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• Collapsed core of massive 
stars with 8 - 25 M☉ 

❖ Introduction 

Neutron Stars
Gravity -  

General Relativity 
High compactness:

 GM/Rc2~0.1 with 


R~15km and M~1.5 M☉


Condensed matter 
Superfluidity


Superconductivity

Crust


Nuclear Physics 
Unknown EoS:


supranuclear densities ρ > 
1014 g/cm3 


High Energy Astrophysics 
Fast rotation P~ 10-3 ÷10 s 

Strong B-field > 109G,
GRB, Pulsar Winds, GW

particle accelerator

☀

Different manifestations of NSs: 
• strength of the magnetic field 
• morphology of the magnetic field

Magnetic powered
Magnetars

Thermal powered 
X-ray Isolated NSs, CCOs

Low Mass X-ray Binaries

High Mass X-ray Binaries

Accretion powered

Rotation powered 
RadioPulsars, X / ɣ-ray pulsar, RRATs
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❖ Introduction 

Magnetars

Slowly rotating young NS with  
B=1014÷1015G @ surface 

Ṗ ⇠ 10�11 s

P ⇠ 2� 12 s ⌧ ⇠ P/2Ṗ ⇠ 104 yr

B /
p

PṖ ⇠ 1014 G
⇒

Evolution and dissipation of the internal 

magnetic field

rotational energy ~ 1044 erg

magnetic energy ~1048 erg   

✘

✔

High X-ray luminosity up to 1046 erg
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Bursting Activity

Absorbtion Lines
BtorJ

• steady state emission LX ~ 1035-1036 erg s-1 

• blackbody + high energy tail 
• resonant cyclotron scattering 
• bursting activity with L ~1033 - 1044 erg s-1        

(in 0.1-100 s)
• Short bursts  Lx~1041 erg s-1, few sec.    
• Giant Flares   Lx >1044 erg s-1, few min. 

Phenomenology:

[Tiengo et al 2013]
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Why should we care?
Magnetospheric physics
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QED Plasma and Magnetars

Marat Freytsis and Samuel E. Gralla
Center for the Fundamental Laws of Nature, Harvard University, Cambridge, MA 02138, USA

Magnetars are surrounded by diffuse plasma in magnetic field strengths well above the quantum electro-
dynamic critical value. We derive equations of “quantum force-free electrodynamics” for this plasma using
effective field theory arguments. We argue that quantum effects do not modify the large scale structure of the
magnetosphere, and in particular that the spin-down rate does not deviate significantly from the classical result.
We provide definite evolution equations that can be used to explore potentially important small-scale correc-
tions, such as shock formation, which has been proposed as a mechanism for both burst and quiescent emission
from magnetars.

Introduction — From the earliest days of the quantum the-
ory of light, before even the development of quantum elec-
trodynamics (QED) proper, it was recognized that quantum
effects should become important for electromagnetic field
strengths of order m2/!e, where m and e are the mass
and charge of the electron [1, 2]. New effective photon-
photon interactions emerge, mediated by electron loops, lead-
ing to phenomena such as vacuum birefringence and light-by-
light scattering. Most dramatically, critical-strength electric
fields create electron-positron pairs out of the vacuum, a non-
perturbative effect [3]. The most promising route to reach-
ing these field strengths in the laboratory is the use of high-
intensity lasers [4]. While some of the effects may be observ-
able in upcoming facilities, the actual field strengths will still
be subcritical.

Fortunately, nature provides us with another avenue to
investigate strong-field QED: a class of astrophysical ob-
jects known as magnetars. Magnetars are pulsars (rotating,
magnetized neutron stars) with exceptionally strong surface
magnetic field strengths. In fact, magnetars can have field
strengths of up to 1015 G and maybe higher, which exceed the
critical field strength,

BQ =
m2

!e
≈ 4.4× 1013 G, (1)

by two orders of magnitude! Much work has been devoted to
understanding the physical processes that take place in such
magnetic field strengths; see [5–7] for reviews.

Most of this work is done assuming a vacuum environment,
whereas in fact magnetars (and pulsars in general) are sur-
rounded by a diffuse plasma. The existence and properties
of this plasma can be understood from the smallness of the
dimensionless parameter

χ =
m

eBR
≈ 10−15. (2)

Here B is the magnetic field strength, R is the stellar radius,
and we have assumed canonical pulsar values B ≈ 1012 G
and R ≈ 10 km.

This number accounts for the plasma as follows [8, 9]. A
conductor moving with velocity v in a magnetic field B gener-
ates an electric field of order Bv by “unipolar induction”. For
a rotating magnetized sphere in vacuum this electric field has
a component along B, and hence can accelerate particles. The
energy to which the particles can be accelerated over a typ-
ical system size is thus eBvR. Computing v/χ shows that

this energy exceeds the rest mass of the electron by many
orders of magnitude. (For pulsars a typical surface velocity
is v ∼ 10−4.) Thus any stray charges are rapidly acceler-
ated to above the pair-production threshold, and the ensuing
pair-creation cascade will populate the magnetosphere with
plasma.

As charges are generated they will arrange themselves to
cancel the electric field, driving the Lorentz invariant E ·B to
zero. Production ceases as this invariant becomes too small to
produce the required acceleration. For charge corotating with
the star the density required to cancel E · B is the so-called
Goldreich–Julian charge density vB/R. This sets a typical
scale for the plasma mass density, mvB/eR. The ratio of
the particle mass/energy density to the electromagnetic field
energy density is then vχ, which is exceedingly tiny, making
the plasma dynamics completely dominated by the field.

Assuming classical electrodynamics, such plasmas are de-
scribed by a non-linear theory of the electromagnetic field
known as force-free electrodynamics (FFE) [8, 10–12]. The
theory follows from the assumption that the electromagnetic
stress-energy is conserved on its own, leading to the condition
that the Lorentz force density everywhere vanishes. Naively,
one might expect any classical description to break down at
or near the critical field strength BQ. The measurement of
the surface magnetic field strength of a pulsar/magnetar relies
on the dipole radiation spin-down formula, which has only
been derived in classical electrodynamics (vacuum [13–15]
or force-free [16–18]) or in vacuum QED [19]. Thus the very
evidence for super-critical magnetic fields in nature is sensi-
tive to the question of magnetically dominated QED plasma.

In this letter we will derive equations of “quantum force-
free electrodynamics” to describe this plasma. The strategy is
to integrate out electron loop fluctuations from the QED ac-
tion, following the basic approach established by Euler and
Heisenberg (EH) in 1935 [2]. However, the EH calculation
is done assuming no fermion in- or out-states, allowing the
electron to be integrated out entirely in the effective action,
whereas we wish to consider plasma. We therefore proceed
in two steps. First, we consider a collisionless multiparticle
system and use effective field theory (EFT) arguments to es-
tablish the size and form of the modifications due to QED. We
then show that the modifications that survive in the magneti-
cally dominated limit follow from the EH Lagrangian, with-
out requiring a new QED calculation. We thereby write down
definite equations for magnetically dominated QED plasma.

QED effects on photon propagation, 
i.e. vacuum polarisation [observed in a XINS, Mignani et al 2016 ]

Future X-ray polarimeters as XIPE and IXPE → detailed infos about magnetospheric 
environments (geometry of the magnetic field, currents characteristics)

Gamma Ray Bursts

Most energetic explosion of modern Universe (~1050 erg in 0.1 -10 s) 
• supernovae                              Black Hole + accretion disk 
• NS merging                              millisecond magnetar 

Gravitational waves

Strong magnetic fields ⟹ large quadrupole deformation 

Emission of observable GWs 
within D~20 Mpc with aLigo &  Virgo 

B~1016 G and rapid rotation 
 at birth (P~1ms)

✏B / B2ellipticity fGW = 2/Pfrequency h / I✏B
D

f2
GWstrain

[Dall’Osso et al. 2009]
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The Birth of a Magnetar

Prompt emission  
• neutrino cooling drives baryon loaded wind

• high radiative efficiency of the jet X-ray Plateau  

• requires long lived central engine

• pulsar-like energy injection

• relativistic magnetically driven 

wind with ~1049-1050 erg/s  

Rebrightening 
Reactivation of the inner engine


Proto-Magnetar model for GRBs                         [see e.g. Metzger et al 2011]

Spin-flip
Ω ΩB

B

Gravitational Wave emission 

• efficiency depends on the geometry of the B-field
• prolate deformation → 


dissipative mechanisms

drives spin flip  → 
maximize GWs  emission

!̇ =
Kd

2
!3 � KGW

4
!5

Kd = (B2
dR

6)/3Ic3

✏B / B2

KGW = (2/5)f(�)(G/c5)I✏2B

Magnetic spin-down 
VS 

GW spin-down

Magnetar signature: 
extended activity  
(X-ray plateau) 
observed by SWIFT 

Cutler 2002
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The morphology of the magnetic field
Dynamo

• rapid differential rotation with P~10 ms

• large toroidal magnetic fields Figure 4: 3D volume renderings of the toroidal magnetic field. All panels show ray-casting volume

renderings of B�. The rotation axis z is the vertical and the volume renderings are generated with

a varying-alpha colourmap. Yellow indicates positive field of strength 1015 G and red indicates

weaker positive field. Light blue corresponds to negative field of 1015 G, while blue indicates

weaker negative field. The left most panel shows the initial conditions for our simulations, the

middle panel the 500m simulation at time t�t

map

= 10ms and the right panel the 50m simulation

at t � t

map

= 10ms.
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[Mösta et al. 2015]

Magnetic field morphology 
& currents distributions 

Properties of NS structure 
(mass, radius, deformation) 

• lack of a full parameter space investigation 
• limited set of explored current distributions 

764 J. Braithwaite

Figure 1. The shape of the stable twisted-torus field in a star, viewed from
different angles. The transparent surface represents the surface of the star;
strong magnetic field is shown with yellow field lines, weak with black.

is ∼1010 yr for an Ap star; in the case of a NS, this time-scale is much
less certain and is a result of Hall drift and other processes as well
as Ohmic dissipation. As the field evolves it moves outwards, pass-
ing quasi-statically through a series of stable equilibria until, upon
reaching the end of the series of axisymmetric equilibria, it changes
to a non-axisymmetric equilibrium. These non-axisymmetric equi-
libria are described in more detail in Braithwaite (2008, hereafter
Paper II), where it was also found that a non-axisymmetric equilib-
rium can be formed on an Alfvén time-scale directly, from somewhat
different initial conditions. Essentially, the important difference is
the central concentration of the initial field and the fraction of flux
connected through the stellar surface –a non-axisymmetric equilib-
rium can be formed directly from an initial field whose energy is
more ‘spread out’ rather than concentrated towards the centre of the
star, and which has significant flux connection through the stellar
surface.

We are concerned here with only the axisymmetric class of equi-
libria. Since both toroidal and poloidal fields are unstable on their
own, there is presumably some allowed range of ratios of the two
respective field strengths; it is the principal purposes of this paper
shed some light on what these stable ratios might be. The toroidal
field is always confined to the interior of a star, since a toroidal field
on or above the surface would require long-lived currents outside
the star, so that we observe on the surface only the poloidal compo-

nent. Therefore, it is either difficult or impossible to get any direct
observational constraint on the range of allowed ratios. There are,
however, some interesting ways in which a toroidal magnetic field
can manifest itself indirectly, which make the question of allowed
poloidal/toroidal ratios a useful line of study. First, in predominantly
non-convective main-sequence stars (i.e. >1.5 M⊙) it would be use-
ful to know how much flux may be hidden below the surface, since
this flux may be important during formation, eventually be visible
on the WD, be responsible for shaping the planetary nebula, affect
the supernova explosion in some way, and affect the natal rotation
periods of NSs and WDs via core-envelope coupling. In fact, this
reminds us of another question: how much of the poloidal flux can
be hidden below the surface? Certainly not all of it has to go through
the stellar surface, but may be confined to the interior. This paper
also sheds some light on this issue. In the context of the ‘magnetars’,
highly magnetized NSs (dipole field strength on surface 1014–15 G;
see Woods & Thompson 2004, for a review), it would certainly
be useful to know how much magnetic flux and energy could be
‘hidden’ in the interior of the star. These stars undergo soft-γ -ray
outbursts, releasing as much as 2 × 1046 erg of magnetic energy in
less than a second. A field of 3 × 1014 G, if it fills the interior of
the star, contains 2 × 1046 erg, and since these stars appear to have
a lifetime of ∼104 yr and to undergo large outbursts perhaps once a
century, it seems likely that the average field strength in the interior
is significantly greater than that on the surface.

Another way in which the poloidal/toroidal ratio may manifest
itself is through its effect on the star’s shape and moment of inertia.
It has been known for some time (e.g. Chandrasekhar & Fermi
1953; Wentzel 1961) that a poloidal field will make a star oblate
and a toroidal field prolate, and obviously with a mixed poloidal–
toroidal field it will depend on the ratio of the two. In general, such
a deformed star should undergo torque-free precession2; there is
already some observational evidence for this (Cutler, Ushomirsky
& Link 2003; Wasserman 2003; Akgün, Link & Wasserman 2006).
If this precession is damped, then kinetic energy is minimized while
conserving angular momentum and a prolate star will tend towards
the alignment of its rotation and magnetic axes; while in an oblate
star, the angle between the two axes will tend to 90◦. In an Ap star,
this damping process may or may not take on the order of a main-
sequence lifetime (Mestel et al. 1981) but in a NS it may be much
faster and a predominantly toroidal field in a fast-rotating NS could
lead to strong emission of gravitational radiation. These effects of
the magnetic field on a star’s moment of inertia will be looked at
in more detail in a forthcoming paper (Braithwaite & Nissanke, in
preparation).

In Section 2, the instability in toroidal fields is described and
some predictions are made about the stability of mixed poloidal–
toroidal fields, and the properties of instability in poloidal fields
are reviewed. In Section 3, analytic conditions are used to examine
the stability of fields produced in simulations, and simulations are
presented of the decay or otherwise of fields with various toroidal–
poloidal ratios. I conclude, and discuss the results and their appli-
cations in Section 4.

