}=\arccos \left(q e B-2 \pi m V_{c m} /\left(2 \pi \sqrt{2 m E_{l a b}+m^{2} V_{c m}^{2}-m V_{c m} q e B z / \pi}\right)\right. \\
& E_{c m} \quad=E_{\text {lab }}+1 / 2 m V_{c m}^{2}-V_{c m} e q B z / 2 \pi
\end{aligned}
$$

Helical Orbit Spectrometer: from $\left(E_{l a b}, \Theta_{l a b}\right)$ to $\left(E_{l a b}, z\right)$

Advantages:

- Particle identification through $\mathrm{ToF}=\mathrm{T}_{\text {cycl }}$
- Enhanced Q-value resolution
- No kinematical compression effects $\left(\Delta \mathrm{E}_{\mathrm{lab}}=\Delta \mathrm{E}_{\mathrm{cm}}\right)$
Ion $\quad \mathrm{T}_{\text {cycl }}=$ ToF (ns)

$$
\mathrm{B}=2 \text { Tesla }
$$

p	32.8	21.9

$$
B=3 \text { Tesla }
$$

d, Alfar ${ }^{2+}$
65.6
43.7
${ }^{3} \mathrm{He}$
98.4
49.1
65.6
32.7

What it can be studied depends on :

- Two-body Kinematics
- Solenoid Size
- Solenoid B intensity
- Array

The quality of the results:

- B field degree of homogeneity
- type/shape of the detection array
- beam energy resolution
- beam spot size

$$
\mathrm{D}\left({ }^{134} \mathrm{Sn}, \mathrm{p}\right)^{135} \mathrm{Sn} @ 6 A \mathrm{MeV}
$$

Solenoid

Main parameter governing spectrometer acceptar

- B intensity
- Radius(R)
- Lenght (L)
- The extent of the magnetic field and array geometry imposes limits on the acceptance region

Requirements:

- Variable field to optimize the focalization of particles (p, d, t, a) on the detector array
- Homogenous field size:

Radius 40 cm
Length ~100-120 cm

Solenoid magnetic field homogeneity

Helios uses a solenoid built for NRM with a B field homogeneity of the order 10^{-4}
Region of homogeneity Lenght ≈ 2 Radius
Simulations: Solenoid with a degree of homogeneity of the order of 10^{-3} and 10^{-4}

Δx (Sole_ideal - Sole_10-3 $)=f\left(E\right.$,Theta_lab) Es: proton $6 \mathrm{MeV}, \Theta_{\mathrm{lab}}=10^{\circ} \quad \Delta x=1.2 \mathrm{~mm}$
Δx (Sole_ideal - Sole_10-4 $)=f\left(E\right.$,Theta_lab) Es: proton $6 \mathrm{MeV}, \Theta_{\mathrm{lab}}=10^{\circ} \Delta x=0.5 \mathrm{~mm}$

Detection system: Si array

Array geometry depends on the kinematics

Es:(d,p) $(t, p)\left({ }^{3} \mathrm{He}, \mathrm{d}\right)\left({ }^{3} \mathrm{He}, \alpha\right)$

Setup Si di HELIOS

Es: $\left(p, p^{\prime}\right)(p, d)\left({ }^{3} \mathrm{He}, \mathrm{t}\right)$

Detectors:

- Position sensitive Si, thickness: 1000-1500 $\mu \mathrm{m}$

Geometry:

- Array with a regular polygonal cross-section
- Array lenght: $500-800 \mathrm{~mm}$
- Two opposite requirements (beam trasport particle detection

Detection system: Si array geometry

Particle trajectories in the solenoid

Z impact point - protons

Beam size effects

Strip or Bidim Si detectors: improvement in the determination of the emission angle ($\theta_{\text {lab }}$)

Array with hexagonal or octagonal cross section reduce finite size detector effects

Detection system

Recoil detector:

- Dependent on the reaction investigated and on the beam purity
- Implication in the Si array geometry in forward direction

HPGe detectors array for gamma detection:

- Coincidence measurement particle-gamma
- Resolution Improvement
- Gamma detection in inelastic scattering reactions
- Jp determination of unknown states
- Level scheme determination
- Geometry
- Working condition in B field
- Detector Efficiency
- Detector Resolution

Study to use HPGe in magnetic field (F. Recchia (Pd))

Study of an Helical Orbit Spectrometer @ LNS

SOLE model using OPERA

Study of an Helical Orbit Spectrometer @ LNS

Study of an Helical Orbit Spectrometer @ LNS

Study of an Helical Orbit Spectrometer @ LNS

Emission angle reconstruction vs beam spot size

Activities:

- Detailed map of the magnetic field
- Charged particles transport simulations with measured field
- Test of the performances with a tandem beam

Possible measurements with Helical Orbit Spectrometer @ LNL

Octupole deformations corresponding to reflection asymmetry or "pear shaped" nuclei:

$$
Z \approx 34,56,88 \text { and } N \approx 34,56,88,134
$$

Evidences in :
${ }^{220} \mathrm{Rn}(\mathrm{Z}=86, \mathrm{~N}=134),{ }^{224} \mathrm{Ra}(\mathrm{Z}=88, \mathrm{~N}=136)$ at ISOLDE-CERN through Coulomb excitation experiments

Octupole moments in nuclei \& permanent EDM moments.
Observation of non zero EDM would indicate time-reversal (T) or charge-parity $(C P)$ violation \longrightarrow physics beyond standard model

A measurable electric dipole moment could be induced by the so called Schiff moment, a quantity sensitive to details of charge distribution

Importance of nuclear structure and comparison with model predictions

What would be interesting to measure?

- B(E3) strenght

Which nuclei at SPES ?
Region: $Z \approx 56$ and $N \approx 88$ (Barium isotopes for example)

How?

- Inelastic scattering (p, p ')
- Detection using an helical orbit spectrometer
- High detection efficiency
- Possible with low intensity beams ($\approx 10^{4}-10^{5} \mathrm{pps}$)

Conclusions

- Properties of Helical Orbit Spectrometer for SPES
- Main advantages of ($\mathrm{E}_{\mathrm{lab}}, \mathrm{z}$) detection
- Detection Array main features
- Study of an Helical Orbit Spectrometer @ LNS
- Possible application to pear-shaped nuclei

LNL: G. De Angelis, F. Gramegna, T. Marchi (SPECMAT), A. Gottardo, A. Lombardi Pd: F. Recchia, M. Mazzocco
LNS: D.Santonocito, A. Di Pietro, P. Figuera, C. Maiolino, R.Alba Na: J. Pierroutsakou, C. Parascandolo

