

Yaxian Mao

Institute of Particle Physics, CCNU, Wuhan

LPSC, Université Joseph Fourier, Grenoble

Yaxian.Mao@EMCal-offline, Frascati

0

Heavy Ion Physics at LHC

<u>Soft Probes ($p_T \leq T_{medium}$, Λ_{QCD})</u>

- couple to the medium, in equilibrium with the medium
 - particle ratios, v₂, HBT, strange/charm particles, resonances
 - Medium generated photons and neutral mesons

Hard Probes (p_T » T_{medium}, Λ_{QCD})

- Probe the matter formed in HIC
 - Originate from the initial state
 - decouple from the medium, non-equilibrate with the medium
- "Easy" to measure at LHC
 - significant fraction of the cross section
 - $ightarrow \sigma_{hard}$ / σ_{total} ~ 98% (is only 50% at RHIC)
- Prompt photons, and jets ...

Why we want to measure photons?

- Direct soft photons radiated from the medium
 - Temperature reached by the medium
- Direct semi hard photons produced by hard partons interacting with the hot medium
 - Chemical composition of the hot medium
- Direct hard photons
 - Non interacting probe provide a reference for the hard process
- Decay photons (neutral mesons)
 - Chemical and momentum modification of the fragmentation of jets traversing the medium

Why γ-jet/hadron correlations?

- The photon 4-momentum remains unchanged while traversing the medium and sets the reference of the hard process
- Balancing the hadron and the photon provides a measurement of the medium modification experienced by the jet
- Allows to measure jets in an energy domain (E_{jet} < 50 GeV) where
 - $^\circ~$ The jet looses a large fraction of its energy (∆E_{jet} ≈ 20 GeV)
 - The jet cannot be reconstructed in the AA environment

Measurement efficiency

• γ and π^0 identification efficiency is lowered due to the material of the tracking detectors in front of PHOS

Direct photon in ALICE

data taking of direct photons for pp@10TeV

9

Systematic errors from decay photon contamination and hadrons. from underlying events. Yaxian.Mao@EMCal-offline, Frascati

12

Effects modifying the correlation

- In pp
 - Intrinsic k_T
 - Initial state radiation (ISR) and final state radiation (FSR)
- In AA
 - In addition, interaction with the medium

Experimental measurement of k_T

PRD74(2006) 072002; M. Begel, PhD thesis

- Many experiments have made measurement of the effective parton k_T in the proton
 - Lower energies: expect a value
 ~ 0.5 GeV corresponding to size
 of the proton
- Higher energies: higher values obtained
- Different exp. use different methods, but the trend is evident

PYTHIA $\langle k_T \rangle$ in γ -jet events at LHC

Extrapolated from existing measurements:

k_T extrappolated from existing experiments

 Use PYTHIA generator (with ISR/FSR on) and tune k_T (PARP(91)) to reproduce measured

 $<p_T>_{pair} = <p_T>_{\gamma-jet}$ $<k_T> = <p_T>_{pair} / \sqrt{2}$

• fitting function: $< p_T >_{pair} = A^* \log_{10}(B^* \sqrt{s})$ $A = 2.06 \pm 0.171$ $B = 0.16 \pm 0.045$

15

Pythia k_T and ISR/FSR in CF and FF

CF and FF after UE with different kt settings

Ratio ISR/FSR ON over OFF in CF

 ISR/FSR depletes the CF at high X_E values and increases the CF at low X_E values.

HI environment simulation

- PYTHIA: (E_{γ -jet}>20GeV) without quenching (10 month of pp data)
- HIJING: merged into γ-jet PYTHIA events (Imonth of PbPb data) :
 - b = 10-15 fm(dN/d η ~ 550), no quenching
 - $b = 0.5 \text{ fm}(dN/d\eta \sim 7500)$, quenched
- Quenching model: PYQUEN
 - event generator for simulation of rescattering, radiative and collisional energy loss of hard partons in expanding quark-gluon plasma created in ultrarelativistic heavy ion AA collisions (implemented as modification of standard pythia6.4xx jet event)

18

CF in pp and HI...

Correlation distribution after the underlying events subtraction.

19

A different model: QPYTHIA (ask Leticia...)

- N.Armesto, L. Cunqueiro and C.A.
 Salgado change of the splittings
- Quenching comes through mediummodified splitting functions
- Quenching weights in the multiple soft scattering approximation are used based on "BDMPS" formalism

Configuration of the production

- γ-jet events at pp@5.5TeV without quench from PYTHIA;
- γ-jet events at pp@5.5TeV with quench from PYTHIA merged into PbPb@5.5TeV from HIJING;
- Quenching model (QPYTHIA) implemented in PYTHIA, 3 different settings:
 - q hat = $1.7 \text{GeV}^2/\text{fm}$
 - q hat = $50 \text{ GeV}^2/\text{fm}$
 - q hat = 85 GeV²/fm

- q hat is the average medium-induced transverse momentum squared transferred to the parton per unit path length
- Modification will be stronger if q hat is large

- I_{AA} behaves the same as R_{AA} to reflect the medium effect
- Medium length setting in QPYTHIA is not working

What's more...

- According to the idea of X.
 N.Wang, γ-hadron
 correlation could probe
 volume (surface) emission of
 HI collisions by selecting x_E
 at different range (arXiv:
 0902.4000vI):
 - large x_E, contributions to CF
 come mostly from the surface;
 - small x_E, contributions to CF are mostly from the whole volume.
- Is it possible to illustrate this picture in ALICE?

On going testing...

- Generate γ-jet events with PYTHIA;
- Quenching the jet with QPYTHIA;

- Get the jet production point (x₀, y₀) inside AA geometry by fast glauber model;
- Calculate medium length based on jet direction.

Medium length of jet hadrons

 Did NOT see enhancement at small L and suppression at large L as expected, something is wrong?

Quenching effect on L

- Why enhancement for low p_T hadrons (small x_E) at small L?
- Is there suppression for high p_T hadrons (large x_E) at large L as expected?
 Yaxian.Mao@EMCal-offline, Frascati
 19-21 May, 2009

In progress...

- Verify the tomography of the medium on γ hadron correlation measurement.
- γ- hadron correlation measurement with EMCal and central tracking system (ITS+TPC) in pp and in AA.
- Prepare well for the first year data analysis...

31

Underlying Event (UE)

- Based on:
 - Hadrons spatial distribution from underlying events (UE) is isotropic:

UE ($|\phi_{\gamma}-\phi_{hadron}| < 0.5 \pi$) \cong UE ($0.5\pi < |\phi_{\gamma}-\phi_{hadron}| < 1.5 \pi$)

- Strategy:
 - Calculate UE contribution on the same side as photon wher there is no jet contribution

Quenching effect will make hadrons' distribution shift from high momentum to low momentum

Yaxian.Mao@EMCal-offline, Frascati

Medium effects on jets: FF

Fragmentation strongly modified by medium

Yaxian.Mao@EMCal-offline, Frascati

34

CF and Underlying events (UeCF)

PYTHIA: 10k events \rightarrow 10 month of pp data taking HIJING: 1k events \rightarrow 1month of PbPb data taking Quenching model: PYQUEN

Yaxian.Mao@EMCal-offline, Frascati

Quenching effect on L