2 INSTA BILITY IN AXISYMMETRIC FIELDS:
ANALYTI C RESULTS

In this section, I review the nature and properties of instability in
purely toroidal and toroidal magnetic fields in stars, as well as look

2 Purists may prefer the term ‘nutation’, although ‘precession’ occurs more
frequently in the literature.

C⃝ 2009 The Author. Journal compilation C⃝ 2009 RAS, MNRAS 397, 763–774
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• relaxation of a 
random field with 
non vanishing 
helicity in a 
stratified star


[ Braithwaite et al. 2006]

Twisted Torus

• Alfvén crossing time ~ 0.1s @ B~1014G

• Kelvin-Helmoltz ~ 100s

Equilibrium models of magnetized NSs

• starting configuration for stability analysis 
• computation of synthetic emission 
• quasi-stationary evolution
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Governing equations

Einstein equation

Gµ⌫ = 8⇡Tµ⌫

Tµ⌫ = [⇢(1 + ✏) + p]uµu⌫ + pg µ⌫ + Fµ
�F

⌫� � 1
4 (F

�F�)g µ⌫Tµ⌫ = [⇢(1 + ✏) + p]uµu⌫ + pg µ⌫ + Fµ
�F

⌫� � 1
4 (F

�F�)g µ⌫

NS ➜ ideal magnetised plasma (young NSs)

Euler equation ⇢haµ + uµu
⌫@⌫p+ @µp = Lµ

rµT
µ⌫ = 0

Energy conservation

Continuity equation
rµ(⇢u

µ) = 0
Maxwell equations

GRMHD equations

rµ
⇤Fµ⌫ = 0

rµF
µ⌫ = �j⌫

• 4-current 
• Lorentz force 

• baryonic density 
• specific internal energy
⇢
✏

• pressure 
• Faraday tensor
p
Fµ⌫Notation rµ

⇤Fµ⌫ = �⇤j⌫

⇢haµ + uµu
⌫@⌫p+ @µp = Lµ

• α Lapse function   -   β Shift Vector 

ds

2 = �↵

2
dt

2 + �ij(dx
i + �

i
dt)(dxj + �

j
dt)

3+1 formalism



Pulsars and magnetars: a brief introduction
Numerical modeling in axisymmetric spacetimes

Axisymmetric FFE and MHD equilibria in GR
The XNS code and numerical models
Application: quark deconfinement and GRBs

Stationary and axisymmetric Maxwell’s equations
Consider here the stationary Maxwell equations here written in 3 + 1 form

r · B = 0,

r⇥ (↵E + � ⇥ B) = 0,

r · E = ⇢
e

,

r⇥ (↵B� � ⇥ E) = ↵J� ⇢
e

�.

From the first we define the magnetic flux function  ⌘ A' such that

B =
r 
R

⇥ e'̂ +
I

↵R

e'̂,

and any function f satisfying B ·rf = 0 will be constant over magnetic surfaces and
f = f ( ) alone. The last Maxwell equation provides the current

J =
rI
↵R

⇥ e'̂ + J'̂e'̂,
↵

R

J'̂ = �r ·
“ ↵

R

2r 
”

+ E ·r!,

whereas the second Maxwell equation implies E' = 0 and, using � ⌘ A

t

↵E + � ⇥ B = r�) E =
r�+ !r 

↵
.

L. Del Zanna - XXII SIGRAV Conference, September 2016 - Cefalù Numerical models of magnetized neutron stars in general relativity
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implies that the poloidal (r, ✓) components of the magnetic field can be expressed in terms
of the gradient of a scalar function  (r, ✓) ⌘ A�, called magnetic flux function. Analogously
the �-component of the magnetic field can be written using another scalar function I, such
that B� = ↵�1I for later convenience, known as the current function. By introducing the or-
thonormal triad eî = @i/

p
�ii, with eî⇥ e ĵ = "î ĵk̂ek̂, the magnetic vector field can be expressed

as
B = D 

R
⇥ e�̂ +

I
↵R

e�̂. (2.71)

where R := p��� =  2r sin ✓ and D is the vector field associated with the gradient of  ,
with components given by (D )î = @i /

p
�ii. The isosurfaces  (r, ✓) = cost, are known as

magnetic surfaces, and they contain the magnetic poloidal field-lines. Moreover any scalar
function f satisfying B · D f = 0 will be constant on them: f = f ( ). It is possible to show,
starting from Eq. 2.70, that the poloidal component of the 3-current is related to the curl of
the azimuthal magnetic field, ↵Ji = "i j�@ j(↵B�), such that

J = DI
↵R
⇥ e�̂ + J�̂e�̂, (2.72)

where the toroidal component is given by

↵

R
J�̂ = �D ·

✓ ↵
R2 D 

◆
+ E · D!. (2.73)

From the other sourceless Maxwell’s equation, Eq. 2.68, under the same constraints of
stationarity, axisymmetry and circularity/conformal-flatness, one finds ↵E� = 0. By noticing
that with our assumptions (B · D)� = �D ⇥ (� ⇥ B), the same equation implies that the
poloidal components of the electric field are related to the gradient of a new scalar function
� ⌘ At as:

↵E + � ⇥ B = ↵E � !D = D�. (2.74)

Specializing our choice to a conformally flat metric, in Eq. 2.46, R =  2r sin ✓ and the
components of the magnetic field in local coordinate read:

Br =
@✓ p
�
, B✓ = �@r p

�
, B� =

I
↵ 4r2 sin ✓

; (2.75)

instead the components of the electric field are given by:

Er =
1
↵ 4 (@r� + !@r ), E✓ =

1
↵r2 4 (@✓� + !@✓ ), E� = 0. (2.76)

Finally the Maxwell-Gauss equation, Eq. 2.69, can be written as an elliptical PDE for the
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conformal factor flat metric
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in the spacelike 2-plane perpendicular to ⇧. Additional properties are valid for the subset of
circular spacetimes, for which the coordinates (r, ✓) span the two-surfaces orthogonal to ⇧,
leading to the simplification gtr = gt✓ = gr� = g✓� = 0. This type of metric is generated by
configurations of matter-energy for which the momentum-energy tensor T µ⌫ is also circular,
and this happens when

⇠µT µ[⌫⇠��] = 0, �µT µ[⌫⇠��] = 0. (2.43)

Consider now the case of rotating, magnetized compact objects to be described as equi-
librium solutions of the GRMHD system. The stress-energy tensor reads

T µ⌫ = (e + p + b2)uµu⌫ � bµb⌫ + (p + 1
2b2)gµ⌫, (2.44)

where we have used the MHD condition (Eq.2.25). With this form of the momentum-
energy tensor, the circularity condition holds provided the 4-velocity is toroidal, that is
u 2 ⇧ ) uµ := ut(⇠µ + ⌦�µ), due to ⇠µuµ , 0, where ⌦ := u�/ut = d�/dt is the fluid
angular momentum as measured by an observer at rest at spatial infinity. If one looks for
magnetic configurations independent of the flow structure, in the limit of ideal MHD, circu-
larity requires that the comoving magnetic field must be either purely toroidal, bµ 2 ⇧, with
bµuµ = 0 ) bt = �⌦b�, or purely poloidal, that is bµ⇠µ = bµ�µ = 0. In the latter case,
stationarity requires solid body rotation u�/ut = const (Oron 2002), or ⌦ must be a constant
on magnetic surfaces (Gourgoulhon et al. 2011), as we will discuss in Sect. 2.5. For mixed
magnetic fields configurations the circularity of the spacetime does not hold.

In the case of circular spacetimes and spherical-like coordinates, the line element can be
further simplified to:

ds2 = �↵2dt2 + �i jdxidx j + R2(d� � !dt)2, (2.45)

where R = p��� is knows as quasi-isotropic radius, ! = ��� is the frame dragging potential,
and the poloidal two-metric with (i, j = r, ✓) can always be orthogonalized introducing a
conformal factor  , so that �r✓ = 0, �rr =  4, �✓✓ = r2 4. The determinant of the three-
metric is then p� = Rr 4. Models of stationary and axisymmetric equilibria of rotating NSs
are generally built on top of this metric (e.g. Gourgoulhon 2010), even in the magnetized
case (Bocquet et al. 1995, Kiuchi and Yoshida 2008, Frieben and Rezzolla 2012) for either
purely poloidal or purely toroidal fields. However, in the mixed field case, even if the above
form of the metric is no longer appropriate, sensible deviations from circularity are expected
to arise only for unrealistically large values of the magnetic field of ⇠ 1019 G (Oron 2002).
Moreover, it has been verified (Shibata and Sekiguchi 2005, Dimmelmeier et al. 2006, Ott
et al. 2007, Bucciantini and Del Zanna 2011), that even for highly deformed star, up to the
mass shedding limit, the di↵erence between R and  2r sin ✓ is at most of the order of 10�3

(see also Appx. A for a discussion), and the metric can be further simplified to

ds2 = �↵2dt2 +  4[dr2 + r2d✓2 + r2 sin2✓ (d� � !dt)2]. (2.46)• Conformally flat metric 
[ e.g. Wilson & Mathews 2003 ]
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    [ Oron 2002, Bucciantini et al. 2011, Pili et al 2014 ]

• Einstein equation reduces to a set of 8 PDEs  
• Hierarchical scheme 
• Numerically stable form  
• Consistency with full GR (10-4) even at mass shedding and up to B~1019G

❖ Mathematical Framework 

Governing Equations
•  Basic requirements: Stationarity ( ∂t	
  =0	
  ) and Axisymmetry ( ∂φ	
  =0	
  )

Φ	
  -­‐	
  electric potential	
  	
  
Ѱ	
  -­‐	
  magnetic flux function	
  
I - toroidal magnetization 
Ω - NS rotation at spatial ∞ 

Pulsars and magnetars: a brief introduction
Numerical modeling in axisymmetric spacetimes

Axisymmetric FFE and MHD equilibria in GR
The XNS code and numerical models
Application: quark deconfinement and GRBs

Stationary and axisymmetric Maxwell’s equations
Consider here the stationary Maxwell equations here written in 3 + 1 form

r · B = 0,

r⇥ (↵E + � ⇥ B) = 0,

r · E = ⇢
e

,

r⇥ (↵B� � ⇥ E) = ↵J� ⇢
e

�.

From the first we define the magnetic flux function  ⌘ A' such that

B =
r 
R

⇥ e'̂ +
I

↵R

e'̂,

and any function f satisfying B ·rf = 0 will be constant over magnetic surfaces and
f = f ( ) alone. The last Maxwell equation provides the current

J =
rI
↵R

⇥ e'̂ + J'̂e'̂,
↵

R

J'̂ = �r ·
“ ↵

R

2r 
”

+ E ·r!,

whereas the second Maxwell equation implies E' = 0 and, using � ⌘ A

t

↵E + � ⇥ B = r�) E =
r�+ !r 

↵
.
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MHD / force free regime

Pulsars and magnetars: a brief introduction
Numerical modeling in axisymmetric spacetimes

Axisymmetric FFE and MHD equilibria in GR
The XNS code and numerical models
Application: quark deconfinement and GRBs

FFE case (NS magnetosphere): the Grad-Shafranov equation

If in vacuum, ⇢
e

= J = 0 and two coupled PDEs for  and � are derived.

Inside a highly conducting plasma holds the degenerate condition

E · B = 0,

then B ·r� = 0 ) � = �( ) and a drift velocity v can be always defined, such that

E = �v⇥ B = � v

R

r , v =
⌦� !

↵
R, ⌦ = � d�

d 
.

The Lorentz force acting on the plasma is

L = ⇢
e

E + J⇥ B =

„
J'̂

R

� ⇢
e

v

R

«
r � IrI

↵2
R

2 +
rI⇥r · e'̂

↵R

2 e'̂,

The FFE condition L = 0 implies I = I( ) and the Grad-Shafranov equation

r·
h ↵

R

2

“
1�v

2
”
r 

i
+

v

R

d⌦

d 
|r |2 +

I
↵R

2
dI
d 

= 0.

a PDE providing the magnetic structure  for given I( ) and ⌦( ), with extra
conditions at the light cylinder v = 1 ) R = R

L

⌘ ↵/(⌦� !).

The pulsar equation is retrieved in flat space for ↵ = 1 and ⌦ = const.
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@i� = �⌦@i Pure rotational flow

vr = 0, v✓ = 0, v� =
⌦� !

↵
� = �⌦ + CStationarity with arbitrary B-field ⇒ Ω=const 

with



❖ Mathematical Framework 

Governing Equations

• Integrability condition (Lorentz force) → Li = ⇢h @iM
• Barotropicity:               p = p(⇢)

Euler equation →
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Recalling that ui = 0, (i = r, ✓) and @t = @� = 0, so that u⌫@⌫ = 0, the four-acceleration
reduces to

aµ = �1
2u⌫u�@µg⌫�, (2.82)

and its spatial projection in the 3 + 1 formulation is

ai =
�2

2↵2 [@i(↵2 � R2!2) + 2⌦@i(R2!) �⌦2@iR2]. (2.83)

Recalling the definition of v in Eq. 2.81, and given the relation v2�2@i ln v = @i ln�, one
finally gets:

@i p
⇢h
+ @i ln↵ � @i ln� =

Li

⇢h
. (2.84)

Notice that axisymmetry implies necessarily L�̂ = 0.
In order cast this equation into an integrable form, suitable for numerical solutions, two

assumptions are required:

• a barotropic EoS p = p(⇢), as in the case of a polytropic law

p = Ka ⇢
1+1/n ) h = 1 + (n + 1)Ka ⇢

1/n, (2.85)

where Ka is the polytropic constant, n is the polytropic index, such that @i p/(⇢h) =
@i ln h;

• an external conservative force with potentialM

L = ⇢h DM. (2.86)

The first one is usually justified by the fact that matter in neutron stars can be considered
fully degenerate (zero temperature). The second one, on the other hand, restricts the possible
choices of current distribution (see e.g. Akgün et al. 2013 for examples where this constrain
is relaxed), but is the only one that permits to compute equilibria in the fully non perturbative
regime.

Under those two assumptions one can integrate Euler’s equation to derive the so called
Bernoulli integral

ln
h
hc
+ ln

↵

↵c
� ln

�

�c
� =M �Mc, (2.87)

where we have indicated with the label c a reference position, for instance the center of the
NS.

Inside the star the ideal MHD condition guarantees that the electric field is always or-
thogonal to the magnetic field, i.e. E ·B = 0, so that B ·D� = 0 and the electric potential can
be expressed as a function of the magnetic potential, � = �( ). In particular the ideal MHD
condition provides the following relation between the two potentials (see e.g. Gourgoulhon

Magnetisation function

ln
h

hc
+ ln

↵

↵c
� ln

�

�c
= M�Mc

c - quantities evaluated at the center of the star
p = Ka⇢

1+1/n

h = 1 + (1 + n)Ka⇢
1/n

i.e. polytropic:
→ @ip

⇢h
= @i lnh

Lorentz factor:  � = (1� v�v�)�1/2
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algebra, one obtains the relativistic Grad-Shafranov (GS) equation

D·
 ↵
R2

⇣
1�v2

⌘
D 
�
+
I
↵R2

dI
d 
+ ↵⇢h

dM
d 
= 0. (2.96)

Notice that since we have used the Ideal MHD condition, the GS equation is strictly valid
only inside the NS. On the other hand if one assumes the existence of a low density plasma
that, without a↵ecting the dynamics, can provide the required charges and currents, the con-
dition E·B = 0 can be extended also outside the NS. This is the base of the so called force-free
degenerate electro-dynamic (or magnetodynamic, Komissarov 2011), and is the prescription
generally adopted in magnetospheric models that focus just on the exterior (Michel 1973b,
Contopoulos et al. 1999, Timokhin 2006, Spitkovsky 2006, Tchekhovskoy et al. 2013, Pétri
2016b), and that has been recently extended to global models (Ruiz et al. 2014). In this case,
given the negligible dynamical e↵ects of the plasma, the Lorentz force must vanishes. Hence
the force-free limit of the GS equation can be obtained with M( ) = cost or equivalently
with ⇢! 0. One obtains

D·
 ↵
R2

⇣
1�v2

⌘
D 
�
+
I
↵R2

dI
d 
= 0. (2.97)

which is also known as the pulsar equation.

