KU LEUVEN

Prospects for low-energy weak interaction studies in the β decay of fission products

> SPES-Nusprasen Workshop Pisa, February 1st, 2018

Nathal Severijns KU Leuven University, Belgium

Outline

- structure of the weak interaction:
 - searching for tensor currents in pure Gamow-Teller β decays
 - observable: Fierz term, from: β -v correlation,

 β asymmetry parameter,

 β -spectrum shape, ...

 - complementary to direct searches for new bosons at LHC for precision on Fierz term of 10⁻³ and better (challenge!)

 towards higher precision → need to understand better weak magnetism (small Standard Model term)

- would also contribute to (or solve) reactor neutrino problem
- best observable is β-spectrum shape

and Beyond:

<u>Note</u>: - correlation coefficients (a, A, ...) depend on physics ($C_i^{(i)}$: coupling constants) - 'kinematics' factors $(\frac{\vec{J}}{J} \cdot \frac{\vec{p}_e}{E_e}, ...)$ tell us how to organize the setup

KUL

<u>Note</u>: $-b_F$ and b_{GT} are zero in the standard model - for pure Fermi and Gamow-Teller transitions b_F and b_{GT} (and also a, A, ...) do not depend on the nuclear matrix elements !!

KU LEUV

4. β-spectrum shape

$$d\Gamma \propto G_F \frac{F(Z,E)}{\frac{Fermi}{function}} \left[1 + k \frac{1}{E_{\beta}} b_{Fierz} + k' E_{\beta} b_{WM} \right]$$

sensitive to both:

- b_{Fierz} : scalar / tensor weak currents
- b_{WM} : weak magnetism (Standard Model term)
 - induced by strong interaction because the decaying quark is not free but bound in a nucleon;
 - is to be known better when reaching sub-percent precision

Note the different energy dependence of both effects !!

Complementarity of nuclear / neutron β decay with LHC searches

2. Weak magnetism

the 'weak magnetism' term:

- modifies values for correlation coefficients at level of per mil to 1%
 - → important for correlation measurements at sub-percent level

KU LEI

- could be (in part) responsible for the reactor neutrino problem

the Reactor Neutrino Problem

deficit of about 6% in observed vs. predicted neutrino rate

in 'near' detectors (at d = 10 - 100 m from core) - requires 4th, sterile v !!

A too crude approximation for weak magnetism in the fission fragment β spectra, which are converted to neutrino spectra, could be (in part) responsible for this (see also A.C. Hayes et al., PRL 112 (2014) 202501)

weak magnetism term **b**_{WM} (CVC)

for T = 1/2 $J^{\pi} \rightarrow J^{\pi}$ mirror β transitions :

$$\frac{b_{WM}}{Ac} = \sqrt{\frac{J}{J+1}} M_F \frac{\mu_{mother} - \mu_{daughter}}{c}$$

A = mass number M_F = 1 Fermi matrix element

KU LEUVEN

 μ = magnetic moment

$$\mathbf{c} = \mathbf{g}_{\mathsf{A}} \mathbf{M}_{\mathsf{GT}}$$

this equation is from 'Conserved Vector Current' hypothesis e.g. F.P. Calaprice and B.R. Holstein, Nucl. Phys. A 273 (1976) 301

with
$$c = g_A M_{GT} \cong \rho$$
 from $Ft^{mirror} = \frac{2Ft^{0^+ \to 0^+}}{1 + \frac{f_A}{f_V}\rho^2}$

N. Severijns, I.S. Towner et al., Phys. Rev. C 78 (2008) 055501 and to be published

weak magnetism term b_{WM}/Ac - experimental data

weak magnetism term b_{WM}/Ac - experimental data

- Whether there is a trend towards larger values for b_{WM} /Ac can be studied at SPES via β -spectrum shape measurements to extract b_{WM} /Ac for the 1g_{9/2} shell (mass A = 80 100).
- Measurements on isotopes in the $1h_{11/2}$ shell (below A = 132) are also possible.

Note that:

- there are currently no experimental values for b_{WM} /Ac available for A > 80
- experimental values for b_{WM} /Ac for the mirror β transitions up to A = 45 are rather well reproduced within the shell model within 10% - 25% (N.Severijns, I.S. Towner et al., to be published)
- shell-model calculations for A > 45 suffer from too large truncation
- mean-field calculations of *b_{WM}* for higher A are ongoing (coll. with M. Martini)
- experimental data for pure GT transitions of fission fragments with
 80 < A < 132 would be very useful to check the reliability of these calculations

The effect of weak magnetism on the spectral shape is $\propto (1 + b_{WM} E_e)$

$$\rightarrow \frac{dN}{dE_e} = \frac{4}{3M_n} \frac{b_{WM}}{Ac} \approx 0.7\% \text{ MeV}^{-1} \text{ for } \frac{b_{WM}}{Ac} = 6 \quad (M_n = \text{nucleon mass} \approx 930 \text{ MeV})$$

