Alessandro Cardini / INFN Cagliari Responsabile Nazionale LHCb

UXB

22 anni di LHCb!

- Era ben noto che la sezione d'urto di produzione di B a LHC sarebbe stata grande. Al Workshop di Evian del 1992 vengono presentate 3 proposte di esperimento dedicate alla fisica del B a LHC: due per esperimenti a fixed-target (LHB e GAJET) e una che proponeva di utilizzare uno spettrometro in avanti operante in collider-mode (COBEX)
- LHCC suggerisce ai proponenti di presentare una proposta comune per un esperimento operante in collider-mode per sfruttare la grande sezione d'urto di produzione di b e dotato di una convincente strategia di trigger
- La lettera di intenti di LHCb viene sottomessa a LHCC nel 1995, "to build a forward collider detector dedicated to the study of CP violation and other rare phenomena in the decays of Beauty particles"
- L'esperimento viene finalmente approvato nel 1998 e il design dell'apparato viene finalizzato nel 2003. Dopo frenetici anni di costruzione e commissioning LHCb comincia a prendere dati il 23 novembre 2009

LHCb - Piano Triennale, Cagliari, 130CT17

LHCb: Caratteristiche

- LHCb è un F-GPD (Forward General-Purpose Detector)
- Spettrometro in avanti, accettanza 2<η<5, 4% dell'angolo solido
- Riesce a sfruttare il 40% della sezione d'urto di produzione di quark pesanti
- Capacità di fare misure di precisione nel settore della beauty e del charm:
 - Δp/p = 0.35% @ 5 GeV/c ÷ 0.55% @ 100 GeV/c
 - 20 μ m di risoluzione del parametro di impatto per tracce ad alto p_t
 - Risoluzione sul decay time di 45 fs ($B_s \rightarrow D_s \pi$)
 - Opera a luminosità istantanea costante di 4E+32 cm⁻²s⁻¹
 - Trigger multi-livello ad altissima efficienza, ottimizzato per stati finali adronici e leptonici

L'apparato sperimentale

LHCb - Piano Triennale, Cagliari, 130CT17

NFN

Istituto Nazionale di Fisica Nucleare

- 88 silicon sensors, 300 μm thick, n-on-n technology
- Sensors close around beam during data taking, down to 8.1 mm from it
- Working in secondary vacuum, separated by accelerator vacuum by RF foils
- Evaporative CO₂ cooling

R sensor

Phi senso

LHCb - Piano Triennale, Cagliari, 13OCT17

Tracking system

Various tracking stations (Si microstrips, straw tubes) and dipolar magnetic field of 4 Tm provide:

- Excellent mass resolution
- World's best mass measurements

LHCb - Piano Triennale, Cagliari, 130CT17

2 RICH detectors in LHCb

Cherenkov light readout by photon detectors located outside geometrical acceptance

Hybrid Photon Detectors (HPDs) readout with embedded 1 MHz R/O ASIC

LHCb - Piano Triennale, Cagliari, 130CT17

Calorimeter and Muon System

Calorimeter

 \mathbf{O}

- 4 subsystems (PS, SPD, ECAL, HCAL)
- Scintillating tiles + lead (SPD, PS, ECAL) or iron (HCAL)
- Light collection via WLS fibers
- Provide input to high E_t low level trigger
- Muon Stations
 - 5 muon stations separated by 20λ_i-thick iron filters
 - Projective geometry
 - MWPC & Triple-GEM
 - CF₄-based gas mixture
 - Provide input to high p_t low level muon trigger

LO-trigger & HLT

Muon System: CA, FE, FI, LNF, RM1, RM2

RICH: GE, MIB

LHCb - Piano Triennale, Cagliari, 130CT17

DAQ: BO

La presa dati 2017

- Running at μ = 1.1 (like in 2015 & 2016), and L_{inst} = 4.4 x 10³² cm⁻²s⁻¹
- Since August running at slightly lower luminosity (problem in LHC @16L2)
- All subsystem performing like a Swiss watch!
- LHCb global efficiency slightly above 90% as in the past
- On 07SEP17 09:39, crossed the threshold of <u>6fb⁻¹ recorded by LHCb</u>, and on 02OCT17 23:33, <u>1fb⁻¹ recorded by LHCb in 2017</u>

<u>020CT17</u> <u>0 100 300 500 700 900</u> Integrated luminosity counters in 2017 [1/pb]						
	Recorded	Delivered	Efficiency			
Current Fill	4.01	4.19	95.64			
Annual 🔇	1000.00	1100.31	90.88			
Mag DOWN	465.72	514.20	90.57			
Mag UP	533.41	585.09	91.17			
2010-2017 🔇	6216.64	6842.28	90.86			

LHCb - Piano Triennale, Cagliari, 130CT17

LHCb Cumulative Integrated Recorded Luminosity in pp, 2010-2017

14

Highlights di fisica

Paper statistics

#00

- 400 papers submitted
 - 2016/17: record of publications in a data taking period (and upgrade construction) for LHCb