Notice that the force-free GS equation could have also been derived requiring L = 0 with
the assumption that ⌦ is the rotational rate of the magnetic field lines, namely ⌦ = �d�/d ,
so that the velocity v = ↵�1(⌦ � !)Re�̂ refers to the motion of the immaterial field-lines as
measured by the Eulerian observer. In this case there is nothing to prevent v > 1 once the
Light Cylinder, defined by R = RL = ↵�1(⌦�!), is crossed. On the contrary, in the case v is
associated with the fluid rotation then v < 1 everywhere and we do not have a transition at the
generalized Light Cylinder. Moreover, there is a net energy flow along those field-lines that
cross the Light Cylinder which is not strictly consistent with our assumption of stationarity.

In order to preserve the stationarity requirement one can force the poloidal fields lines to
be contained inside the star, adding an ad hoc singular toroidal current at the stellar surface
(Tomimura and Eriguchi 2005). The other possibility, which is often adopted in literature
(see for example Bocquet et al. 1995, Franzon et al. 2016a), is to consider an electrovacuum
approximation, assuming that field-lines extend also outside the NS surface into a ‘vacuum’.
In this case one cannot define any meaningful reference frame in the exterior, such that
it is not possible to enforce any relation between  and �. Indeed there are regions where
E ·B , 0, which are known as vacuum gaps (Goldreich and Julian 1969, Michel and Li 1999,
Cheng et al. 1986). In this case one cannot use a single GS equation over the entire space
but one should solve the potentials separately inside and outside the NS with the requirement
of continuity at the stellar surface. While the vacuum corresponds to the simple assumption
⇢e = J� = 0, inside the ideal MHD condition, together with the requirement of integrability,

Grad-Shafranov Eq.

r r

   Light Cylinder v=1: 
require an additional boundary condition 
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r r

Force-free limit 𝝔→0

L� / (DI ⇥D )� = 0 I = I( )

B · L = 0 M = M( )(from MHD condition                 )    ⇒(E ·B = 0)

(from axisymmetry)    ⇒



❖ Mathematical Framework 

The XNS code

4.2. Risoluzione delle equazioni XCFC multidimensionali

Come abbiamo già visto nel capitolo 1 attraverso la decomposizione conforme

la derivata covariante indotta sulle sezioni tridimensionali della foliazione è data

dal classico operatore nabla nello spazio piatto. Ora, con la scelta della nuova

base e
ı̂

, potremo utilizzare le formule standard del calcolo vettoriale in coordinate

sferiche per gli operatori � e �
L

e di conseguenza sfruttare le relazioni fornite

nell’Appendice B.

Siccome siamo interessati a soluzioni assisimmetriche di seguito considereremo

nello specifico questo regime. Nell’ipotesi di assisimmetria (m = 0) la funzione

scalare q, dell’equazione (4.30), può essere sviluppata in armoniche sferiche come:

q(r, ✓) =
1X

l=0

A
l

Y
l

(✓) , (4.38)

dove con Y
l

si è indicato:

Y
l

⌘ Y
l0(✓) =

r
2l + 1

4⇡
P
l

(cos ✓), (4.39)

e P
l

(cos ✓) è il polinomio di Legendre. Ora calcolando il Laplaciano attraver-

so questa decomposizione e sfruttando il fatto che le armoniche sferiche sono

autofunzioni del Laplaciano [proprietà (B.7)] l’equazione ellittica per q diventa:

1X

l=0

✓
d2A

l

dr2
+

2

r

dA
l

dr
� l(l + 1)

r2
A

l

◆
Y
l

(✓) = H, (4.40)

Moltiplicando ambo i membri per il complesso coniugato Y ⇤
l

(✓), integrando sul-

l’angolo solido e sfruttando le proprietà di ortogonalità (B.5) e completezza (B.6)

delle armoniche sferiche si ottiene infine:

d2A
l

dr2
+

2

r

dA
l

dr
� l(l + 1)

r2
A

l

= H
l

, (4.41)

dove il termine sorgente è dato da:

H
l

(r) :=

Z
d⌦H(r, ✓)Y

l

(✓). (4.42)

Abbiamo cos̀ı ottenuto una serie di equazioni di↵erenziali ordinarie per ogni va-

lore di l. Lo stesso procedimento può essere adoperato per le equazioni vettoriali

(4.31). In questo caso bisognerà però valutare il comportamento delle armoni-

che sferiche vettoriali rispetto all’operatore �
L

come mostrato nell’Appendice B.
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X�(r, ✓) =
1X

l=0

[Cl(r)Y
0
l (✓)]

• II order radial discretisation → direct inversion of 
tridiagonal matrices

�q = hqp

�⇤X� = H�

Equations to solve: Semi-spectral method

solve 
TOV

solve 
Einstein Eqs

solve 
GS Eq

solve 
Maxwell Eqs

solve 
Bernoulli Eqs

In
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Ω=0

D
on

e!

initial 

guess

provide EoS, 
⇢c,M, I,⌦

 ,↵,!

E,B

h, ⇢, p

freely available at: 
www.arcetri.astro.it/science/ahead/XNS/

✔

✔

✗
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❖ Equilibrium models 

Toroidal Magnetic fields

• prolate deformation

• inflation of low-density outer layers

• maximum Bmax allowed @ fixed mass

• m regulates the distribution of currents
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Figure 1. Meridional distribution and isocontours of the magnetic field strength B =
√

BφBφ (top) and of the baryonic density (bottom) for models with
baryonic mass M0 = 1.68 M⊙, maximum magnetic field strength Bmax = 6.134 × 1017 G, with magnetic index m = 1 (left) and m = 2 (right). Blue curves
represent the surface of the star. Other global quantities related to these configurations are listed in Table 1.

the latter results against KY08. The first thing to notice is that Bmax is
not a monotonic function of the magnetization constant Km. On the
contrary Bmax initially increases with Km, till it reaches a maximum
value, and then for higher values of Km it drops. This is due to the
expansion of the star. For small values of Km, the stellar radius is
marginally affected, and an increase in Km leads to a higher field.
However at higher values of Km the radius of the star is largely
inflated and a further increase in Km translates into an expansion of
the star, and a consequent reduction of the maximum internal field.
If "M, "Rcirc, or ē are plotted against the total magnetic energy, we
find that there appears to be a monotonic trend, at least in the range
covered by our models. A similar effect shows up in the behaviour
of the central density. For small values of Km the magnetic tension
tends to compress the matter in the core, increasing its density.
However as soon as the magnetic field becomes strong enough to
cause the outer layer of the star to expand, the central density begins
to drop (recall that the sequence is for a fixed baryonic mass). The
same comparison with KY08 in the m = 2 (FR12 present only the
m = 1 case) is shown in Fig. 3.

Following KY08 we have carried out a full sampling of the param-
eter space. In Fig. 4 we plot the gravitational mass M as a function
of the central density ρc both for sequences with a constant baryonic

mass M0 and a constant magnetic flux $. The first thing to notice
is that the maximum gravitational mass, at fixed magnetic flux $,
increases with $. Moreover for a given $ the model with the max-
imum gravitational mass have also the maximum rest mass. On the
other hand the minimum gravitational mass, at fixed rest mass M0,
decreases with M0. Similarly, for a given M0 the model with the
minimal gravitational mass have also the minimum magnetic flux.
The filled circles locate the maximum gravitational mass models in
the sequences of constant $. The global quantities related to these
configurations are summarized in Table 2.

Interestingly, while for the vast majority of our magnetized mod-
els the gravitational mass, for a given central density, is higher than
in the unmagnetized case, for small values of $ this is not true at
densities below ∼1.8 × 1015 g cm−3 for m = 1. This is a manifes-
tation of the same effect discussed above in relation to the trend of
the central density in Fig. 2. This effect was already present to a
lesser extent in KY08, but not discussed.

Our set of models allows us also to construct sequences char-
acterized by a constant magnetic field strength Bmax or a constant
deformation rate ē. It is evident that models with a higher cen-
tral density, which usually correspond to more compact stars, can
harbour a higher magnetic field with a smaller deformation.

MNRAS 439, 3541–3563 (2014)
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m = 1 case) is shown in Fig. 3.

Following KY08 we have carried out a full sampling of the param-
eter space. In Fig. 4 we plot the gravitational mass M as a function
of the central density ρc both for sequences with a constant baryonic

mass M0 and a constant magnetic flux $. The first thing to notice
is that the maximum gravitational mass, at fixed magnetic flux $,
increases with $. Moreover for a given $ the model with the max-
imum gravitational mass have also the maximum rest mass. On the
other hand the minimum gravitational mass, at fixed rest mass M0,
decreases with M0. Similarly, for a given M0 the model with the
minimal gravitational mass have also the minimum magnetic flux.
The filled circles locate the maximum gravitational mass models in
the sequences of constant $. The global quantities related to these
configurations are summarized in Table 2.

Interestingly, while for the vast majority of our magnetized mod-
els the gravitational mass, for a given central density, is higher than
in the unmagnetized case, for small values of $ this is not true at
densities below ∼1.8 × 1015 g cm−3 for m = 1. This is a manifes-
tation of the same effect discussed above in relation to the trend of
the central density in Fig. 2. This effect was already present to a
lesser extent in KY08, but not discussed.

Our set of models allows us also to construct sequences char-
acterized by a constant magnetic field strength Bmax or a constant
deformation rate ē. It is evident that models with a higher cen-
tral density, which usually correspond to more compact stars, can
harbour a higher magnetic field with a smaller deformation.
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Figure 1. Meridional distribution and isocontours of the magnetic field strength B =
√

BφBφ (top) and of the baryonic density (bottom) for models with
baryonic mass M0 = 1.68 M⊙, maximum magnetic field strength Bmax = 6.134 × 1017 G, with magnetic index m = 1 (left) and m = 2 (right). Blue curves
represent the surface of the star. Other global quantities related to these configurations are listed in Table 1.

the latter results against KY08. The first thing to notice is that Bmax is
not a monotonic function of the magnetization constant Km. On the
contrary Bmax initially increases with Km, till it reaches a maximum
value, and then for higher values of Km it drops. This is due to the
expansion of the star. For small values of Km, the stellar radius is
marginally affected, and an increase in Km leads to a higher field.
However at higher values of Km the radius of the star is largely
inflated and a further increase in Km translates into an expansion of
the star, and a consequent reduction of the maximum internal field.
If "M, "Rcirc, or ē are plotted against the total magnetic energy, we
find that there appears to be a monotonic trend, at least in the range
covered by our models. A similar effect shows up in the behaviour
of the central density. For small values of Km the magnetic tension
tends to compress the matter in the core, increasing its density.
However as soon as the magnetic field becomes strong enough to
cause the outer layer of the star to expand, the central density begins
to drop (recall that the sequence is for a fixed baryonic mass). The
same comparison with KY08 in the m = 2 (FR12 present only the
m = 1 case) is shown in Fig. 3.

Following KY08 we have carried out a full sampling of the param-
eter space. In Fig. 4 we plot the gravitational mass M as a function
of the central density ρc both for sequences with a constant baryonic
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increases with $. Moreover for a given $ the model with the max-
imum gravitational mass have also the maximum rest mass. On the
other hand the minimum gravitational mass, at fixed rest mass M0,
decreases with M0. Similarly, for a given M0 the model with the
minimal gravitational mass have also the minimum magnetic flux.
The filled circles locate the maximum gravitational mass models in
the sequences of constant $. The global quantities related to these
configurations are summarized in Table 2.

Interestingly, while for the vast majority of our magnetized mod-
els the gravitational mass, for a given central density, is higher than
in the unmagnetized case, for small values of $ this is not true at
densities below ∼1.8 × 1015 g cm−3 for m = 1. This is a manifes-
tation of the same effect discussed above in relation to the trend of
the central density in Fig. 2. This effect was already present to a
lesser extent in KY08, but not discussed.

Our set of models allows us also to construct sequences char-
acterized by a constant magnetic field strength Bmax or a constant
deformation rate ē. It is evident that models with a higher cen-
tral density, which usually correspond to more compact stars, can
harbour a higher magnetic field with a smaller deformation.
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Figure 1. Meridional distribution and isocontours of the magnetic field strength B =
√

BφBφ (top) and of the baryonic density (bottom) for models with
baryonic mass M0 = 1.68 M⊙, maximum magnetic field strength Bmax = 6.134 × 1017 G, with magnetic index m = 1 (left) and m = 2 (right). Blue curves
represent the surface of the star. Other global quantities related to these configurations are listed in Table 1.

the latter results against KY08. The first thing to notice is that Bmax is
not a monotonic function of the magnetization constant Km. On the
contrary Bmax initially increases with Km, till it reaches a maximum
value, and then for higher values of Km it drops. This is due to the
expansion of the star. For small values of Km, the stellar radius is
marginally affected, and an increase in Km leads to a higher field.
However at higher values of Km the radius of the star is largely
inflated and a further increase in Km translates into an expansion of
the star, and a consequent reduction of the maximum internal field.
If "M, "Rcirc, or ē are plotted against the total magnetic energy, we
find that there appears to be a monotonic trend, at least in the range
covered by our models. A similar effect shows up in the behaviour
of the central density. For small values of Km the magnetic tension
tends to compress the matter in the core, increasing its density.
However as soon as the magnetic field becomes strong enough to
cause the outer layer of the star to expand, the central density begins
to drop (recall that the sequence is for a fixed baryonic mass). The
same comparison with KY08 in the m = 2 (FR12 present only the
m = 1 case) is shown in Fig. 3.

Following KY08 we have carried out a full sampling of the param-
eter space. In Fig. 4 we plot the gravitational mass M as a function
of the central density ρc both for sequences with a constant baryonic

mass M0 and a constant magnetic flux $. The first thing to notice
is that the maximum gravitational mass, at fixed magnetic flux $,
increases with $. Moreover for a given $ the model with the max-
imum gravitational mass have also the maximum rest mass. On the
other hand the minimum gravitational mass, at fixed rest mass M0,
decreases with M0. Similarly, for a given M0 the model with the
minimal gravitational mass have also the minimum magnetic flux.
The filled circles locate the maximum gravitational mass models in
the sequences of constant $. The global quantities related to these
configurations are summarized in Table 2.