A value of $\frac{dN}{dE}$ of 0.5% MeV⁻¹ corresponds to a shift in the *v*-rate of \approx -1%

 \rightarrow the -6% discrepancy in the neutrino rate in the near detectors could thus be

fully accounted for if ALL fission products have a $\frac{b_{WM}}{Ac} \approx 25$ (but not realistic)

→ the reactor neutrino problem can be in part accounted for by a more correct treatment of b_{WM} (now only a fixed linear electron-energy dependence is considered for b_{WM})

Selected sotopes of interest at SPES (at 40 keV) to:

- measure the Fierz term (proportional to $1/E_e$),

via correlations or β -spectrum shape measurements

- measure the weak magnetism term (proportional to E_e),

			via correlation	on or be	ta-spec	trum sh	ape meası	urements
Isotope	t _{1/2}	log ft	Jp 🕲 Jb	branching ratio (%)	Beta endpoint energy (MeV)	useful part of transtion (MeV)		
77As	39 h	5.71	3/2> 1/2-	97	0.68	0.68	golden case	
79As	9.0 m	5.27	3/2> 1/2-	94	2.20	0.27		
80As	15 s	5.7	1+> 0+	56	5.70	0.67		
82As	19 s	6.19	(1+)> 0+	81	7.27	0.65		
83Br	2.4 h	5.0	3/2> 1/2-	99	0.93	0.52	golden case	
84Br	6.0 m	5.1	(6)> 5-	100	1.86	1.86	(golden case)	
121In	23 s	4.33	9/2+> 7/2+	100	2.43	2.43	(golden case)	contamination from 121mln ?
122In	1.5 s	5.11	1+> 0+	69	6.37	1.14		
125mSn	9.5 m	5.45	3/2+> 5/2+	98	2.00	0.31		contamination from 125Sn ?
127mSn	4.1 m	5.62	(3/2)+> (5/2)+	91	2.70	0.76	(golden case)	contamination from 127Sn ?

A new, improved description of β spectrum shape is available

Table VI Overview of the features present in the β spectrum shape (Eq. (4)), and the effects incorporated into the Beta Spectrum Generator Code. Here the magnitudes are listed as the maximal typical deviation for medium Z nuclei with a few MeV endpoint energy. Some of these corrections fall off very quickly (e.g. the exchange correction, X) but can be sizeable in a small energy region. Varying Z or W_0 can obviously allow for some migration within categories for several correction terms.

Item	Effect	Formula	Magnitude
1	Phase space factor	$pW(W_0 - W)^2$	Unity or larger
2	Traditional Fermi function	F_0 Analytical description & code	onity of larger
3	Finite size of the nucleus	L_0 Analytical description & code,	
4	Radiative corrections	R accurate to few 10 ⁻⁴ level	
5	Shape factor	C L. Hayen, N. Severijns et al.,	10^{-1} - 10^{-2}
6	Atomic exchange	X Rev Mod Phys in print	
7	Atomic mismatch		
8	Atomic screening	S (Eq. (54)) ^a	
9	Shake-up	See item 7	
10	Shake-off	See *	
11	Distorted Coulomb potential due to recoil		10^{-3} 10^{-4}
12	Diffuse nuclear surface		10 -10
13	Recoiling nucleus	e ⁺	
14	Molecular screening		
15	Molecular exchange	nucleus	
16	Bound state β decay		
17	Neutrino mass	Smalle	er than $1 \cdot 10^{-4}$
18	Forbidden decays	ve ve	
		· · · · · · · · · · · · · · · · · · ·	

^a Here the Salvat potential of Eq. (57) is used with \land

^b The effect of shake-up on screening was discussed in Σ .

^c Shake-off influences on screening and exchange corrections . by case scenario.

several new β spectrometers are in business now - 1

- 1. miniBETA (Leuven-Krakow; Severijns, Bodek) (multi-wire drift chamber + sciltillators; ¹¹⁴In)
 - K. Lojek et al., NIM A 802 (2015) 38
- source between two Si detectors in 1T field (Leuven-Los Alamos- ... ; Severijns, Young) (uses UCNA apparatus; ⁴⁵Ca)
- 3. implantation of fragmented, separated beam into large scintillator crystals (NSCL-MSU; Naviliat-Cuncic)

several new β spectrometers are in business now - 2

Conclusions and Outlook

Studies of pure Gamow-Teller transitions of fission fragments at SPES at 40 keV :

- 1. β -v correlation, β asymmetry and β spectrum shape measurements \rightarrow improved limits on **tensor** type weak currents;
- searches for new physics (bosons) at low energies are competitive with direct searches at LHC for 10⁻³ precisions of Fierz term *b* and beyond
- 3. at sub-0.5% level of precision have to include effects induced by strong interaction
 - → largest is weak magnetism
 - \rightarrow best observable: β -spectrum shape (would also contribute to reactor v problem)
- 4. several good isotopes are available at SPES !!
- 5. β-spectrum shape measurements would be the first choice ! (require no nuclear polarization and no detection of the nuclear recoil)