	Papers
Total number of papers:	400
Total number of citations:	19,944
Average citations per paper:	50.0
Breakdown of papers by citations:	
Renowned papers (500+)	1
Famous papers (250-499)	13
Very well-known papers (100-249)	31
Well-known papers (50-99)	81
Known papers (10-49)	191
Less known papers (0-9)	83

Papers submitted per month

LHCb - Piano Triennale, Cagliari, 130CT17

$B_s \rightarrow \mu\mu$ with Run2 data

- Analysis performed with using the full Run1 dataset + 1.4 fb⁻¹ of Run2
- First observation of $B_s \rightarrow \mu\mu$ from a single experiment
- Also first measurement of effective $B_s \rightarrow \mu\mu$ lifetime, with still quite large uncertainty, but important proof of concept opening the avenue of precision measurements

CSN1, 22MAR17

γ from B[±] \rightarrow (D^{*0} \rightarrow D⁰ π^0/γ)K[±]

17

- Data set: Run 1 (3 fb⁻¹) + Run 2 (2 fb⁻¹)
- Challenging because of low efficiencies ($\varepsilon_v \approx 20\%$, $\varepsilon_{\pi 0} \approx 4\%$)
- Use only a partial reconstruction of D*!
- In combination with:
 - $B^{\pm} \rightarrow D^0 K^{*\pm}$ [LHCb-CONF-2016-014] • $B^{\pm} \to D^{*0} K^{*\pm}$ [LHCb-PAPER-2017-021] • $B_s^0 \rightarrow D_s^{\mp} K^{\pm}$ [LHCb-CONF-2016-015]

Compare y measured in tree-level diagram with the value inferred from indirect global fits (loops)

Does the unitarity triangle close? 0

 $B^{\pm} \rightarrow D^0 K^{\pm}$ [LHCb-PAPER-2017-021]

Most precise measurement of v to date!

 $\gamma = (76.8^{+5.1}_{5.7})^{\circ}$

LHCb - Piano Triennale, Cagliari, 130CT17

CPV in $B^0 \rightarrow (cc)K_s^0$

 $B^0 \rightarrow J/\psi K_s^0$

5

Signal yield asymmetry

0.2

-0.2

- Decay-time-dependent CP violation in $B^0 \rightarrow J/\Psi$ (e⁺e⁻) K_s⁰ and $B^0 \rightarrow \Psi(2s)$ ($\mu^+\mu^-$) K_s⁰
- Data sample: 1.0 fb⁻¹ (7 TeV) + 2.0 fb⁻¹ (8 TeV)

$$A_{CP}(t) = \frac{S\sin(\Delta mt) - C\cos(\Delta mt)}{\cosh(\Delta\Gamma t/2) + A_{\Delta\Gamma}\sinh(\Delta\Gamma t/2)}$$
$$\stackrel{\Delta\Gamma=0}{\approx} S\sin(\Delta mt) - C\cos(\Delta mt)$$
$$S_{J/\psi}\kappa_{S}^{0} \approx \sin 2\beta$$

• Working to include Run2 dataset in the analysis

LHCb

10

Decay time [ps]

Signal yield asymmetry

15

0.2

-0.2

 $B^0 \rightarrow \psi(2S) K_s^0$

5

LHCb average of all charmonium modes $J/\psi(ee, \mu\mu)$, $\psi(2S)(\mu\mu)$

Decay time [ps]

15

10

LHCb

$$egin{aligned} C(B^0 o [car{c}]K^0_S) &= -0.017 \pm 0.029 \ S(B^0 o [car{c}]K^0_S) &= 0.760 \pm 0.034 \end{aligned}$$

- + sin 2 β improved by 20%
- Expected to improve the precision of the world average
- Consistent with CKM prediction of $\sin 2\beta = 0.740^{+0.020}_{-0.025}$

LHCb - Piano Triennale, Cagliari, 13OCT17

Legacy ϕ_s result from Run1

- LHCb measured ϕ_s from Run1 with $B_s \rightarrow J/\psi KK$ (and $B_s \rightarrow J/\psi \pi \pi$) already some time ago, but the measurement only included the *KK* system around the $\phi(1020)$ mass
- There is non negligible statistics for m_{KK} >1.05 GeV/ c^2
- Quite challenging to include it, as a decay- time dependent amplitude analysis is involved
- Using all available Run1 analysis -
- Now working on the update with Run2 data

Lepton Flavor Universality: R(K*)