Interestingly, while for the vast majority of our magnetized mod-
els the gravitational mass, for a given central density, is higher than
in the unmagnetized case, for small values of $ this is not true at
densities below ∼1.8 × 1015 g cm−3 for m = 1. This is a manifes-
tation of the same effect discussed above in relation to the trend of
the central density in Fig. 2. This effect was already present to a
lesser extent in KY08, but not discussed.

Our set of models allows us also to construct sequences char-
acterized by a constant magnetic field strength Bmax or a constant
deformation rate ē. It is evident that models with a higher cen-
tral density, which usually correspond to more compact stars, can
harbour a higher magnetic field with a smaller deformation.
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Figure 1. Meridional distribution and isocontours of the magnetic field strength B =
√

BφBφ (top) and of the baryonic density (bottom) for models with
baryonic mass M0 = 1.68 M⊙, maximum magnetic field strength Bmax = 6.134 × 1017 G, with magnetic index m = 1 (left) and m = 2 (right). Blue curves
represent the surface of the star. Other global quantities related to these configurations are listed in Table 1.

the latter results against KY08. The first thing to notice is that Bmax is
not a monotonic function of the magnetization constant Km. On the
contrary Bmax initially increases with Km, till it reaches a maximum
value, and then for higher values of Km it drops. This is due to the
expansion of the star. For small values of Km, the stellar radius is
marginally affected, and an increase in Km leads to a higher field.
However at higher values of Km the radius of the star is largely
inflated and a further increase in Km translates into an expansion of
the star, and a consequent reduction of the maximum internal field.
If "M, "Rcirc, or ē are plotted against the total magnetic energy, we
find that there appears to be a monotonic trend, at least in the range
covered by our models. A similar effect shows up in the behaviour
of the central density. For small values of Km the magnetic tension
tends to compress the matter in the core, increasing its density.
However as soon as the magnetic field becomes strong enough to
cause the outer layer of the star to expand, the central density begins
to drop (recall that the sequence is for a fixed baryonic mass). The
same comparison with KY08 in the m = 2 (FR12 present only the
m = 1 case) is shown in Fig. 3.

Following KY08 we have carried out a full sampling of the param-
eter space. In Fig. 4 we plot the gravitational mass M as a function
of the central density ρc both for sequences with a constant baryonic

mass M0 and a constant magnetic flux $. The first thing to notice
is that the maximum gravitational mass, at fixed magnetic flux $,
increases with $. Moreover for a given $ the model with the max-
imum gravitational mass have also the maximum rest mass. On the
other hand the minimum gravitational mass, at fixed rest mass M0,
decreases with M0. Similarly, for a given M0 the model with the
minimal gravitational mass have also the minimum magnetic flux.
The filled circles locate the maximum gravitational mass models in
the sequences of constant $. The global quantities related to these
configurations are summarized in Table 2.

Interestingly, while for the vast majority of our magnetized mod-
els the gravitational mass, for a given central density, is higher than
in the unmagnetized case, for small values of $ this is not true at
densities below ∼1.8 × 1015 g cm−3 for m = 1. This is a manifes-
tation of the same effect discussed above in relation to the trend of
the central density in Fig. 2. This effect was already present to a
lesser extent in KY08, but not discussed.

Our set of models allows us also to construct sequences char-
acterized by a constant magnetic field strength Bmax or a constant
deformation rate ē. It is evident that models with a higher cen-
tral density, which usually correspond to more compact stars, can
harbour a higher magnetic field with a smaller deformation.
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deformation ē and of the surface ellipticity es, can be generalized as:
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with the same values for dB, and sB. Now, since in the bilinear regime ē / 17H/M, Eq. 3.7
also implies that B17 = 1.3 ⇥ 102pmH/M.

Given the small residual e↵ect due to m, it is reasonable to conclude that the quadrupolar
and surface deformation gives only a direct indication of the magnetic energy content rather
than of the current distribution, at least in the case of purely toroidal magnetic fields.

3.5 Trends at di↵erent mass

This section focuses on how the results depend on the mass and/or compactness of the
NS. In general we found that the trends and scalings found in the previous sections, still
hold at di↵erent masses in stable branches of the mass density relation. Obviously at lower
gravitational mass (corresponding also to a lower compactness) the e↵ects of rotation and
magnetic field are enhanced.

For the deformation ratio ē, in the case of unmagnetized rotators, it is possible to reabsorb
the mass di↵erences in the term due to rotation by using as variable T/W, instead of ⌦2 or
T/M. We also found that the trend is linear in T/W almost all the way up to the fastest
rotators.

For the e↵ects of the magnetic field on ē, and eS , we find that they can be rescaled defining
e↵ective normalized (with respect to our fiducial model with M = 1.55M�) magnetic energy
ratio, and rotational coupling term, such that:
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This behavior was already found to hold in the linear regime, for di↵erent EoS at fixed mass
by Frieben and Rezzolla (2012). We prove here that it can be also generalized to the non
linear regime for di↵erent masses and magnetic field distributions. It is interesting to notice
that, while the rotational energy e↵ects scales as T/W, the magnetic e↵ects go as H/WM.
This might be related to the way mass stratification couples with rotation and magnetic field:
for a rigid rotator, the rotational stratification is independent of density and mass, while,
given the magnetic barotropic law Eq. 3.1, as mass and stratification change so does the
magnetic field distribution.
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Figure 1. Meridional distribution and isocontours of the magnetic field strength B =
√

BφBφ (top) and of the baryonic density (bottom) for models with
baryonic mass M0 = 1.68 M⊙, maximum magnetic field strength Bmax = 6.134 × 1017 G, with magnetic index m = 1 (left) and m = 2 (right). Blue curves
represent the surface of the star. Other global quantities related to these configurations are listed in Table 1.

the latter results against KY08. The first thing to notice is that Bmax is
not a monotonic function of the magnetization constant Km. On the
contrary Bmax initially increases with Km, till it reaches a maximum
value, and then for higher values of Km it drops. This is due to the
expansion of the star. For small values of Km, the stellar radius is
marginally affected, and an increase in Km leads to a higher field.
However at higher values of Km the radius of the star is largely
inflated and a further increase in Km translates into an expansion of
the star, and a consequent reduction of the maximum internal field.
If "M, "Rcirc, or ē are plotted against the total magnetic energy, we
find that there appears to be a monotonic trend, at least in the range
covered by our models. A similar effect shows up in the behaviour
of the central density. For small values of Km the magnetic tension
tends to compress the matter in the core, increasing its density.
However as soon as the magnetic field becomes strong enough to
cause the outer layer of the star to expand, the central density begins
to drop (recall that the sequence is for a fixed baryonic mass). The
same comparison with KY08 in the m = 2 (FR12 present only the
m = 1 case) is shown in Fig. 3.

Following KY08 we have carried out a full sampling of the param-
eter space. In Fig. 4 we plot the gravitational mass M as a function
of the central density ρc both for sequences with a constant baryonic

mass M0 and a constant magnetic flux $. The first thing to notice
is that the maximum gravitational mass, at fixed magnetic flux $,
increases with $. Moreover for a given $ the model with the max-
imum gravitational mass have also the maximum rest mass. On the
other hand the minimum gravitational mass, at fixed rest mass M0,
decreases with M0. Similarly, for a given M0 the model with the
minimal gravitational mass have also the minimum magnetic flux.
The filled circles locate the maximum gravitational mass models in
the sequences of constant $. The global quantities related to these
configurations are summarized in Table 2.

Interestingly, while for the vast majority of our magnetized mod-
els the gravitational mass, for a given central density, is higher than
in the unmagnetized case, for small values of $ this is not true at
densities below ∼1.8 × 1015 g cm−3 for m = 1. This is a manifes-
tation of the same effect discussed above in relation to the trend of
the central density in Fig. 2. This effect was already present to a
lesser extent in KY08, but not discussed.

Our set of models allows us also to construct sequences char-
acterized by a constant magnetic field strength Bmax or a constant
deformation rate ē. It is evident that models with a higher cen-
tral density, which usually correspond to more compact stars, can
harbour a higher magnetic field with a smaller deformation.
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3.
2

Figure 3.11: Deformation ratio ē with respect to the unmagnetized model in terms of the e↵ective magnetic
energy mass ratio [H/W]e↵ for configurations having gravitational mass 1.40 � 1.65 M� and
rotational frequency ⌦ = 0.0 � 3.05 ⇥ 103 s�1. The black dashed line represents Eq. 3.11.

Table 3.5: Mass dependency for the ē expansion coe�cients.

M d⌦ dB s⌦ sB

M� 10�1 10�3 10�1 10�3

1.40 4.2 17 6.0 4.8
1.45 3.8 14 5.1 4.1
1.50 3.4 12 4.6 3.6
1.55 3.0 9.5 3.8 2.6
1.60 2.6 7.4 3.5 2.2
1.65 2.2 5.5 3.1 1.5

We find that the following functional form:

ē ' 3.2
T
W

�����
B=0
+ F
✓h

1 + aē,e↵⌦
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with F (x) = �2.71x � 0.068(10x)3.2 (3.12)

fits the deformation ratio for all values of ⌦, H, M and m up to ē ' 1, with an error less than
5% as shown in Fig. 3.11.

In the bilinear regime, the coe�cients in Eq. 3.7 will of course be a function of mass, as
shown in Tab. 3.5, and one can immediately see that they show an almost linear trend with
M, and both d⌦ and dB decrease as M grows. Interestingly, the ratio d⌦/dB grows with M.

The bilinear relation can be generalized to di↵erent masses also by using the magnetic
and kinetic energy H and T , and recalling that for H,T ! 0 one has W ! Wo = const, we
obtain

ē ' Cē
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"
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H
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, (3.13)
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with the same values for dB, and sB. Now, since in the bilinear regime ē / 17H/M, Eq. 3.7
also implies that B17 = 1.3 ⇥ 102pmH/M.

Given the small residual e↵ect due to m, it is reasonable to conclude that the quadrupolar
and surface deformation gives only a direct indication of the magnetic energy content rather
than of the current distribution, at least in the case of purely toroidal magnetic fields.

3.5 Trends at di↵erent mass

This section focuses on how the results depend on the mass and/or compactness of the
NS. In general we found that the trends and scalings found in the previous sections, still
hold at di↵erent masses in stable branches of the mass density relation. Obviously at lower
gravitational mass (corresponding also to a lower compactness) the e↵ects of rotation and
magnetic field are enhanced.

For the deformation ratio ē, in the case of unmagnetized rotators, it is possible to reabsorb
the mass di↵erences in the term due to rotation by using as variable T/W, instead of ⌦2 or
T/M. We also found that the trend is linear in T/W almost all the way up to the fastest
rotators.

For the e↵ects of the magnetic field on ē, and eS , we find that they can be rescaled defining
e↵ective normalized (with respect to our fiducial model with M = 1.55M�) magnetic energy
ratio, and rotational coupling term, such that:
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This behavior was already found to hold in the linear regime, for di↵erent EoS at fixed mass
by Frieben and Rezzolla (2012). We prove here that it can be also generalized to the non
linear regime for di↵erent masses and magnetic field distributions. It is interesting to notice
that, while the rotational energy e↵ects scales as T/W, the magnetic e↵ects go as H/WM.
This might be related to the way mass stratification couples with rotation and magnetic field:
for a rigid rotator, the rotational stratification is independent of density and mass, while,
given the magnetic barotropic law Eq. 3.1, as mass and stratification change so does the
magnetic field distribution.
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deformation ē and of the surface ellipticity es, can be generalized as:

ē ' �dB

m
B2

17 + d⌦ ⌦2
ms, (3.7)

es ' � sB

m
B2

17 + s⌦ ⌦2
ms, (3.8)

with the same values for dB, and sB. Now, since in the bilinear regime ē / 17H/M, Eq. 3.7
also implies that B17 = 1.3 ⇥ 102pmH/M.

Given the small residual e↵ect due to m, it is reasonable to conclude that the quadrupolar
and surface deformation gives only a direct indication of the magnetic energy content rather
than of the current distribution, at least in the case of purely toroidal magnetic fields.

3.5 Trends at di↵erent mass
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T/M. We also found that the trend is linear in T/W almost all the way up to the fastest
rotators.

For the e↵ects of the magnetic field on ē, and eS , we find that they can be rescaled defining
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ratio, and rotational coupling term, such that:
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by Frieben and Rezzolla (2012). We prove here that it can be also generalized to the non
linear regime for di↵erent masses and magnetic field distributions. It is interesting to notice
that, while the rotational energy e↵ects scales as T/W, the magnetic e↵ects go as H/WM.
This might be related to the way mass stratification couples with rotation and magnetic field:
for a rigid rotator, the rotational stratification is independent of density and mass, while,
given the magnetic barotropic law Eq. 3.1, as mass and stratification change so does the
magnetic field distribution.
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3.
2

Figure 3.11: Deformation ratio ē with respect to the unmagnetized model in terms of the e↵ective magnetic
energy mass ratio [H/W]e↵ for configurations having gravitational mass 1.40 � 1.65 M� and
rotational frequency ⌦ = 0.0 � 3.05 ⇥ 103 s�1. The black dashed line represents Eq. 3.11.

Table 3.5: Mass dependency for the ē expansion coe�cients.

M d⌦ dB s⌦ sB

M� 10�1 10�3 10�1 10�3

1.40 4.2 17 6.0 4.8
1.45 3.8 14 5.1 4.1
1.50 3.4 12 4.6 3.6
1.55 3.0 9.5 3.8 2.6
1.60 2.6 7.4 3.5 2.2
1.65 2.2 5.5 3.1 1.5

We find that the following functional form:

ē ' 3.2
T
W

�����
B=0
+ F
✓h

1 + aē,e↵⌦
2
ms

i H
W

�

e↵

◆
(3.11)

with F (x) = �2.71x � 0.068(10x)3.2 (3.12)

fits the deformation ratio for all values of ⌦, H, M and m up to ē ' 1, with an error less than
5% as shown in Fig. 3.11.

In the bilinear regime, the coe�cients in Eq. 3.7 will of course be a function of mass, as
shown in Tab. 3.5, and one can immediately see that they show an almost linear trend with
M, and both d⌦ and dB decrease as M grows. Interestingly, the ratio d⌦/dB grows with M.

