

F. COLLAMATI - 04.07.17
INCONTRO CON I REFEREE INFN - CHIR2

FIRST EX-VIVO VALIDATION OF B-RGS IN CLINICAL USE CASES

Istituto Nazionale di Fisica Nucleare

F. COLLAMATI - 04.07.17 INCONTRO CON I REFEREE INFN - CHIR2

FIRST EX-VIVO VALIDATION OF B-RGS IN CLINICAL USE CASES

TECHNIQUE VALIDATION BY MEANS OF EX-VIVO TESTS

- While waiting for probe certification, only ex-vivo tests available
- Yet a very important benchmark! Allows to check:
 - √ Feasibility of the whole procedure
 - Injection time lapse surgery probe
 - ✓ PET with ⁶⁸Ga-DOTATOC as a predictor of ⁹⁰Y-DOTATOC uptake
 - to estimate the activity we expect in the surgery from pre-operative standard imaging
 - ✓ Our ability to project the performances of the probe in the real application case
 - starting from lab measurements + MC simulations
 - **√ Radioprotection** issues

FIRST APPLICATION CASE: BRAIN TUMORS

FIRST APPLICATION CASE: BRAIN TUMORS

Glioma:

- Is a very aggressive, malignant, recurrent and infiltrative tumor that would profit greatly of β^{-} -RGS
- "Application case" in brain tumors

Meningioma:

- Is a (mostly) benign tumor, (mostly) easy to identify and remove completely, low recurrence rate
- Would not profit much of β -RGS, but it is a very good "use-case" to assess the technique's applicability in brain tumors:
 - It shows documented high uptake for DOTATOC, the radio tracer we would like to use!

EX-VIVO TESTS ON MENINGIOMA SAMPLES

- Collaboration protocol with IEO and Besta Institute (Milano)
 - We enrolled 4 patients affected by meningioma with demonstrated uptake for DOTATOC (pre-op PET)
 - Patients were injected ~24h before surgery with a PET-like dose of DOTATOC
 - Surgery was performed normally, and we had the opportunity to test with the probe the counts on excised samples (tumor, healthy tissue nearby...)
 - Our findings were compared with the ones from anatomo-pathologists

EX-VIVO TESTS ON MENINGIOMA SAMPLES

Starting from pre-operative PET imaging, we are able to foresee the activity in the tumor at the time of surgery and to correlate it with probe counts:

A. Russomando, M. Schiariti et al, submitted to J Nucl Med (2017)

Patient	V_T [ml]	\overline{SUV} [g/ml]	$rac{\mathrm{SD}(\mathrm{SUV})}{[\mathrm{g/ml}]}$	TNR	A_{adm} [MBq]	W [kg]	$A_{est} \ [ext{kBq/ml}]$
1	18.3	4.3	1.1	26	167	104	5. 4
2	11.9	3.1	0.9	62	111	77	3.4
3	21.5	2.8	1.2	92	93	65	3.0

- All tumor samples were recognised as malignant
- Correlation factor > 80%
 - Ability to evaluate the minimal activity to be injected to reveal a residual within 1s
 - Room to lower the dose
- Radiation exposure:
 - Personnel: almost negligible
 - Patient: ~22mSv (almost 2x standard PET)

SECOND APPLICATION CASE: NEURO-ENDOCRINE TUMORS (NET)

SECOND APPLICATION CASE: NEURO-ENDOCRINE TUMORS

- Neuro-endocrine tumors:
 - Are rare:

- Low incidence (~8/100k) but high prevalence (35/100k) due to long survival
- Can have several localisations:
 - Pancreas, liver, intestine, lung...
- Due to slow growing are often discovered late and when already spread
- They show good uptake for DOTATOC

RADIO-GUIDED SURGERY IN NEUROENDOCRINE TUMORS

- Surgery is the gold-standard treatment for NETs (even if metastasised)
 - Complete asportation crucial for outcome → RGS!
- Today, y-RGS is used in NET, also for:
 - √ Lymph node discrimination

patients. Visually, it was not possible to differentiate the pathologically enlarged, tumor infiltrated lymph nodes from the nonpathologically enlarged/inflammatory lymph nodes. On palpation also, none of the lesions showed signs of tumor infiltration.³¹ In patient 4,

√ Hidden lesions identification

could not be localized are still insufficient. From our experience, it is not possible to localize the turnour in about 25% of case (5) The Institute for General Surgery in Pavia

√ Recurrent operations

tive surgery can be considered in all patients in whom 90% of the tumors can be removed.⁷ The challenge for the surgeon intraoperatively, is to differentiate malignant from scarred and inflammatory tissue in patients with advanced tumor disease and recurrent ladarotomies. The

✓ Infiltrations identification

of tumor involvement is known. From the naked eyes, it is very difficult to differentiate tumor tissues from non-tumor margins and this differentiation is possible only through pre-/perioperative imaging.²⁸ It is known that emergency surgery precludes a complete and pegative margin resection and constitutes a risk factor for

RADIO-GUIDED SURGERY IN NEUROENDOCRINE TUMORS

- Common characteristics of today NET γ-RGS:
 - Detector:
 - Commercial gamma probe
 - Radio pharmaceutical:
 - Somatostatine analogues marked with In, I, Tc
 - One recent attempt to use 68 Ga (β ⁺ decay)
 - Approach:
 - Search of the known lesions + "systematic scan" to look for possible unknown ones
 - Results and limitations:
 - Very good capability of discovering hidden lesions (i.e. in stomach and small bowel)
 - Reduced utility in areas with greater physiological background:

RADIO-GUIDED SURGERY IN NEUROENDOCRINE TUMORS

- Common characteristics of today NET γ-RGS:
 - Detector:
 - Commercial gamma probe
 - Radio pharmaceutical:
 - Somatostatine analogues marked with In, I, Tc
 - One recent attempt to use ⁶⁸Ga (β+ decay)

physiological DOTANOC uptake

- Approach:
 - > Search of the known lesions + "systematic scan" to look for possible unknown ones
- Results and limitations:
 - Very good capability of discovering hidden lesions (i.e. in stomach and small bowel)
 - Reduced utility in areas with greater physiological background:

We found that lesions in the pancreas and peripancreatic lymph nodes were difficult to detect with the probe as a result of high relative background counts. In such cases, TBR of 43.6 (WHO grade 1 insulinoma). We did not find that the probe was helpful for detecting liver lesions: in 3 patients with liver metastases found on 68 Ga-DOTATATE PET/CT, the background count for the liver was high, with an average of 499.7 \pm 89.0, and target lesions therefore could not be distinguished. Resection was guided by ultrasound.

- Collaboration protocol with IEO (Milano)
 - We are enrolling 5 patients affected by Neuro Endocrine Tumor with demonstrated uptake for DOTATOC (preop PET)
 - Patients are injected ~24h before surgery with a PET-like dose of DOTATOC
 - Surgery is performed normally, and we have the opportunity to test with the probe the counts on excised samples (tumor, healthy tissue nearby...)
 - Our findings are compared with the ones from anatomo-pathologists

FS Progress

EX-VIVO TESTS ON NET SAMPLES

- With respect to the meningioma ex-vivo tests, we are now in a more realistic situation
 - In these kind of surgery, a ~50cm segment of ileum is usually excised

We are thus in a ~ signal + background

configuration!

Trial in progress

EX-VIVO TESTS ON NET SAMPLES

- With respect to the meningioma ex-vivo tests, we are now in a more realistic situation
 - ▶ In these kind of surgery, a ~50cm segment of ileum is usually excised

We are thus in a ~ signal + background configuration!

Main lesion

- Trial in Progress With respect to the meningioma ex-vivo tests, we are now in a more realistic situation
 - \blacktriangleright In these kind of surgery, a ~50cm segment of ileum is usually excised

We are thus in a ~ signal + background configuration!

Main lesion

Healthy intestine

- Goals of the test:
 - Ability to identify known lesions, and look for unknown (e.g. lymph nodes)
 - Extract "cuf-off" values (cps) for possible RGS application
 - Assess the behaviour of the probe in a ~S+B configuration
 - Counts on lesion
 - Counts on background
 - D.I.Y. real application case: hiding a part of tumor under healthy tissue

SUMMARY

- So far, we identified two possible application cases in which ⁹⁰Y-DOTATOC RGS could give a remarkable contribution
 - Gliomas and Neuro-Endocrine Tumors
- First ex-vivo tests on Meningioma were fundamental to assess the feasibility of the whole procedure, the radio protection impact and the probe performances
 - Their success also contributed to trigger enthusiasm in medical staff that led to the starting of the second collaboration protocol
- Ex-vivo tests on NETs have already started and are planned to last for the next months
 - They will be fundamental to test the technique in an almost realistic scenario
- Next step:
 - ▶ In-vivo tests: ongoing contract with Nucleomed for probe certification
 - Collaboration with Sant'Orsola hospital (BO) to use ⁶⁸Ga-PSmA in prostatic cancer (laparoscopic approach)

REFERENCES

- "A novel radioguided surgery technique exploiting β- decays" E. Solfaroli Camillocci et al, Sci Rep 4, 4401 (2014) doi: 10.1038/srep04401
- "Properties of para-terphenyl as detector for alpha, beta and gamma radiation" M. Angelone et al, IEEE Transactions on Nuclear Science 61, 3 pp. 1483-1487, (2014) doi:10.1109/TNS.2014.2322106
- "Polycrystalline para-terphenyl scintillator adopted in a β- detecting probe for radio-guided surgery." E. Solfaroli Camillocci et al, J Phys Conf Ser 620 012009 (2015) doi:10.1088/1742-6596/620/1/012009
- "Toward Radioguided Surgery with β- Decays: Uptake of a Somatostatin Analogue, DOTATOC, in Meningioma and High-Grade Glioma." F. Collamati et al, J Nucl Med 56, 1-6 (2015) PRESS RELEASE January 2015 doi:10.2967/ jnumed.114.145995
- "Time evolution of DOTATOC uptake in neuroendocrine tumors in view of a posible application of radioguided surgery with β decay "F. Collamati et al, J Nucl Med 56, 10, 1501-6 (2015) doi:10.2967/jnumed.115.160481
- "An Intraoperative β- Detecting Probe For Radio-Guided Surgery in Tumour Resection" A. Russomando et al, IEEE TNS
 63, 5 (2016) doi:10.1109/TNS.2016.2600266
- "Intraoperative probe detecting β- decays in brain tumour radio-guided surgery" E. Solfaroli Camillocci (corresponding author) et al, NIMA 845, 689-692 (2017) doi:10.1016/j.nima.2016.04.107
- "First Ex-Vivo Validation of a Radioguided Surgery Technique with β- Radiation" E. Solfaroli Camillocci et al, Phys. Med. 32(9):1139-44 (2016) doi:10.1016/j.ejmp.2016.08.018
- "Feasibility of the β- Radio-Guided Surgery with a Variety of Radio-Nuclides of Interest to Nuclear Medicine" C. Mancini-Terracciano et al, submitted to Physica Medica (2017)
- "Y3+ embebbed in polymeric nanoparticles: morphology, dimension and stability of composite colloidal system."
 Venditti et al, Colloid and Surface A (2017) doi:10.1016/j.colsurfa.2017.05.082
- "The β radio-guided surgery: method to estimate the minimum injectable activity from ex-vivo tests" A. Russomando et al, submitted to JNM (2017)