A. Cardini / INFN Cagliari

• New measurement with $B^0 \rightarrow K^{*0} l^+ l^-$ in two bins of q^2

• Performed using a double ratio to minimize systematic uncertainties

 $R_{K^{*0}} = \frac{\mathcal{B}(B^0 \to K^{*0} \mu^+ \mu^-)}{\mathcal{B}(B^0 \to K^{*0} J/\psi (\to \mu^+ \mu^-))} \bigg/ \frac{\mathcal{B}(B^0 \to K^{*0} e^+ e^-)}{\mathcal{B}(B^0 \to K^{*0} J/\psi (\to e^+ e^-))}$

2.1 – 2.3 standard deviations from the Standard Model						
D	J	$(0.66 \ ^+ _{- \ 0.07} \ 0.03 \ ({ m syst}) \pm 0.03 \ ({ m syst}))$	for $0.045 < q^2 < 1.1 \text{ GeV}^2/c^2$			
	*°)	$0.69 + 0.11 \\ - 0.07 (stat) \pm 0.05 (syst)$	for 1.1 $< q^2 < 6.0 \text{ GeV}^2/c^2$			

2.4 – 2.5 standard deviations from the Standard Mode

JHEP 08 (2017) 055

Lepton Flavor Universality: R(D*)

 $R(D^*) = 0.285 \pm 0.019 \pm 0.025 \pm 0.013$

 $R(D^*) = 0.336 \pm 0.027 \pm 0.030$

Preliminary LHCb average

 $R(D^*) = 0.306 \pm 0.027$

New world average

LHCb hadronic

LHCb muonic

- In SM amplitudes for processes involving • e, μ and τ must be identical up to effects depending on the lepton masses
- Dataset: 3 fb⁻¹ (Run1)

NFN

tituto Nazionale di Fisica Nuclea

•

$$\mathcal{R}(D^{*-}) \equiv \mathcal{B}(B^0 \to D^{*-} \tau^+ \nu_\tau) / \mathcal{B}(B^0 \to D^{*-} \mu^+ \nu_\mu)$$

- Possible to reconstruct taus decaying to 3 • pions in the LHCb environment
- Started exploring the generalization of the 0 $R(D^*)$ to the B_c sector, $R(J/\Psi)$
 - Preliminary result available, 2σ from SM

 $\mathcal{R}(J/\psi) = \frac{\mathcal{B}(B_c^+ \to J/\psi \,\tau^+ \overline{\nu}_\tau)}{\mathcal{B}(B_c^+ \to J/\psi \,\mu^+ \overline{\nu}_\mu)} = 0.71 \pm 0.17 \,(\text{stat}) \,\pm 0.18 \,(\text{syst})$

Excellent future perspective using Run2 0 data

LHCb - Piano Triennale, Cagliari, 13OCT17

Observation of 5 new Ω_c excited states

- Only Ω_c ground states ($J_P = 1/2^+$ and $3/2^+$) were known till now
- Ξ_{c} ($\rightarrow pK^{-}\pi^{+}$) combined with opposite sign kaons looking at the invariant mass
- 5 new narrow states observed in one shot!
- (Most likely a record for the number of narrow states found in a single analysis)
- Resonances quantum numbers measurement underway

Phys. Rev. Lett. 118 (2017) 182001

First observation of the Ξ_{cc}^{++}

- Doubly-charmed baryons predicted by quark model
- Observation of Ξ_{cc}^+ claimed by SELEX but not seen by BaBar, FOCUS, Belle and LHCb
- Search for $\Xi_{cc}^{++} \rightarrow \Lambda_{c}^{+} K^{-} \pi^{+} \pi^{-}$
- Data sample: 2fb⁻¹ (8 TeV) and 2fb⁻¹ (13 TeV)

 $m(\Xi_{cc}^{++}) = 3621 \pm 0.72 \text{ (stat)} \pm 0.31 \text{ (syst)} \text{ MeV}/c^2$

- Large signals found: 7.6σ (2012) and 12.9σ (2016)
- Lifetime measurement in progress
- LHCb Piano Triennale, Cagliari, 130CT17

Anti-p production in pHe

- Measurement motivated by the need to understand energy dependence of *p* component from cosmic rays in space
- Theoretical uncertainties are limited by precise knowledge of cross section for basic processes in the interstellar medium, like those arising from *p*He collisions (orange band)
- LHCb can effectively exploit the SMOG system for relevant measurements in this sector
- Absolute cross-section difficult to measure because it is <u>difficult to</u> <u>know precisely the luminosity</u> → exploit well known *pe*⁻ elastic scattering

LHCb - Piano Triennale, Cagliari, 130CT17

LHCb-CONF-2017-002 Paper in preparazione

LHCb-CONF-2017-002

Result for **prompt** production (excluding weak decays of hyperons)

The total inelastic cross section is also measured to be

 $\sigma_{inel}^{\text{LHCb}} = (140 \pm 10) \text{ mb}$

The EPOS LHC prediction [T. Pierog at al, Phys. Rev. C92 (2015), 034906] is 118 mb, ratio is 1.19 ± 0.08 .