The bilinear relation can be generalized to di↵erent masses also by using the magnetic
and kinetic energy H and T , and recalling that for H,T ! 0 one has W ! Wo = const, we
obtain

ē ' Cē
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"
T � 1.3

H
M/M�

#
, (3.13)

Global relation

Bilinear regime (H→0, T→0) 
Cē, Kes : EoS dependency 
W0 = W( H→0, T→0 ) 

@ M=1.4 MSun same deformation coefficients by Frieben & Rezzolla 2012
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Figure 5. Left panel: magnetic field surfaces (isocontours of Ãφ ) and distribution of the magnetic strength B =
√

BrBr + BθBθ . Right panel: baryonic
density distribution. The blue curves represent the surface of the star. The model is characterized by M0 = 1.68 M⊙, Bmax = 6.256 × 1017 G and magnetic
dipole moment µ = 2.18835 erg G−1.

that our operative definition of magnetic dipole moment is different
than the one given by BB95, which is valid only in the asymptoti-
cally flat limit, where magnetic field vanishes (see the discussion in
Appendix B). Given that BB95 solve in the correct quasi-isotropic
metric, the comparison is also a check on the accuracy of the CFC
approximation. It is evident that the CFC approximation gives re-
sults that are in excellent agreement with what is found in the correct
full GR regime.

In Fig. 5 we present a model with a purely poloidal field. The
model has been obtained in the simple case ξ = 0, where only
linear currents are present: Jφ = ρhkpol. The model has a rest mass
M0 = 1.680 M⊙, a maximum magnetic field Bmax = 6.256 × 1017G,
and a dipole moment µ = 2.188 × 1035 erg G−1.

In contrast to the toroidal case, for a purely poloidal magnetic
field the NS acquires an oblate shape. The magnetic field threads
the entire star, and reaches its maximum at the very centre. The
pressure support provided by the magnetic field leads to a flattening
of the density profile in the equatorial plane. It is possible, for
highly magnetized cases, to build equilibrium models where the
density has its maximum, not at the centre, but in a ring-like region
in the equatorial plane (see Fig. 6). Qualitatively, these effects are
analogous to those produced by rotation. Rotation leads to oblate
configurations, and for a very fast rotator, to doughnut-like density
distribution. The main difference, however, is that rotation acts
preferentially in the outer stellar layers, leaving the central core
unaffected in all but the most extreme cases. A poloidal magnetic
field instead acts preferentially in the core, where it peaks.

Another difference with respect to cases with a purely toroidal
field is the fact that the magnetic field extends smoothly outside
the NS surface. Surface currents are needed to confine it entirely
within the star. As a consequence, from an astrophysical point of
view, the dipole moment µ is a far more important parameter than
the magnetic flux %, because it is in principle an observable (it is
easily measured from spin-down).

Similarly to what was done in the case of a purely toroidal mag-
netic field, we have built an equilibrium sequence, in the simplest
case ξ = 0, at fixed baryonic mass M0 = 1.680 M⊙ (Fig. 7). Changes
in the various global quantities are shown as a function of the max-
imum magnetic field inside the star Bmax. The results in Fig. 7

Figure 6. Baryonic density distribution for an extremely deformed config-
uration with a toroidal-like shape. This configuration is characterized by a
baryonic rest mass M0 = 1.749 M⊙, a gravitational mass M = 1.661 M⊙, a
maximum field strength Bmax = 5.815 × 1017 G, a magnetic dipole moment
µ = 3.595 × 1035 erg G−1, a circumferential radius Rcirc = 19.33 km and a
mean deformation rate ē = 0.386.

show that the central density ρc decreases with Bmax while the
gravitational mass M, the circumferential radius Rcirc and the mean
deformation rate ē, which is now positive (oblateness), grow. As in
the toroidal case, for this sequence, there appears to be a maximum
value of magnetic field Bmax ≈ 6.25 × 1017 G. However, we have
not been able to build models with higher magnetization, and so
we cannot say if such value is reached asymptotically, or, as in the
toroidal case, increasing further the magnetization, leads to a re-
duction of the maximum field strength. The other main qualitative
difference with respect to the toroidal case is the trend of the cen-
tral density, which is now a monotonic function of the maximum
magnetic field. From a quantitative point of view we notice that the
central density is more affected by the magnetic field. In Fig. 8 we
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Figure 5. Left panel: magnetic field surfaces (isocontours of Ãφ ) and distribution of the magnetic strength B =
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BrBr + BθBθ . Right panel: baryonic
density distribution. The blue curves represent the surface of the star. The model is characterized by M0 = 1.68 M⊙, Bmax = 6.256 × 1017 G and magnetic
dipole moment µ = 2.18835 erg G−1.
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Appendix B). Given that BB95 solve in the correct quasi-isotropic
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approximation. It is evident that the CFC approximation gives re-
sults that are in excellent agreement with what is found in the correct
full GR regime.
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M0 = 1.680 M⊙, a maximum magnetic field Bmax = 6.256 × 1017G,
and a dipole moment µ = 2.188 × 1035 erg G−1.
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the entire star, and reaches its maximum at the very centre. The
pressure support provided by the magnetic field leads to a flattening
of the density profile in the equatorial plane. It is possible, for
highly magnetized cases, to build equilibrium models where the
density has its maximum, not at the centre, but in a ring-like region
in the equatorial plane (see Fig. 6). Qualitatively, these effects are
analogous to those produced by rotation. Rotation leads to oblate
configurations, and for a very fast rotator, to doughnut-like density
distribution. The main difference, however, is that rotation acts
preferentially in the outer stellar layers, leaving the central core
unaffected in all but the most extreme cases. A poloidal magnetic
field instead acts preferentially in the core, where it peaks.
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field is the fact that the magnetic field extends smoothly outside
the NS surface. Surface currents are needed to confine it entirely
within the star. As a consequence, from an astrophysical point of
view, the dipole moment µ is a far more important parameter than
the magnetic flux %, because it is in principle an observable (it is
easily measured from spin-down).

Similarly to what was done in the case of a purely toroidal mag-
netic field, we have built an equilibrium sequence, in the simplest
case ξ = 0, at fixed baryonic mass M0 = 1.680 M⊙ (Fig. 7). Changes
in the various global quantities are shown as a function of the max-
imum magnetic field inside the star Bmax. The results in Fig. 7
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baryonic rest mass M0 = 1.749 M⊙, a gravitational mass M = 1.661 M⊙, a
maximum field strength Bmax = 5.815 × 1017 G, a magnetic dipole moment
µ = 3.595 × 1035 erg G−1, a circumferential radius Rcirc = 19.33 km and a
mean deformation rate ē = 0.386.

show that the central density ρc decreases with Bmax while the
gravitational mass M, the circumferential radius Rcirc and the mean
deformation rate ē, which is now positive (oblateness), grow. As in
the toroidal case, for this sequence, there appears to be a maximum
value of magnetic field Bmax ≈ 6.25 × 1017 G. However, we have
not been able to build models with higher magnetization, and so
we cannot say if such value is reached asymptotically, or, as in the
toroidal case, increasing further the magnetization, leads to a re-
duction of the maximum field strength. The other main qualitative
difference with respect to the toroidal case is the trend of the cen-
tral density, which is now a monotonic function of the maximum
magnetic field. From a quantitative point of view we notice that the
central density is more affected by the magnetic field. In Fig. 8 we

MNRAS 439, 3541–3563 (2014)

 at IN
A

F A
rcetri Firenze (O

sservatorio A
strofisico di A

rcetri Firenze) on June 8, 2015
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

Pili et al. 2014Adding rotation: 
• Inside the star : Φ = -ΩΨ + C   C sets the global electric charge
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Figure 4.16: Top rows: surface charge density, parallel component |Lk| and perpendicular component |L?|
of the surface Lorentz force as a function of the colatitude (parallel and perpendicular refer
to the direction of the magnetic field). Bottom row: vector plots of the surface electric field
Eî, of the Lorentz force Lî and its perpendicular and parallel component. Numerical values
are normalized to �GJ = EGJ = ⌦Bpolerp and LGJ = ⇢GJEGJ (corresponding respectively to
�GJ = 9.5 ⇥ 1010statC cm�2, EGJ = 1.2 ⇥ 1012statVolt cm�1 and LGJ = 1.1 ⇥ 1023dyne ). Panels
on the left refer to the uncharged equilibrium configuration while panels on the right refer to the
configuration with vanishing polar electric field.
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Figure 4.16: Top rows: surface charge density, parallel component |Lk| and perpendicular component |L?|
of the surface Lorentz force as a function of the colatitude (parallel and perpendicular refer
to the direction of the magnetic field). Bottom row: vector plots of the surface electric field
Eî, of the Lorentz force Lî and its perpendicular and parallel component. Numerical values
are normalized to �GJ = EGJ = ⌦Bpolerp and LGJ = ⇢GJEGJ (corresponding respectively to
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on the left refer to the uncharged equilibrium configuration while panels on the right refer to the
configuration with vanishing polar electric field.
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convenience, we restrict our investigation in the weak magnetization and slow rotation limit
assuming, for our fiducial model with M = 1.55M� (see Sec. 2.8) a polar magnetic field
Bpole ⇠ 1014 G, and a rotation frequency ⌦ = 2 ⇥ 102s�1.

Let us begin, discussing the left panel of Fig. 4.15 where we show the electric field
distribution for a globally uncharged star. The external electric field peaks at the pole, in
the so called polar cap, i.e. the region of magnetic field lines potentially extending at radii
beyond the Light Cylinder. This electric field is capable of lifting charges from the stellar
surface in the magnetosphere and beyond.

In the right panel of Fig. 4.16 we show the electric field distribution for a star where
the external electric field vanishes at the poles. The star is endowed with a non vanishing
net electric charge which, in this case, corresponds to Qe = 3 ⇥ 1024statC, still far below
the critical value ⇠ 1029statC (i.e. ⇠ 0.1

p
GM0 in cgs units) capable to induce substantial

e↵ects in the stellar structure (Ghezzi 2005). The electric field peaks at the stellar equator,
where it is about a factor ⇠ 2 stronger than the internal one. This star while unable to extract
charges from the polar cap, can pull them from the ISM.

We have also analyzed the energetics of the electrosphere: the configuration that mini-
mize the electromagnetic energy of the system is the uncharged one. This is in contrast with
the results obtained in Ru�ni and Treves (1973), where the minimum energy configuration
has a negative net charge. In that work however, the structure of the magnetic field was
chosen to depend on the specific value of the electric charge.

In either case, the electric field has a discontinuous normal component at the surface,
corresponding to a surface charge given by:

�e = Er
out � Er

in, (4.5)

and shown in Fig. 4.16 normalized to the Goldreich-Julian value �GJ = ⌦Bpolerp = 9.5 ⇥
1010statC cm�2. Notice that the sign of the surface charge, as well as the sign of the electric
field, depends on the relative orientation of the magnetic dipole moment and the angular
momentum. As a result the sign of the Lorenz force acting on such surface charge does not.
Our results are shown for the aligned case.

In Fig. 4.16 we also plot the orthogonal and parallel component (with respect to the
magnetic field) of the Lorentz force acting on the surface charge density given by Li =

�eEi. It is possible to see that inside the star the MHD condition guarantees that the parallel
component of the Lorentz force vanishes.

In the uncharged configurations the charge surface density is maximal at the pole. The
Lorentz force with respect to the internal electric field vanishes on the rotation axis, reaches
its maximum strength at latitude ⇠ ±50 deg and points always toward the equator, remain-
ing mainly tangential to the stellar surface. The Lorentz force with respect to the external
electric field instead is mainly parallel to the magnetic field in the polar region, and becomes
mainly orthogonal in the equatorial region where it points inward. In the case of a negative
surface charge, (an electron excess if angular momentum and dipole moment are aligned),

Crust bending due 
to the Lorentz force

fr  fθ    component of Lorentz force 
Δρ g  buoyancy  
σ       related to Young modulus EY

ρ=1011g/cm2, EYoung=1028erg cm-3 
• Δes~10-9  << 8x10-6 

• Δē~ 10-11 << 1x10-5
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glected in deriving the integrability conditions, where we only considered distributed forces.
Moreover the solution is not unique but depends on the arbitrary constant of integration C in
Eq. 2.89, which regulates the global net charge of the NS.

2.6 Choices for the currents function

The morphology of the magnetic field is controlled by the form of the free functionsM
and I. As discussed in the previous section the magnetization functionM is associated with
the Lorentz force appearing in the Euler equation, Eq. 2.84. The current function I, instead,
is related only to the toroidal component of the magnetic field.

If the magnetic field has a poloidal component then  , 0 andM can be expressed as a
function of the magnetic potential  alone because of the orthogonality relation fL ·B = 0. A
common choice is to expressM as the sum of a linear function of  plus a non-linear term
(Bocquet et al. 1995, Ciolfi et al. 2009, Lander and Jones 2009), namely

M( ) = kpol 
✓
1 +

⇠

⌫ + 1
 ⌫
◆

(2.100)

where kpol is the so-called poloidal magnetization constant, ⇠ is the non-linear magnetization
constant and ⌫ is the poloidal magnetization index of the non linear term. The functional
form for I is instead chosen as

I( ) =
a
⇣ + 1

⇥[ �  max]( �  max)⇣+1, (2.101)

where ⇥[.] is the Heaviside function,  max is the maximum value the � component of the
vector potential reaches on the stellar surface or at a certain distance from the stellar surface,
a is the twisted torus magnetization constant and ⇣ is the twisted torus magnetization index.
This functional form allows one to limit the domain of the toroidal magnetic field. The value
of  max fixes the last magnetic surface bonding the region where the toroidal magnetic field
is confined. For example choosing  max as the maximum value of  at the surface, allows
one to confine the toroidal magnetic field all within the star, obtaining TT configurations.
On the other hand one can select di↵erent prescriptions for  max that allow twisted magne-
topsheres, where the toroidal field exists also outside the star. These choices are again quite
usual in literature (Ciolfi et al. 2009, Lander and Jones 2009, Glampedakis et al. 2014b, Fu-
jisawa et al. 2013, Fujisawa and Kisaka 2014, Uryū et al. 2014). Alternative formulation of
Eqs. 2.100-2.101 will be discussed in Chapter 4 and 5.

In the case of a purely toroidal field, most of the formalism leading to the Grad-Shafranov
equation does not apply, since  = 0 and we cannot define the usual free functions on
magnetic surfaces. However, since Eq. 2.84 is still valid, we can look for a scalar function
M (though no longer a function of  ) such that Li = ⇢h@iM. Then, using Eq. 2.93 with

kpol - magnetisation

 𝝂    - magnetisation index

 𝛏    - non-linear current 

I = 0

Bilinear regime B ≲ 2x1017G ( μ ≲ 2x1034erg/G ), Ω ≲ 3x103s-1 
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Figure 4.18: Variation of the deformation rate ē with respect to the unmagnetized rotating reference config-
uration as a function of the magnetic to binding energy ratio along sequences with fixed mass
M = 1.55M�.

as for the toroidal field case. In particular Eqs. 3.2 and 3.3 are still valid with aē = �0.15
and bē = 0.27 respectively, in the range ⌦ . 3 ⇥ 103s�1 and T/M . 5 ⇥ 10�3 as shown
in Fig. 4.18. With respect to the toroidal case, the sign of bē changes from negative to
positive, while the sign of aē remains the same. Therefore, if parametrized in terms of H/W
the rotation coupling term acts to reduce the deformation of the star. This because at given
H/W, the configurations with slower rotation, have larger magnetic energy H resulting in
a more evident deformation. We stress here that H, which now includes also the electric
energy that contributes at most within few percent on the total energy even for the fastest
rotator, is not entirely confined inside the star as in the toroidal field case. Indeed ⇠ 25% of
the total energy is located outside the star.

