Metal Additive Manufacturing applications at CERN

Romain Gerard (EN/MME) Mechanical and Material Engineering group

Outline

- I. CERN EN-MME metal AM Workshop
- II. Requirements for Additive Manufacturing in accelerator environment
- III. Radio Frequency application
 - I. CLIC RF load
 - II. CLIC waveguide filters manufactured by different technologies
- IV. Application for accelerator and detectors
 - I. Titanium Wire scanner fork
 - II. Lattice structure for beam interaction/future collimators
 - III. Heat exchanger (Baby Demo, INFN Genova)

Additive Manufacturing Workshop EN-MME

Selective Laser Melting system

- Started September 2016
- 10 month titanium gr.5 (Ti6Al4V) campaign

Machine:

- SLM 280HL (SLM Solutions)
- 400 W laser (1070 nm)
- Tri-axis scanning system

Build volume: • 280 x 280 x 360 mm³

Materials:

•Currently: niobium (R&D) •Next: SS 316 L / titanium

LocationCERN Meyrin building 156

Specific requirements for accelerator environment

- In vacuum to Ultra High vacuum 10^{-12} mbar ?
 - Outgassing rate
 - Leak tightness
- Cryogenic ?
 - Liquid and supercritical He leak tightness
- Radio-Frequency ?
 - Cleanliness
 - Control material contamination
 - High shape accuracy $(10^{-3} 10^{-4} \text{ relative for narrow band})$
 - Low roughness (Ra below 100nm)
- Radiation ?
 - Radiation damage (Typ. $10^2 10^7$ Gray)
 - Activation minimized

Example of specific material characterisation UHV – Leak tightness

Wall thickness	He leak tightness UHV	He leak tightness UHV		
0.25 mm (membrane deformed)	Not OK 2.10 ⁻¹⁰ mbar.l/s (detector limit: 1.10 ⁻¹⁰ mbar.l/s)	OK after HIP (Hot Isostatic Pressure) Heat treatment		
0.5 mm (membrane deformed)	OK			
0.75 mm	OK			
1 mm	ОК			
1.5 mm	ОК			
2 mm	ОК			
2.5 mm	ОК			

TE-VSC – C. Garion and J.Garguilo

Example of specific material characterisation Outgassing in Ultra High Vacuum

34 Ti6Al4V Samples with total area of 696.7 cm²

Total outgassing: 2.2 10⁻⁷ mbar.l/s Specific outgassing: 3.2 10⁻¹⁰ mbar.l.s⁻¹.cm⁻² (after 24 hours of pumpdown).

Conclusion: 2.5x standard stainless steel outgassing

Applications in Radio Frequency

- CLIC RF load
- CLIC waveguide filters

RF Load Development

First targeted application for RF: Broad-band all-metal RF load (Profiting also from roughness for attenuation)

Aim: Develop a compact design achieving a reduction of -30dB for 12GHz frequency

- I. Low power material characterisation (Waveguides)
 - DC conductivity, UHV compatibility, shape accuracy and roughness, mechanical strength and Metallurgy

II. High power tests

Cooling integration, UHV compatibility, High power performances

III. RF Load prototype manufacturing and testing

Current load configuration 1m long

RF Load manufacturing

VNA Measurements and Setup of X Band RF Load #1(CERN print)

Load #1 without metal

Load #1 with metal

No differences in the return signal with and without metal

The load correctly dissipate the RF power

X-band production team

Additive Manufacturing of an RF filter by different technologies

- Goal: filter out the 24 GHz frequency
- Electroless copper deposition (SWISS12)

Aluminium	Copper plated Aluminium	Copper plated polymer SLA
	avatoriash 17030036	

All filters are according to specification

X-band production team

clc

Applications for accelerator and detectors

- Titanium Wire scanner fork
- Lattice structure for future collimators
- Heat exchanger (Baby Demo, INFN Genova)

Wire Scanner for accurate measurement of beam position

Fast wire scanner with speed up to 20m/s

Ti6Al4V Topology optimised Lightweight: 50g High Stiffness

Lattice structure for MultiMat

MultiMat experiment:

Advanced testing of materials for HL-LHC collimators

Lattice thermophysical characterisation On-going

<text></text>		Mechanical properties Tensile test for elastic/plastic behaviour	
Thermal diffusivity Laser flash analysis	Specific heat Differential scanning calorimetry	Coefficient of thermal expansion CTE	

Capillaries for Warm nose heat exchanger (INFN Genova)

- For ATLAS ITk (Inner tracker) Baby Demo splitter box.
- 500 W heat exchanger in a restricted 100x100 mm² space
- Design by INFN Genova (Rosanna Puppo, Cecilia Rossi) and the first prototype will be printed by Tech4Sea, spin-off of UniCal Cosenza (Alessandro Gallo)
- Preliminary tests on Ti samples (Giuseppe Gariano, Alessandro Rovani, Cecilia Rossi)

Pressure drop measurements with compressed air (INFN Genova)

0025.02 005 025 C03 033 C03 025 C03 033 C03 025 C03 033 C03 025 C03 02 C03 00 C00 C00 C00 C00 C00 C00

Results:

The pressure drop in the different pipes is comparable The measured diameter is smaller by a factor of 1.5-2 (approximation due to air leaks and instruments precision) Samples in Ti6Al4V Manufactured @ CERN Dint from 0.25 to 1mm

Conclusion

- Additive Manufacturing is a disruptive technology for High Energy Physics with high potential
- It particularly shines at manufacturing parts with:
 - Integrated and efficient cooling
 - Novel and Complex geometries
 - Light weight and compact shapes
- But also features restrictions:
 - Part size
 - Dimensional accuracy
 - Surface roughness
 - Availability of materials (especially good- and super- electrical conductors)

Acknowledgements

- BE-RF Radio-Frequency group
 - Alexej GRUDIEV
 - Anastasiya SOLODKO
 - Hikmet Bursali
- EN-MME Mechanical and Material Engineering group
 - Thomas SAHNER
 - Gilles FAVRE
 - Francesco BERTINELLI
 - Michele PASQUALI
 - Alessandro BERTARELLI
- TE-VSC Vacuum group
 - Cédric GARION
 - Julien GARGIULO
 - Jose Antonio FERREIRA SOMOZA
- BE-BI Beam Instrumentation group
 - Ray VENESS
 - Dmitry GUDKOV
- INFN Genova
 - Cecilia ROSSI