J/Ψ production in pPb collisions ///

- 8.16 TeV center of mass energy per nucleon pair
- 2016 data
 - pPb collisions: 13.6 nb⁻¹
 - Pbp collisions: 20.8 nb⁻¹
- Difference acceptance in pPb and Pbp collisions
- J/Ψ prompt and from bhadrons cross sections: production relative to pp collisions, scaled by the Pb mass number (nuclear modific. factor)
- First beauty-hadron production measurement down to $p_T = 0$ in pPb and Pbp collisions at LHC in 2016

LHCb - Piano Triennale, Cagliari, 130CT17

LHCb Upgrade!

LHCb - Piano Triennale, Cagliari, 130CT17

Perché l'Upgrade?

CERN-LHCC-2011-001 CERN-LHCC-2012-007

- No (yet) evidence for New Physics
 - → Look for tiny deviation from SM predictions
 - ➔ More (x10) data required
- <u>The current 1 MHz level-0 trigger output is a severe</u> <u>limitation!</u>
- If luminosity increases
 - trigger yield of hadronic events saturates
 - need harder cuts on P_t and E_t due to the 1 MHz bandwidth limit
 - ➔ no gain in statistics
 - → limited to ~5 fb⁻¹ in Run2
- Note that our upgrade luminosity <u>does not depend</u> <u>LHC upgrade</u>, we only use a fraction of the available luminosity (i.e. what is used by ATLAS and CMS)

Upgrade HOWTO

CERN-LHCC-2011-001 CERN-LHCC-2012-007

- Remove the level-0 hardware trigger
- Readout an event at every bunch crossing (40 MHz)
- New front-end electronics (with on-chip zero suppression)
- New DAQ system
- Use an efficient fully software trigger accessing complete event information, running at the bunch crossing rate, performing a full online event reconstruction
- Redesign several detectors to cope with increased occupancies

	LHC era			HL-LHC era
Run (years)	Run 1 (2010-2012)	Run 2 (2015-2018)	Run 3 (2021-2023)	Run 4 (2027-2029)
Integrated luminosity	3 fb ⁻¹	8 fb ⁻¹	25 fb ⁻¹	50 fb ⁻¹
Instantaneous Iuminosity	4 x 10 ³² cm ⁻² s ⁻¹		2 x 10 ³³ cm ⁻² s ⁻¹	
	Current LHCb		Upgrad	led LHCb
			S2 Ipgrade	

- Data taking conditions
 - Leveled L = $2 \cdot 10^{33}$ /cm²/s
 - 30 MHz collisions
 - 20-100 kHz to disk
 - ~5 fb⁻¹ per year
- Challenges
 - High pile-up
 - Large occupancies difficult event reconstruction and PID
 - Huge Data Rate
 - Radiation damage

LHCb - Piano Triennale, Cagliari, 130CT17

Software Trigger

- Trigger farm: 50k logical CPU cores
- Offline-like reconstruction tuned to available time constraints
- Mixture of exclusive and inclusive selection algorithms

Detector Upgrade

LHCb - Piano Triennale, Cagliari, 130CT17

LHCb - Piano Triennale, Cagliari, 130CT17

Contributi Italiani all'Upgrade

- All'INFN l'Upgrade di LHCb è stato valutato positivamente dal CTS nel 2013, e successivamente approvato dalla CSN1
- Nel 2014 sono stati preparati i due MoU sull'Upgrade, approvati successivamente dall'INFN
- Upgrade LHCb
 - RICH: MaPMT, CLARO, EC, Photo-Detector Module, HV, mechanics (FE, MIB, PD)
 - Trigger & DAQ: PCIe Gen3 readout boards, event builder, HLT on many-cores architectures and GPU (BO, PI, PD)
 - UT: sensor support mechanics, the cooling system, the hybrid circuits and low mass fan-out cables (MI)
 - Muon: spare MWPC, nSYNC, nODE, remove some IBs, nSB and nPDM (CA, FE, FI, LNF, RM1, RM2)

1 20

3rd

LHCb - Piano Triennale, Cagliari, 130CT17

A. Cardini / INFN Cagliari

Verso il futuro!

 LHCb ha cominciato a studiare la possibilità di operare a luminosità fino a 1-2E+34 cm⁻²s⁻¹

LHCb - Piano Triennale, Cagliari, 130CT17

A. Cardini / INFN Cagliari

LHC

LHCb - Piano Triennale, Cagliari, 130CT17

Alcuni interessi italiani

- 4D pixels (3D pixel with timing info) in a Super VELO
 - possibile @LS4
- uRwell detectors for the Muon Stations
 - possibile @LS3 o LS4
 - Tecnica sviluppata a LNF
 - In studio per CMS/SHiP
 - Particolare R&D richiesto per LHCb per l'alta rate
- Online Downstream Reconstruction
 - Possibile @LS3
 - FPGA-based real-time track reconstruction at 40MHz with low-latency
 - Attività in sinergia con CSN5 Retina fino a fine 2017