In the range Bmax . 3⇥1017G and⌦ . 4⇥103s�1 (corresponding to H/W . 3.5⇥10�2 and
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rate ē is approximated with an accuracy . 10% by the relation
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where dB ' 5.4 ⇥ 10�3 and d⌦ ' 0.3. Analogously, for the surface ellipticity we find:

es = s⌦ ⌦ms + sB B2
17 (4.9)

with sB ' 5 ⇥ 10�3 and s⌦ ' 0.4.

These scaling laws can be also given in term of the magnetic dipole moment µ that, in
contrast with Bmax, is a measurable quantity. We obtain, in the same range as before, that:

ē = d⌦ ⌦2
ms + dµ µ2

35 (4.10)
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Figure 4.18: Variation of the deformation rate ē with respect to the unmagnetized rotating reference config-
uration as a function of the magnetic to binding energy ratio along sequences with fixed mass
M = 1.55M�.
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and bē = 0.27 respectively, in the range ⌦ . 3 ⇥ 103s�1 and T/M . 5 ⇥ 10�3 as shown
in Fig. 4.18. With respect to the toroidal case, the sign of bē changes from negative to
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Figure 1. Purely poloidal field case. Strength of the azimuthal current in units of 1019G s�1 (left half of each panel) and strength of the poloidal magnetic field
in units 1014 G (right half of each panel). White contours represent magnetic field surfaces (isocontours of A�). The left column represents cases with ⌫ = 1,
the central one those with ⌫ = 4, the right one those with ⌫ = 10. From top to bottom, rows represent cases with ⇠ = �0.5,�0.9,�1.0. The thick green line is
the stellar surface. In all cases the surface magnetic field at the pole is 1014 G.

not increase one without increasing the other. The systems seems
always to self-regulates, with a maximum allowed current, imply-
ing a maximum allowed toroidal magnetic energy. The value of ⇣
a↵ects the local value and distribution of the magnetic field, but
does not play a relevant role for integrated quantities, like currents
and magnetic energy. Indeed by looking at Fig. 5, and Fig. 6, it
is evident that, for ⇣ < 0 it is not possible to have configurations
where the maximum strength of the toroidal field exceeds the one
of the poloidal field. For smaller ⇣ the same toroidal magnetic field
energy, corresponds in general to weaker toroidal magnetic fields.
For ⇣ > 0 instead we could reach configurations with a toroidal
field stronger than the poloidal one. Interestingly the volume of the

torus, for configurations where the ratio Htor/H is maximal, does
not depend on ⇣.

One can also look at the magnetic field distribution on the
surface of the star. Given our previous results for purely poloidal
configurations with nonlinear current terms, we expect strong devi-
ations from the standard dipole, where the strength of the magnetic
field at the pole is twice the one at the equator. In Fig. 6 we show the
total strength of the magnetic field at the surface (where the field is
purely poloidal), for configurations where the ratioHtor/H is max-
imal. The presence of a current torus, just underneath the surface, is
evident in the peak of the field strength at the equator. The peak is
even narrower than what was found for purely poloidal cases with
⇠ = 10, and the strength of the equatorial field can be more than
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Figure 1. Purely poloidal field case. Strength of the azimuthal current in units of 1019G s�1 (left half of each panel) and strength of the poloidal magnetic field
in units 1014 G (right half of each panel). White contours represent magnetic field surfaces (isocontours of A�). The left column represents cases with ⌫ = 1,
the central one those with ⌫ = 4, the right one those with ⌫ = 10. From top to bottom, rows represent cases with ⇠ = �0.5,�0.9,�0.98,�1.0. The thick green
line is the stellar surface. In all cases the surface magnetic field at the pole is 1014 G.
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Figure 2. Purely poloidal field case. Strength of the azimuthal current in units of 1019G s�1 (left half of each panel) and strength of the poloidal magnetic field
in units 1014 G (right half of each panel). White contours represent magnetic field surfaces (isocontours of A�). The left column represents cases with ⌫ = 1,
the central one those with ⌫ = 4, the right one those with ⌫ = 10. From top to bottom, rows represent cases with ⇠ = 2.0, 10.0, 200.0. The thick green line is
the stellar surface. In all cases the surface magnetic field at the pole is 1014 G.

twice the polar one. Again, there is little di↵erence among cases
with di↵erent ⇣. Higher values of ⇣ correspond to currents that are
more concentrated around the neutral line, located at ⇠ 0.85RNS,
and as such buried deeper within the star. Indeed the strength of the
magnetic field at the equator with respect to the value at the pole,
is higher for smaller ⇣.

3.3 Twisted Ring Configurations

In the previous section we have shown that in the case of TT geom-
etry it is not possible to reach toroidally dominated configurations.
This result is also independent on the particular shape of the current
distribution I. The system always self-regulates. As was pointed

out by Ciolfi & Rezzolla (2013) this is due to the one to one cor-
respondence between integrated quantities, like the net current and
magnetic field energy. Motivated by this, we can look for di↵erent
forms for the equation I that allow a larger toroidal field, with a
smaller net integrated current. The current given by Eq. (13) has
always the same sign, and as shown, acts as an additive term. On
the other hand, the current associated to Eq. (14) changes its sign
within the toroidal region where it is defined. The field in this case
has a geometry reminiscent of a Twisted Ring TR: its strength van-
ishes on the neutral line, where also the poloidal field goes to zero,
and reaches a maximum in a shell around it. This can be clearly
seen in Fig. 7. The net integrated currents in this case, is much less
than in the case of Eq. (13), and it is globally subtractive.
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reabsorbed with a parametrisation in terms of H/W (or equivalently H/M) with an accuracy
of ⇠ 5%, using an e↵ective energy ratio

ē ' F
✓
[1 + a⇠⇠]

H
W

◆
(4.12)

where a⇠ = �2.8 ⇥ 10�3. In the linear regime with Bmax . 2. ⇥ 1017 G, the parametrisation in
term of the magnetic field strength can be generalized as

ē = [1 + d⇠ ⇠] B2
17. (4.13)

with d⇠ = 4.1 ⇥ 10�3.

The di↵erence between the signs of a⇠ and d⇠ may appear contradictory. This discrepancy
is however only apparent since, for a fixed value of H/W, the configuration with ⇠ < 0 has a
larger value of Bmax than the configuration with ⇠ > 0. This is because subtractive currents
demagnetize to outer layer of the star and, in order to achieve higher value of H/W, one
has to increase the maximum strength of the magnetic field which in turn largely a↵ects
the core. This holds also in the fully saturated regime where, however, it is not possible
to find a simple parametrization of the current distribution e↵ects neither in term of energy
ratios or other global quantities such as the magnetic dipole moment. Interestingly however,
if parametrized in terms of H/W the deformation of the fully saturated regime ranges just
within a factor 2. This suggests that the morphology of the current distribution, rather than
its global magnetic energy content, may play a relevant role in a↵ecting the structure of the
star.

4.3.3 Dependency from the gravitational mass

As expected, also for a purely poloidal field, the e↵ect of magnetization and of rotation
depends on the compactness of the star. To generalize the trends found in the previous
sections, to di↵erent gravitational masses, we again make use of an e↵ective energy ratio:

 H
W

�

e↵
=

1.55M�
M

H
W
. (4.14)

By using this quantity the quadrupole deformation can be parametrized as in the Eq. 3.11,
where the coupling term is now given by

aē,e↵ = �
 
2.5 � 2.4

M
1.55M�

!
. (4.15)

and the functional form for F is

F (x) = 3.8x � 4.3x1.5. (4.16)
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Figure 14. Variation of the baryonic mass M0, central density ⇢c and deformation rate ē as a function of the magnetic dipole moment µ along equilibrium
configurations with fixed gravitational mass M = 1.55M�.

unity of 1035erg G�1). In Fig. 14 we show the variation of di↵erent
stellar quantities as functions of µ. Notice that, just as the magnetic
energy, µ is a monotonic function of the magnetization kpol. More-
over, in the case of �M0, a parametrization in terms of µ reduces
the non-linear coupling between rotation and magnetic field.

4.2.2 The e↵ects of the current distribution

The addition of non-linear current terms to the system can substan-
tially modify the structure of the magnetic field. In particular as
discussed in Bucciantini, Pili & Del Zanna (2015) and (Pili, Buc-
ciantini & Del Zanna 2014b) subtractive currents (⇠ < 0 in Eq. 43)
tend to concentrate the magnetic field toward the magnetic axis
causing a simultaneous demagnetization of the outer layers. Addi-
tive current terms (⇠ > 0), instead, act to concentrate the magnetic
field toward the stellar surface, causing also a global strengthening
of the magnetic field. As a result, at a given value of Bmax, the pres-
ence of additive current gives a larger deformation ē; the opposite
for subtractive ones.

An extensive investigation of the parameter space in the case
of rotating models, using di↵erent prescription for the current dis-
tribution, is however computationally expensive. The non-linear
current term substantially slows down the convergence of the
scheme even in the static case, where we have just to solve the
Grad-Shafranov equation. In order to get some handling on the ef-
fects of the current distribution on the deformation of the star, as we
have done in the toroidal field case, we have just analyzed the sim-
ple static case with ⌫ = 1, confident that in the bilinear regimes
magnetic and rotation e↵ects can be separated. Away from the
fully saturated regime discussed in Bucciantini, Pili & Del Zanna
(2015), in the range | ⇠ | . 30, we have found that the e↵ects of
the non-linear currents terms can be e↵ectively reabsorbed with a
parametrization in terms of H/W (or equivalently H/M) with an
accuracy of ⇠ 5%, using an e↵ective energy ratio

ē ' F
✓
[1 + a⇠⇠]

H
W

◆
(74)

where a⇠ = �2.8⇥10�3. In the linear regime with Bmax . 2.⇥1017 G,
the parametrisation in term of the magnetic field strength can be
generalized as

ē = [1 + d⇠ ⇠] dBB2
17, (75)

with d⇠ = 4.1 ⇥ 10�3.
The di↵erence between the signs of a⇠ and d⇠ may appear con-

tradictory. This discrepancy is however only apparent since, for a
fixed value of H/W, the configuration with ⇠ < 0 has a larger value

of Bmax than the configuration with ⇠ > 0. This is because subtrac-
tive currents demagnetize to outer layer of the star and, in order
to achieve higher value of H/W, one has to increase the maximum
strength of the magnetic field which in turn largely a↵ects the core.
This holds also in the the fully saturated regime where, however,
it is not possible to find a simple parametrization of the current
distribution e↵ects neither in term of energy ratios or other global
quantities such as the magnetic dipole moment. This suggests that
the morphology of the current distribution, rather than its global
magnetic energy content, may play a relevant role in a↵ecting the
structure of the star. Interestingly however, if parametrized in terms
of H/W the deformation of the fully saturated regime ranges just
within a factor 2.

4.2.3 Trends at di↵erent gravitational mass

As expected both the magnetic and rotation e↵ects depends on the
compactness of the star. To generalize the trends found in the pre-
vious sections we again make use of an e↵ective energy ratio:
 H
W

�

e↵
=

1.55M�
M

H
W
. (76)

By using this quantity the induced deformation can be parametrized
as in the Eq. 65, where the coupling term is now given by

aē,e↵ = �
 
2.5 � 2.4

M
1.55M�

!
. (77)

while the functional form for F is provided by

F (x) = 3.8x � 4.3x1.5. (78)

As shown in the left panel of Fig. 15, this parametrization is able to
describe the trends of the ē up to ⇠ 0.15 with an accuracy less than
5%. Notice that here, as in the toroidal field case, for a fixed value
of H/W the coupling term aē,e↵ reduces the absolute value of ē.

Interestingly a more accurate parametrization of ē can be ob-
tained including, as a parameter, the reciprocal of the circumferen-
tial radius in place of the gravitational mass. In particular we obtain
that, by using the relation

ē ' 3.2
T
W

�����
B=0
+ G

✓h
1 + cē,e↵⌦

2
ms

i H
W

R14

◆
, (79)

where R14 is the circumferential radius normalized to 14km, the
coupling therm is given by

cē,e↵ = �3.6 + 3.0
M

1.55M�
(80)
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reabsorbed with a parametrisation in terms of H/W (or equivalently H/M) with an accuracy
of ⇠ 5%, using an e↵ective energy ratio
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where a⇠ = �2.8 ⇥ 10�3. In the linear regime with Bmax . 2. ⇥ 1017 G, the parametrisation in
term of the magnetic field strength can be generalized as

ē = [1 + d⇠ ⇠] B2
17. (4.13)

with d⇠ = 4.1 ⇥ 10�3.

The di↵erence between the signs of a⇠ and d⇠ may appear contradictory. This discrepancy
is however only apparent since, for a fixed value of H/W, the configuration with ⇠ < 0 has a
larger value of Bmax than the configuration with ⇠ > 0. This is because subtractive currents
demagnetize to outer layer of the star and, in order to achieve higher value of H/W, one
has to increase the maximum strength of the magnetic field which in turn largely a↵ects
the core. This holds also in the fully saturated regime where, however, it is not possible
to find a simple parametrization of the current distribution e↵ects neither in term of energy
ratios or other global quantities such as the magnetic dipole moment. Interestingly however,
if parametrized in terms of H/W the deformation of the fully saturated regime ranges just
within a factor 2. This suggests that the morphology of the current distribution, rather than
its global magnetic energy content, may play a relevant role in a↵ecting the structure of the
star.

4.3.3 Dependency from the gravitational mass

As expected, also for a purely poloidal field, the e↵ect of magnetization and of rotation
depends on the compactness of the star. To generalize the trends found in the previous
sections, to di↵erent gravitational masses, we again make use of an e↵ective energy ratio:
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W

�

e↵
=

1.55M�
M

H
W
. (4.14)

By using this quantity the quadrupole deformation can be parametrized as in the Eq. 3.11,
where the coupling term is now given by

aē,e↵ = �
 
2.5 � 2.4
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. (4.15)

and the functional form for F is

F (x) = 3.8x � 4.3x1.5. (4.16)
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This parametrization is able to describe the trends of the quadrupole deformation with an
accuracy less than 5% up to ē ⇠ 0.15 as shown in the left panel of Fig. 4.20. Notice that
here, as in the toroidal field case, for a fixed value of H/W the coupling term aē,e↵ reduces
the absolute value of ē.
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Figure 4.20: Deformation ē with respect to the unmagnetized model as a function of the e↵ective mass energy
ratio H/W in the left panel or HRc/W (where Rc is normalized to 14 km) in the right panel for
configurations with mass between 1.40M� � 1.65M� and rotational frequency ⌦ = 0.0 � 3.05 ⇥
103s�1. The dashed black lines shows Eq. 4.16 and Eq. 4.19.

Interestingly a more accurate parametrization of ē can be obtained including, as a pa-
rameter, the reciprocal of the circumferential radius in place of the gravitational mass. In
particular we obtain that, by using the relation
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where R14 is the circumferential radius normalized to 14km, the coupling therm is given by

cē,e↵ = �3.6 + 3.0
M

1.55M�
(4.18)

and the functional form of G is
G = 4.8 x � 5.1 x1.3, (4.19)

we can fit with high accuracy the variation of ē for all the value of ⌦ and M even in the
strong magnetization regime as shown in Fig. 4.20.

Limited to the bilinear regime, the coe�cients appearing in the Eqs. 4.8-4.11 are listed
in Tab. 4.4 as a function of the gravitational mass. Interestingly the coe�cients dµ and sµ are
only weakly a↵ected by the specific value of the gravitational mass and they remain almost
constant within ⇠ 5%.

In the perturbative regime of H,T ! 0 the relation in Eq. 3.11, with Eq. 4.15 and
Eq. 4.16, gives:

ē =
Cē

W0

"
T + 1.8

H
M/M�

#
, (4.20)

Global relation
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is however only apparent since, for a fixed value of H/W, the configuration with ⇠ < 0 has a
larger value of Bmax than the configuration with ⇠ > 0. This is because subtractive currents
demagnetize to outer layer of the star and, in order to achieve higher value of H/W, one
has to increase the maximum strength of the magnetic field which in turn largely a↵ects the
core. This holds also in the the fully saturated regime where, however, it is not possible
to find a simple parametrization of the current distribution e↵ects neither in term of energy
ratios or other global quantities such as the magnetic dipole moment. Interestingly however,
if parametrized in terms of H/W the deformation of the fully saturated regime ranges just
within a factor 2. This suggests that the morphology of the current distribution, rather than
its global magnetic energy content, may play a relevant role in a↵ecting the structure of the
star.

4.3.3 Dependency from the gravitational mass

As expected, also for a purely poloidal field, the e↵ect of magnetization and of rotation
depends on the compactness of the star. To generalize the trends found in the previous
sections, to di↵erent gravitational masses, we again make use of an e↵ective energy ratio:
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1.55M�
M

H
W
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By using this quantity the quadrupole deformation can be parametrized as in the Eq. 3.11,
where the coupling term is now given by

aē,e↵ = �
 
2.5 � 2.4

M
1.55M�

!
. (4.15)

and the functional form for F is

F (x) = 3.8x � 4.3x1.5. (4.16)
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This parametrization is able to describe the trends of the quadrupole deformation with an
accuracy less than 5% up to ē ⇠ 0.15 as shown in the left panel of Fig. 4.20. Notice that
here, as in the toroidal field case, for a fixed value of H/W the coupling term aē,e↵ reduces
the absolute value of ē.
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Interestingly a more accurate parametrization of ē can be obtained including, as a pa-
rameter, the reciprocal of the circumferential radius in place of the gravitational mass. In
particular we obtain that, by using the relation

ē ' 3.2
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�����
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where R14 is the circumferential radius normalized to 14km, the coupling therm is given by

cē,e↵ = �3.6 + 3.0
M

1.55M�
(4.18)

and the functional form of G is
G = 4.8 x � 5.1 x1.3, (4.19)

we can fit with high accuracy the variation of ē for all the value of ⌦ and M even in the
strong magnetization regime as shown in Fig. 4.20.

Limited to the bilinear regime, the coe�cients appearing in the Eqs. 4.8-4.11 are listed
in Tab. 4.4 as a function of the gravitational mass. Interestingly the coe�cients dµ and sµ are
only weakly a↵ected by the specific value of the gravitational mass and they remain almost
constant within ⇠ 5%.

In the perturbative regime of H,T ! 0 the relation in Eq. 3.11, with Eq. 4.15 and
Eq. 4.16, gives:

ē =
Cē

W0

"
T + 1.8

H
M/M�

#
, (4.20)
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Figure 3. Purely poloidal field case. Magnetic field at the surface normalized to the value at the pole, for various values of ⇠. Left column represents cases
with ⌫ = 1, central column cases with ⌫ = 4 and right column cases with ⌫ = 10. Upper panels display the total strentgh of the poloidal magnetic field, middle
panles the strength of the parallel ✓ component, and lower panels the radial one.

acterized by a torus-like region, in the interior of the star, just under
the stellar surface, where the toroidal field is confined. This geom-
etry can be obtained if one chooses for the current function I the
form of Eq. (13). In Fig.4 we show the magnetic field distribution
for a typical TT solution.

Particular attention has been recently devoted to the study
of this kind of systems, because there is evidence that magnetic
field, in a fluid star, tends to relax toward a twisted torus geom-
etry, and that only mixed configurations can be dynamically sta-
ble (Braithwaite 2009; Braithwaite & Nordlund 2006; Braithwaite
& Spruit 2006). Motivated by these dynamical studies, e↵orts in
the past have gone toward modelling systems where the equilib-
rium magnetic geometry was such that the magnetic energy was
dominated by the toroidal component. Despite several attempts in
various regimes (Ciolfi et al. 2009; Lander & Jones 2009; Pili, Buc-
ciantini & Del Zanna 2014a), only configurations where the ener-
getics was dominated by the poloidal component could be found.
Recently Ciolfi & Rezzolla (2013) have shown that a very peculiar
current distribution might be required in order to obtain toroidally
dominated systems. This raises questions about the importance of
the specific choice in the form of currents I and M. More pre-
cisely one would like to know if previous failure to get toroidally
dominated geometries is due to a limited sample of the parameter
space, or if only very ad hoc choices for the current distribution
satisfy this requirement. Moreover most of the e↵orts have concen-
trated onto understanding how this magnetic field acts on the star,
and the amount of deformation that it induces. This is mostly mo-
tivated by searches for possible gravitational waves from neutron
stars. Attention has focused on a limited set of models, and current
distributions. In particular a deep investigation has been carried out
only for the case ⇣ = 0 and ⇣ = 0.1 (Lander & Jones 2009; Pili,
Bucciantini & Del Zanna 2014a).

Here we present a full investigation of TT configurations for
various values of the parameter ⇣. This parameter regulates the
shape of the current distribution inside the torus. For ⇣ ! �0.5 the
current becomes uniformly distributed within the torus, while for
⇣ > 0 it concentrates in the vicinity of the neutral line, where the
poloidal field vanishes. It was shown that it is the integrated current
associated with the current function I that prevents TT configura-
tions to reach the toroidal dominated regime. As the strength of this

Figure 4. Magnetic field for a twisted torus (TT) configuration with ⇣ = 0
and a = 1.5 (corresponding to the maximum of the ratioHtor/H). Strength
of the toroidal magnetic field (left), and poloidal magnetic field (right) nor-
malized to the surface value at the pole. White contours represent magnetic
field surfaces (isocontours of A�). The thick green line is the stellar surface.

current increases, the toroidal field rises, but the torus-like region
shrinks toward the surface of the star and its volume diminish.

In Fig. 5 we show how the ratio of magnetic energy associated
to the toroidal fieldHtor over the total magnetic energyH changes
with the parameter a and ⇣. The maximum value of this ratio is al-
ways of the order of 0.06, slightly higher for smaller values of ⇣.
In all cases we verified that at high values of a the volume of the
region containing the toroidal magnetic field is strongly reduced.
For ⇣ = 1 we could not find equilibrium models (solution of the
GS equation) all the way to the maximum (the algorithm failed

c� 0000 RAS, MNRAS 000, 000–000

Btor | Bpol

Higher  B-field ⇒smaller toroidal loop ⇒saturation of Htor/H ~0.1

a - TT magnetisation 
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Figure A.2: The strength of the poloidal (left) and toroidal (right) magnetic field at the equator for various
values of the parameter a (see Eq. 2.101).

is much higher: the ` = 3 term is only a factor ⇠ 10 (at peak) smaller than the dipole term,
and in general the ratio between two successive multipoles is only of the order of a few.

In the low magnetic field limit we have verified that in order to get converged solutions
of the GS equation, we need to extend our decomposition of the vector potential  into
spherical harmonic, in Eq. A.4, up to `max such that all the neglected multipoles have at least
an amplitude C`>`max/C1 < 10�5. Please note that, as said above, while the overall accuracy
of our models is ⇠ 10�3, the accuracy of elliptic solvers is 10�8. In fact, multipoles with
amplitude less than 10�7 times the leading dipole term are dominated by numerical noise
(see e.g. the behaviour of the C`=9 term in the left panel of Fig. A.1).

A.3 Accuracy of XCFC approximation

In this section we compare the results obtained with XNS with those of other codes
presented in the literature in order to provide not only a test of the performances of our code,
but also of the accuracy of the XCFC approximation.

A comparison between unmagnetized rotating equilibria is performed with reference to
the RNS code (Stergioulas and Friedman 1995), which solves for equilibrium configurations
of unmagnetized rotating NSs in the correct regime for the spacetime metric described by a
quasi-isotropic form, for which we recall that R ,  4r2 sin2 ✓. We have selected two classes
of models presented in Dimmelmeier et al. (2006), which are computed using a polytropic
EoS with Ka = 100 and n = 1 for di↵erent rotational rates: the AU models are charac-
terized by fixed baryonic mass M0 = 1.506M�; the BU models have fixed central density
⇢c = 1.280 ⇥ 10�3 (in geometrized unit). We have computed these models in XNS on top of
a computational grid defined in r = [0, 20] and ✓ = [0,⇡] with 250 points in the radial direc-
tion and 100 in the angular one, and with 10 harmonics. As shown in Tab. A.1, the results
obtained with the two codes agree within ⇠ 5 ⇥ 10�3 even for the BU9 model, which repre-
sents a configuration at the mass-shedding limit. In Fig. A.3 we compare in detail the models
BU8 obtained with XNS and RNS, in terms of the radial profiles of the baryon density and
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Trends of Bpol and Btor with a
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Figure 3. Purely poloidal field case. Magnetic field at the surface normalized to the value at the pole, for various values of ξ . Left-hand column represents
cases with ν = 1, central column cases with ν = 4, and right-hand column cases with ν = 10. Upper panels display the total strength of the poloidal magnetic
field, middle panels the strength of the parallel θ component, and lower panels the radial one.

Figure 4. Magnetic field for a TT configuration with ζ = 0 and a = 1.5
(corresponding to the maximum of the ratioHtor/H). Strength of the toroidal
magnetic field (left) and poloidal magnetic field (right) normalized to the
surface value at the pole. White contours represent magnetic field surfaces
(isocontours of Aφ ). The thick green line is the stellar surface. Axes refer to
a Cartesian frame centred on the origin and with the z-axis corresponding
to the symmetry axis.

2009; Lander & Jones 2009; Pili et al. 2014a), only configurations
where the energetics was dominated by the poloidal component
could be found. Recently Ciolfi & Rezzolla (2013, hereafter CR13)
have shown that a very peculiar current distribution might be re-
quired in order to obtain toroidally dominated systems. This raises
questions about the importance of the specific choice in the form
of currents I and M. More precisely one would like to know if
previous failure to get toroidally dominated geometries is due to
a limited sample of the parameter space, or if only very ad hoc
choices for the current distribution satisfy this requirement. More-
over most of the efforts have concentrated on to understanding how
this magnetic field acts on the star, and the amount of deformation

Figure 5. Value of the ratio Htor/H for TT sequences characterized
by different values for ζ as a function of a. The dashed lines corre-
spond to configurations where the ratio between the maximum strength
of the toroidal magnetic field, Bmax

tor , and the maximum strength of the
poloidal component, Bmax

pol , is constant. From bottom to top Bmax
tor /Bmax

pol =
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1.0, 1.25.

that it induces. This is mostly motivated by searches for possible
gravitational waves from NSs. Attention has focused on a limited
set of models, and current distributions. In particular a deep investi-
gation has been carried out only for the case ζ = 0 and 0.1 (Lander
& Jones 2009; Pili et al. 2014a).

Here we present a full investigation of TT configurations for vari-
ous values of the parameter ζ . This parameter regulates the shape of
the current distribution inside the torus. For ζ → −0.5 the current
becomes uniformly distributed within the torus, while for ζ > 0 it
concentrates in the vicinity of the neutral line, where the poloidal
field vanishes. It was shown that it is the integrated current associ-
ated with the current function I that prevents TT configurations to
reach the toroidal-dominated regime. As the strength of this current
increases, the toroidal field rises, but the torus-like region shrinks
towards the surface of the star and its volume diminishes.

In Fig. 5 we show how the ratio of magnetic energy associated
with the toroidal fieldHtor over the total magnetic energyH changes
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and poloidal component can be achieved.

5.1 Twisted Torus models: the e↵ects on the stellar struc-
ture

To generate mixed field configurations, we add to the current functionM, used in purely
poloidal models, i.e.

M( ) = kpol (1 + ⇠ ⌫), (5.1)

a current function I, with the following functional form:

I = a
⇣ + 1

⇥[ �  sur]( �  sur)⇣+1 (5.2)

where ⇥[.] is the Heaviside function and  sur is the maximum the magnetic potential  
reaches on the stellar surface. The above choice guarantees that the currents are all confined
within the star with components given by

Jr = ↵�1Bra⇥[ �  sur]( �  sur)⇣ , (5.3)

J✓ = ↵�1B✓a⇥[ �  sur]( �  sur)⇣ , (5.4)

J� = ⇢hkpol(1 + ⇠ ⌫) +
a2

(⇣ + 1)↵2R2⇥[ �  sur]( �  sur)2⇣+1. (5.5)

Let us start with the simplest case, assuming ⇠ = 0 and ⇣ = 0. Notice that the presence of
the current term linked to I is actually equivalent to the existence of an e↵ective non-linear
current term. In Fig. 5.1 we present a typical TT model, and in particular this configuration
corresponds to the one with the highest toroidal magnetic field among all our models. As
anticipated, the structure of the poloidal magnetic field closely resembles what was found
in the previous chapter, on purely poloidal models: it threads the entire star, reaches its
maximum value at the center, vanishing only in a ring-like region in the equatorial plane,
and crosses smoothly the stellar surface. The magnetic field outside the star is dominated by
its dipole component. The toroidal field distribution is reminiscent of purely toroidal field
cases with large m > 10: it does not fill completely the interior of the star, but it is confined
in a torus tangent to the stellar surface at the equator. It reaches its maximum exactly in the
ring-like region where the poloidal component vanishes. Of course this behaviour is related
to our choice of the poloidal current distribution, and to our requirement that they should be
confined within the star.