4D pixel → <u>TIMESPOT</u>: CALL Gr5

- Questa idea vede la luce nell'ambito di LHCb Italia a fine del 2015; in occasione del bando del PRIN viene preparata una proposta da alcuni dei gruppi italiani di LHCb
- Realizzare un dimostratore di un tracciatore 4D utilizzando pixel Si/diamante e con ottime risoluzioni spaziali/temporali e real-time tracking
- Nel 2017 si decide di scrivere la proposta per una CALL di CSN5
- La proposta riscuote moltissimo interesse non solo all'interno di LHCb, ma attira l'attenzione di tante persone coinvolte in attività di CSN1 e CSN5, e non solo
- Personale vicino ai 20 FTE, di cui 1/3 di LHCb, un grande successo per la nostra comunità
- La proposta viene approvata alla CSN5 di settembre, si parte nel 2018!
- <u>Ottima opportunità per un R&D estremamente competitivo nel panorama internazionale per futuri esperimenti ad altissima luminosità</u>

NEN CSNV Open Call 2017

La Collaborazione Italiana

Personale 2018 / 2017 / 2016 / 2015

- Persone 136 / 132 / 127 / 123
- Ricercatori 118 / 114 / 109 / 101
- Autori 113 / 107 / 97 / 97
- FTE 100.4 / 95.8 / 90.4 / 86
- MOF-A 85 / 78 / 72 / 83
- Post-Doc 19 / 18 / 14 / n.d.
- PhD 19 / 20 / 22 / 14

Sempre importante presenza italiana nel management

- Spokesperson: G. Passaleva da 01JUL17
- Physics Coordinator: V. Vagnoni
- Operations
 - Deputy Operation Coordinator: B. Sciascia
 - DQ & Monitoring co-coordinator: W. Baldini
 - Lumi & ion Runs co-coordinator: . G. Manca
 - PID Coordinator: M. Fontana
 - Simulation co-coordinator: R. Cenci
 - Muon PL: M. Palutan
 - Muon Deputy PL: W. Baldini
 - UT Deputy PL: N. Neri

Physics WG

- Aprile 2016 GUIDA DI LHCB GUIDA DI LHCB
- B Decays to Charmonia: F. Dordei
- Charmless B-decays: S. Perazzini
- B hadrons & Quarkonia: L. Anderlini
- Charm Physics: A. Contu
- Ion & Fixed Target: G. Graziani
- Statistics: D. Tonelli
- Performance
 - Tracking & alignment: L. Grillo
 - PID & Calo objects: M. Fontana
 - Simulation: R. Cenci
- Editorial board: R. Santacesaria, F. Bedeschi
- Membership Committee: M. Calvi

A. Cardini / INFN Cagliari

LHCb - Piano Triennale, Cagliari, 130CT17

Nuovi Assunti @INFN 2017

• Vincitori "Concorsone" per LHCb

- Lucio Anderlini (FI)
- Andrea Contu (CA)
- Francesca Dordei (CA)
- Mirco Dorigo (TS)
- Paolo Gandini (MI)
- Alessandra Pastore (BA)
- Stefano Perazzini (BO)
- Simone Stracka (PI)

LHCO Early Career Scientist awards

The second set of prizes for outstanding contributions of early career scientists were awarded on June 16th 2017. Twenty-nine nominations were submitted and considered by the committee formed by Patrick Robbe (chair), Rolf Lindner (technical coordinator), Monica Pepe-Altarelli (deputy spokesperson), Stefan Roiser (computing coordinator), Silvia Borghi (operations coordinator) and Vincenzo Vagnoni (physics coordinator).

- Lucia Grillo (INFN, MIB): online tracking & alignment
- Giulio Dujany (LPNHE/CNRS): real-time vertexing & tracking
- Elena Dall'Occo (NIKHEF): Si-sensor evaluation for VELO Upgrade
- Renato Quagliani (LAL): a new seeding algorithm for tracking
- Claudio Gotti (INFN, MIB): CLARO development

Tutti italiani!!!

Conclusioni

- LHCb continua a produrre importanti risultati di fisica
- La presa dati nel 2017 prosegue con un apparato in perfette condizioni
- Upgrade
 - Lavoro procede sostanzialmente come previsto
 - Alcune produzioni già partite, altre in partenza a breve
 - Lieve ritardo nella schedule ma non ci sono criticità
- Il personale aumenta, grazie anche alle nuove assunzioni INFN
- Si comincia a guardare ad un futuro upgrade per sfruttare al meglio LHC
- Il futuro della fisica del sapore ad altissima statistica è estremamente challenging; con l'esperienza accumulata finora e le nuove opportunità di R&D che stanno cominciando<u>, LHCb</u> ha tutte le carte in regola per continuare a giocare un ruolo da leader in questo campo

Spare slides - Fisica

LHCb - Piano Triennale, Cagliari, 130CT17

- Normalisation decay $D^0 \rightarrow K^- \pi^{+[} \mu^+ \mu^-]_{\rho 0/\omega}$
- Signal in almost every q² = m²(μμ) bin
- Total BF (Long-Distance dominated) in agreement with SM

First observation of D⁰ mesons decaying into $\pi^+\pi^-\mu^+\mu^-$ and K⁺K⁻ $\mu^+\mu^-$

• Expected to tighten constraints on possible short distance contributions

LHCb-PAPER-2017-019

•

•

 $\mathcal{B}(D^0 \to \pi^- \pi^+ \mu^+ \mu^-) = (9.64 \pm 0.48 \pm 0.51 \pm 0.97) \times 10^{-7}$ $\mathcal{B}(D^0 \to K^- K^+ \mu^+ \mu^-) = (1.54 \pm 0.27 \pm 0.09 \pm 0.16) \times 10^{-7}$

Rarest charm decays measured to date

LHCb - Piano Triennale, Cagliari, 130CT17

A. Cardini / INFN Cagliari

First observation of $D^0 \rightarrow h^+h^-\mu^+\mu^-$

LHCb ГНСр

- Lepton-flavor violating decays
- Data sample: 1.0 fb⁻¹ (7 TeV) + 2.0 fb⁻¹ (8 TeV)
- No excess of signal observed with respect to background
- Put a limit to the BF
- Best upper limit to date, 2÷3 better than the previous result from LHCb

 $egin{aligned} \mathcal{B}(B^0_s o e^{\pm} \mu^{\mp}) < 5.4 \ (6.3) imes 10^{-9} \ \mathcal{B}(B^0 o e^{\pm} \mu^{\mp}) < 1.0 \ (1.3) imes 10^{-9} \ \mathrm{at} \ 90 \ (95)\% \ \mathrm{CL} \end{aligned}$

LHCb-PAPER-2017-031

Search for Dark Photons in 13 TeV pp collisions

- Search for A' $\rightarrow \mu^+\mu^-$ decay in 2016 data, 1.5 fb⁻¹
- Output of Turbo stream
- Prompt-like search: μμ threshold up to 70 GeV
- Long-lived search: 214 < m(A') < 350 MeV
- Prospects
 - 2017: big improvements in the softwaretrigger efficiency for low-mass dark photons
 - Run 3: removal of the hardware trigger, giving access to O(100÷1000) times more decays than 2016

LHCb-PAPER-2017-038

Lepton Flavor Universality: $R(J/\Psi)$

- Generalization of the R(D*) to the B_c sector
- Dataset: 3 fb⁻¹ (Run1)

$$\mathcal{R}(J/\psi) = \frac{\mathcal{B}(B_c^+ \to J/\psi \,\tau^+ \overline{\nu}_{\tau})}{\mathcal{B}(B_c^+ \to J/\psi \,\mu^+ \overline{\nu}_{\mu})} = 0.71 \pm 0.17 \,(\text{stat}) \,\pm 0.18 \,(\text{syst})$$

- 2 sigma from SM prediction
- Excellent future prospects:
 - Use Runll data
 - Better MC with finer missing mass bins
 - B_c decay form factor uncertainties reduced by LQCD work

LHCb-PAPER-2017-0

LHCb - Piano Triennale, Cagliari, 130CT17

A. Cardini / INFN Cagliari

Legend

Studies of χ_c Dalitz Decays

- First observation of $\chi_{c1,2} \rightarrow J/\Psi \mu^+ \mu^-$
- Dataset: 3 fb⁻¹ (Run1) + 2 fb⁻¹ (Run2)
- Relevant breakthrough in the χ_c spectroscopy

 $m(\chi_{c1}) = 3510.71 \pm 0.04 \pm 0.09 \text{ MeV}$ $m(\chi_{c2}) = 3556.10 \pm 0.06 \pm 0.11 \text{ MeV}$ $m(\chi_{c2}) - m(\chi_{c1}) = 45.39 \pm 0.07 \pm 0.03 \text{ MeV}$ $\Gamma(\chi_{c2}) = 2.10 \pm 0.20 \text{ (stat)} \pm 0.02 \text{ (syst) MeV}$

LHCb-PAPER-2017-036

Spare slides - Upgrade

LHCb - Piano Triennale, Cagliari, 130CT17

A. Cardini / INFN Cagliari

49

Flex cables

long

 Design validated, 3 generations of prototype tested successfully medium

- Production of >300 cables planned to start in August 2017, to be completed by end of April 2018. Three different types of cables: long, medium, short
- Cables will be produced in batches (30/month) and tested in Milano starting in September 2017
- Goal test 30 cables/week (2 operators, 10-12 weeks)
- Test: visual inspection, electrical continuity, impedance, metrology, via coupon validation

1st

UT: Flex & Testing

Milano

HV test up to 1200 V Specs require 500 V

A. Cardini / INFN Cagliari

LHCb - Piano Triennale, Cagliari, 130CT17

UT: hybrids

Milano

- Design of 4 ASIC hybrid validated and prototype tested
- Production of 1200 hybrids to start in January 2018 and concluded in 3 months (Italian vendor)
- Gluing and bonding of ASIC to hybrid (500k bonds)
- Test and QA of fully populated hybrid ~6-8 months
- Activity: visual inspection, bonding, initial test, burn-in, final test, preparation for shipping
- Support from mechanic workshop e.g. jigs, test panel design

Kapton hybrid prototype

Data traces

4 layer stack-up

LHCb - Piano Triennale, Cagliari, 130CT17

UT: cooling

Mechanics and cooling

- Design and construction of CO₂ distribution system for the cooling of the sensors and FEE
- Thermal simulation and test of the cooling system based on TRACI and stave prototypes

Detail of cooling pipes Cooling system distribution

Design and construction of CO2 manifold

VCR GASKET WITH CALIBRATED ORIFICE COMPACT OPTION

For a correct CO₂ flow distribution for each stave => Inlet fluid concentrated pressure drop: flow restrictors = VCR GASKET WITH CALIBRATED ORIFICE to be mounted on EVERY stave inlet coolant supply pipe

- COMPACT OPTION: the gasket is «hidden» in the manifold system
- SUCCESFULLY TESTED IN ATLAS

RICH upgrade activities

- MaPMT QA
- CLARO design and test
- Elementary Cell
 - Baseboard
 - Backboard
 - FEB
- RICH2 Cooling mechanics
- MaPMT new HV system

MaPMT QA

MaPMT QA ongoing in Padova and in Edinburgh

LHCb - Piano Triennale, Cagliari, 130CT17

CLARO production status

- CLARO production schedule:
 - April 2017: received 400 CLARO chips (pre-production run)
 - All received CLAROs have been tested with the automatic pick-andplace test setup and results analyzed
 - Maskset + engineering run (9 wafers) produced at AMS
 - ~30k chips ready for packaging at ASE
 - First 200 packaged chips (validation) to be shipped from ASE to CERN on June 9
 - The rest will be packaged and shipped before **September 2017**
 - July 2018: receive packaged chips from the production run

CLARO QA setup (1)

- System for automated functional testing of the CLARO has been developed in Ferrara (see "movie" demo file on INDICO)
 - Commissioning ongoing (more details in M. Bolognesi presentation, Meeting on CLARO and EC electronics QA, May 22nd)
- Test station for (manual) single chip measurement is built and being commissioned

FEB/BkB QA test setup (1)

- A test setup for automated tests of FEB and Back-Boards is being built in Ferrara
 - More details in I. Neri presentation (Meeting on CLARO and EC electronics QA, May 22nd)

Automatic test setup under preparation, using the FEB + System Controller developed in Ferrara for FEB and Back-Boards QA to test 4 ECs, using the dark-box + LED illuminator concept developed in Edinburgh for Ma-PMT QA (with cooling system)

LHCb - Piano Triennale, Cagliari, <u>130CT17</u>

QA baseboards

GE

LHCb - Piano Triennale, Cagliari, 130CT17

RICH2 cooling

A. Cardini / INFN Cagliari

LHCb - Piano Triennale, Cagliari, 130CT17

RICH: Test Beam Activities

LHCb - Piano Triennale, Cagliari, 13OCT17

Muon Upgrade

	MWPC spare production					Ction M. Anelli M. Palutar E. Paolett	M. Anelli M. Palutan E. Paoletti		
							L. Pasqual	i	
	PNPI				Frascati				
	M2R3	M2R4	M3R3	M4R2	M5R2	M5R4			
planned	7	6	7	4	5	22	Production completed in Frascati; almost complet at PNPI	Ч	
completed	7	6	7	1	6	24		Ju	

Dressing with FEE and final test at CERN (to be completed during 2018)

LHCb - Piano Triennale, Cagliari, 130CT17

NFN

Istituto Nazionale di Fisica Nucleare

Muon Upgrade: Electronics

Preparation of the electronics is proceeding at full steam

- test on nSYNC v2 ongoing: results on irradiation test awaited during summer
- first nODE prototype with nSYNC v2 under test at LNF
- nSYNC/nODE aiming at PRR beginning october 2017, to launch nSYNC production november 2017
- nSB/nPDM test on prototypes ongoing, aim at PRR dec. 2017
- preparation/test of firmware, full chain test with miniDAQ ongoing in RM2

In all cases we aim at producing the boards during 2018

LHCb - Piano Triennale, Cagliari, 130CT17

nSYNC irradiation test at Catana

We have developed a complete DAQ system to perform the test (monitor power consumption, TDC status, error counters, PLL period ecc.).

Data analysis ongoing:

preliminary estimate of TDC SEU cross sections ~ (5÷7)·10⁻¹¹ cm²

LHC

LHCb - Piano Triennale, Cagliari, 130CT17

X-ray irradiation test in Cagliari

We are using an X-Ray irradiation system, used in the past to check uniformity on 3GEM detectors, for nSYNC <u>TID studies</u>.

- X-ray tube with Fe anode, 20kV, max. 40mA, water cooled (0.9 kW), 250 μm Be exit window
- Smallest x-ray spot: 7 mm diameter
- XY DUT moving system with 50 μm accuracy available, alignement with radiochromic film
- Need to expose the silicon (bare die)

Study ongoing for the dose rate calibration with Si PIN diodes_

LHCb - Piano Triennale, Cagliari, 130CT17

nSYNC test done at Roma Tor Vergata

- Used miniDAQ (a mini complete emulation of the LHCb upgraded readout) and 2 VLDB boards (Versatile Link Demo Board) from Tor Vergata and Frascati.
- Tested successfully the communication between nSYNC and GBT-SCA chip (for the first time) through the ECS dataflow: FPGA [SOL40-SCA_core] -> GBTx -> GBT-SCA -> nSYNC;
 - Tested the read / write operations for some R/W nSYNC registers;
 - Tested the TDC calibration commands;
 - Tested the read operation of the TDC status.

LHCb - Piano Triennale, Cagliari, 130CT17

First nODE prototype under test

LHCb - Piano Triennale, Cagliari, 130CT17

nODE test done at Roma Tor Vergata

- Used the miniDAQ also to make preliminary tests on the nODE board.,
- Improved WinCC panels to control and monitor operations on nODE,
- Configured successfully the GBTx chips (master and slaves),
- Tested successfully the reception by the nSYNCs of the Trigger and Fast Control (TFC) commands, through the optical link (and relative counters and snapshots),
- <u>Test ongoing</u> on the synchronization between the board and the readout system.

LHCb - Piano Triennale, Cagliari, 13OCT17

nSB / nPDM

new Service Board System Status

- Produced REV01 of the system
- Early debug on nSB showed some minor errors
- Rework on 2 nSB REV01 prot., correction of nPDM REV01 des.
- > A «demo» of the system hardware is ready for test (Sept. 2017)

Settembre

õ

- System test con MiniDAQ
- Test funzionali e caratterizzazione ritardi
- Preparazione gara nSB rev02 e nPDM rev02

• Ottobre

- Beta stable release del codice FPGA nPDM
- Finalizzazione progetti schede nSB e nPDM rev02

• Novembre

- Ordine effettivo schede (campionatura) per validazione
- (Eventuale secondo giro di test con MiniDAQ (ancora con schede rev01))
- (Eventuali miglioramenti codici FPGA e test)

• Inizio 2018

- Quando arrivano i prototipi rev02 → settimana di test (validazione campionature)
- Partenza produzione (fondi 2018)

LHCb - Piano Triennale, Cagliari, 130CT17

The **BEB** Project

Aim of the BEB project

- Select/arrange optimal Event Builder servers to host the PCIe40 readout interface boards and to perform the Event Building at 40 MHz.
- Work in collaboration with "E4 Computing (Italy)".

Barameters

- ...

- PCIe40 cards per server
- PCIe lanes on the mother board
- NIC compatibility and performance
- Single vs multi socket server
- Memory bandwidth
- Possibility of PCIe bifurcation: matching of 2 x 8 lanes to 16 lanes

Test Setup

- R&D project is funded by LHCb
- The test setup will be installed in Bologna.
- Up to date high-ended servers are being selected by E4, on the basis of our requirements.
- E4 will perform preliminary functional tests.
- We will check the servers' performance satisfy the benchmarks.
- We need a PCIe40 to generate the traffic to the RAM of the hosting server. New items will be available by the late Autumn at the cost of ~8kCHF/board.

Nuova proposta: SMOG2

FE, LNF

LNF, FE, CERN, Nikhef

- Manpower: 2-3 FTE italiani nel 2018
- Responsabilità italiana
- Approvazione LHCb prevista per fine 2017/inizio 2018
- Installazione @ LS2

LHCb - Piano Triennale, Cagliari, 130CT17

Upgrade di SMOG

Posizione della nuova cella

<u>Dettagli tecnici</u>

Una cella di accumulazione, il cui materiale è in fase di valutazione e discussione con gli esperti LHC verrà installata di fronte al VELO.

Per motivi simili a quelli del VELO dovrà essere apribile all'iniezione del fascio LHC e quanto più ermetica una volta chiusa dopo lo squeeze del fascio.

L'iniezione del gas avrà una nuova linea attraverso il vessel del VELO che dovrà conseguentemente essere modificato (Nihkef).

La cella sarà collegata attraverso spring fingers appositi e wakefield suppressor.