In the same Fig. 5.1 we also show the distribution of the baryonic density. It is evident that
the poloidal component of the magnetic field, which is also energetically dominant, is mostly
responsible for the deformation of the star in our TT configurations: the baryonic density
distribution in fact resembles closely what we obtained in the purely poloidal configurations,
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glected in deriving the integrability conditions, where we only considered distributed forces.
Moreover the solution is not unique but depends on the arbitrary constant of integration C in
Eq. 2.89, which regulates the global net charge of the NS.

2.6 Choices for the currents function

The morphology of the magnetic field is controlled by the form of the free functionsM
and I. As discussed in the previous section the magnetization functionM is associated with
the Lorentz force appearing in the Euler equation, Eq. 2.84. The current function I, instead,
is related only to the toroidal component of the magnetic field.

If the magnetic field has a poloidal component then  , 0 andM can be expressed as a
function of the magnetic potential  alone because of the orthogonality relation fL ·B = 0. A
common choice is to expressM as the sum of a linear function of  plus a non-linear term
(Bocquet et al. 1995, Ciolfi et al. 2009, Lander and Jones 2009), namely

M( ) = kpol 
✓
1 +

⇠

⌫ + 1
 ⌫
◆

(2.100)

where kpol is the so-called poloidal magnetization constant, ⇠ is the non-linear magnetization
constant and ⌫ is the poloidal magnetization index of the non linear term. The functional
form for I is instead chosen as

I( ) =
a
⇣ + 1

⇥[ �  max]( �  max)⇣+1, (2.101)

where ⇥[.] is the Heaviside function,  max is the maximum value the � component of the
vector potential reaches on the stellar surface or at a certain distance from the stellar surface,
a is the twisted torus magnetization constant and ⇣ is the twisted torus magnetization index.
This functional form allows one to limit the domain of the toroidal magnetic field. The value
of  max fixes the last magnetic surface bonding the region where the toroidal magnetic field
is confined. For example choosing  max as the maximum value of  at the surface, allows
one to confine the toroidal magnetic field all within the star, obtaining TT configurations.
On the other hand one can select di↵erent prescriptions for  max that allow twisted magne-
topsheres, where the toroidal field exists also outside the star. These choices are again quite
usual in literature (Ciolfi et al. 2009, Lander and Jones 2009, Glampedakis et al. 2014b, Fu-
jisawa et al. 2013, Fujisawa and Kisaka 2014, Uryū et al. 2014). Alternative formulation of
Eqs. 2.100-2.101 will be discussed in Chapter 4 and 5.

In the case of a purely toroidal field, most of the formalism leading to the Grad-Shafranov
equation does not apply, since  = 0 and we cannot define the usual free functions on
magnetic surfaces. However, since Eq. 2.84 is still valid, we can look for a scalar function
M (though no longer a function of  ) such that Li = ⇢h@iM. Then, using Eq. 2.93 with
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Figure 2. The optimal (matched–filtered) S/N for searches of the GW signal from newly formed magnetars in the Virgo cluster with Advanced LIGO/Virgo,
calculated through equation (25). Four different values of the initial spin (indicated in the figures) are considered and results are shown as contour levels (at the
values of S/N indicated on each line) in the Bd versus EB plane.

S0 ≃ 2.1 × 10−53 Hz−1 (Owen & Lindblom 2002; Cutler 2002
and references therein). Note that the designed sensitivity for Ad-
vanced Virgo is very similar, in this range of frequencies (Losurdo
2007), so that our calculations hold essentially for both detectors.
Frequency, f = ω/π for an orthogonal prolate rotator.

We re-address here this point to better qualify the role of the NS
ellipticity in the detectability of the signal. We also correct a (small)
numerical error in the calculated S/N curves in fig. 1 of Stella et al.
(2005), whose conclusions maintain their general validity. The S/N
of an optimal signal search is defined as

S/N = 2
[∫ |h̃(f )|2

Sh(f )

]1/2

. (21)

Here h̃(f ) is the Fourier transform of the instantaneous signal strain
h[f (t)] that, in the stationary phase approximation, is expressed as
(cf. Owen & Lindblom 2002 and references therein)

|h̃(f )|2 = 1
2
h2[f (t)]

∣∣∣∣
df

dt

∣∣∣∣
−1

, (22)

where the time derivative of f is obtained from equation (4), since
ḟ = ω̇/π . We adopt the expression for the strain amplitude –
averaged over source orientation – given by7 Ushomirsky, Cutler &
Bildsten (2000):

ha(f ) = 16
5

(
π 3

3

)1/2 GIϵB

Dc4 f 2, (23)

where D is the source distance. Further averaging over the detector
antenna pattern, equation (21) gives the optimal S/N ratio:

S/N =
√

2
5

[∫
h2(t)

Sh(f )df /dt

]1/2

= 4
5

√
πGI
6c3

π

DS1/2
0

(
KGW

Kd

)1/2
[

2 ln
fi

ff

− ln
a + f 2

i

a + f 2
f

]1/2

,

(24)

7 Comparing with the ‘optimally oriented’ strain amplitude h0 given by
Abbot et al. (2007), we obtain the relation ha = 4/(5

√
3π)h0.

where we have set a = Kd/(π 2KGW) = A/π 2. Substituting the
numerical values:

S/N ≈ 6
(

EB

1050 erg

) (
Bd

1014 G

)−1 (
R

12 km

) (
M

1.4 M⊙

)−1/2

×
(

D

20 Mpc

)−1
[

2 ln
fi

ff

− ln
a + f 2

i

a + f 2
f

]1/2

. (25)

In Fig. 2, we show the curves of constant S/N in the Bd versus EB

for selected values of the initial spin, as derived from equation (25).
More details are given in the caption. According to equation (24),
the maximum S/N is obtained in the limit a → 0, which depends
only on the initial spin energy of the NS and not on its oblateness.
Clearly, this value, [S/N]max, is attained as the magnetodipole spin-
down torque disappears, so that all of the initial spin energy of the
NS is lost to GWs. This can also be seen directly by substituting
the expression for the pure GW-driven spin-down in equation (24),
which gives

[S/N]max ≃ 4.5
(

D

20 Mpc

)−1 (
R

12 km

) (
M

1.4 M⊙

)1/2

×
[(

ff

kHz

)−2

−
(

fi

kHz

)−2
]1/2

. (26)

3.1 Quantifying the gravitational and electromagnetic
energy output

Thus far, we have discussed the conditions under which the hypoth-
esis that newly born magnetars be detectable sources of GWs with
next-generation detectors can be true. X-ray observations of SNRs
around magnetar candidates in the Galaxy give us clues on the ac-
tual viability of this hypothesis (cf. Section 1). In this section, we
show that our scenario is indeed fairly consistent with such obser-
vations. We find that, if magnetars at birth were detectable sources
of GWs from Virgo cluster distance, then SNRs around them would
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APPENDIX A: THE ‘SPI N-FLIP’ I NSTABILITY

This appendix provides a detailed discussion of the ‘spin-flip’ insta-
bility that could take place in systems like magnetically deformed
rotating neutron stars. Under the action of this instability, which
was first discovered by Mestel & Takhar (1972) and Jones (1976)
in their study of the oblique rotator dynamics, the stellar spin axis
tends to become orthogonal to that of the magnetic field on a vis-
cous time-scale. The more modern discussion of the instability in
the context of gravitational wave emission from rapidly spinning
neutron stars was initiated by Cutler (2002).

It is straightforward to demonstrate the existence of this instability
in a rotating and magnetic fluid body. Such a system will generically
find itself in a state of free precession when the spin vector ! is
misaligned with respect to the magnetic field’s symmetry axis. If χ

is the angle between these two directions, then the total rotational
kinetic energy takes the form (Cutler 2002):

Erot = J 2

2I0

(
1 − ϵ! − ϵB cos2 χ

)
, (A1)

where J is the (conserved) total angular momentum, I0 is the is the
moment of inertia of the spherical body (i.e. without rotation and
magnetic field) and

ϵ! = $I!

I0
, ϵB = $IB

I0
, (A2)

are dimensionless ellipticities produced by the centrifugal and mag-
netic forces, respectively.

The rotational deformation is always oblate in shape i.e. ϵ! >

0. On the other hand, ϵB can be positive (if the magnetic field
is predominantly poloidal with respect to its symmetry axis) or
negative (if the magnetic field is predominantly toroidal). In the
latter case, the shape of the magnetic deformation is prolate rather
than oblate.

It is evident from (A1) that a system with ϵB > 0 minimizes
its energy at χ = 0, i.e. when the body is an aligned rotator. In
the opposite case of a prolate body, ϵB < 0, the minimum energy
state is that of an orthogonal rotator, χ = π/2, the system thereby
acquiring the optimal geometry for gravitational wave emission.
Both minimum energy configurations are also no-precession states.

The spin-flip is a secular type of instability, driven by the coupling
to some dissipative mechanism. The exact nature of this mechanism
also determines the spin-flip’s characteristic time-scale which is a
key quantity of interest for this paper. This is discussed in the
remainder of this appendix.

A1 The spin-flip time-scale

For the hot post-merger remnants considered in this paper, the main
dissipative mechanism that could drive the spin-flip instability is
bulk viscosity associated with beta equilibrium chemical reactions
(the high temperature in such a systems implies a negligible shear
viscosity). It is also worth noting that energy lost to gravitational
waves cannot produce the desired effect as it always tends to make
the system an aligned rotator on a very long time-scale (Cutler &
Jones 2001).
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Figure 5. Value of the ratio Htor/H for TT sequences characterized
by di↵erent values for ⇣ as a function of a. The dashed lines corre-
spond to configurations where the ratio between the maximum strength
of the toroidal magnetic field Bmax

tor , and the maximum strength of the
poloidal component Bmax

pol is constant. From bottom to top Bmax
tor /B

max
pol =

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1.0, 1.25.

to converge). Given that, for Eq. (13), both the energy of toroidal
magnetic field and the associated current scale with I, one can-
not increase one without increasing the other. The systems seems
always to self-regulates, with a maximum allowed current, imply-
ing a maximum allowed toroidal magnetic energy. The value of ⇣
a↵ects the local value and distribution of the magnetic field, but
does not play a relevant role for integrated quantities, like currents
and magnetic energy. Indeed by looking at Fig. 5, and Fig. 6, it
is evident that, for ⇣ < 0 it is not possible to have configurations
where the maximum strength of the toroidal field exceeds the one
of the poloidal field. For smaller ⇣ the same toroidal magnetic field
energy, corresponds in general to weaker toroidal magnetic fields.
For ⇣ > 0 instead we could reach configurations with a toroidal
field stronger than the poloidal one. Interestingly the volume of the
torus, for configurations where the ratio Htor/H is maximal, does
not depend on ⇣.

One can also look at the magnetic field distribution on the
surface of the star. Given our previous results for purely poloidal
configurations with nonlinear current terms, we expect strong devi-
ations from the standard dipole, where the strength of the magnetic
field at the pole is twice the one at the equator. In Fig. 6 we show the
total strength of the magnetic field at the surface (where the field is
purely poloidal), for configurations where the ratioHtor/H is max-
imal. The presence of a current torus, just underneath the surface, is
evident in the peak of the field strength at the equator. The peak is
even narrower than what was found for purely poloidal cases with
⇠ = 10, and the strength of the equatorial field can be more than
twice the polar one. Again, there is little di↵erence among cases
with di↵erent ⇣. Higher values of ⇣ correspond to currents that are
more concentrated around the neutral line, located at ⇠ 0.85Rns,
and as such buried deeper within the star. Indeed the strength of the
magnetic field at the equator with respect to the value at the pole,
is higher for smaller ⇣.

Figure 7. Magnetic field for a twisted ring configuration with ⇣ = 0 and
a = 12.6 (corresponding to a ratio Bmax

tor /B
max
pol = 0.15 close to the maxi-

mum). Strentgh of the toroidal magnetic field (left) multplied times a factor
6 for convenience, and poloidal magnetic field (right) normalized to the
surface value at the pole. White contours represent magnetic field surfaces
(isocontours of A�). The thick green line is the stellar surface.

3.3 Twisted Ring Configurations

In the previous section we have shown that in the case of TT geom-
etry it is not possible to reach toroidally dominated configurations.
This result is also independent on the particular shape of the current
distribution I. The system always self-regulates. As was pointed
out by Ciolfi & Rezzolla (2013) this is due to the one to one cor-
respondence between integrated quantities, like the net current and
magnetic field energy. Motivated by this, we can look for di↵erent
forms for the equation I that allow a larger toroidal field, with a
smaller net integrated current. The current given by Eq. (13) has
always the same sign, and as shown, acts as an additive term. On
the other hand, the current associated to Eq. (14) changes its sign
within the toroidal region where it is defined. The field in this case
has a geometry reminiscent of a Twisted Ring (TR): its strength van-
ishes on the neutral line, where also the poloidal field goes to zero,
and reaches a maximum in a shell around it. This can be clearly
seen in Fig. 7. The net integrated currents in this case, is much less
than in the case of Eq. (13), and it is globally subtractive.

In Fig. 8 we show how the ratio of magnetic energy associated
to the toroidal fieldHtor over the total magnetic energyH changes
with the parameter a and ⇣. Again we find that it is not possible to
build models that are toroidally dominated. The maximum value of
the ratio Htor/H never exceeds 0.03 for all the values of ⇣ that we
have investigated. The reason now is exactly the opposite of the one
for TT configurations. The current of TR geometry, as anticipated,
is subtractive. It acts like the nonlinear terms in the purely poloidal
configurations with ⇠ < 0. Its e↵ect is to remove current from the
interior of the star. This means that in the region where I , 0,
the vector potential A� becomes shallower: the quantity [Amax

� �
Asur
� ] diminishes. However, the strength of the toroidal magnetic
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episodes in GRB 110709B. Episode 1 starts 40 s before the first
trigger time and lasts up to 60 s after it. It is well-fit by a black-
body (BB) plus power-law (PL) spectral model. It corresponds
to the trigger of the SN explosion of the compact core and its
accretion onto the NS companion. The BB temperature decays
with time following a broken PL (Ryde 2004). Episode 2 starts
35 s before the second trigger time and lasts up to 100 s after
it. It corresponds to the emission of the canonical GRB emit-
ted in the formation of a BH. Episode 3 starts at 800 s all the
way to 106 s. It consists of a standard X-ray emission identi-
fied in all systems following the IGC paradigm (Pisani et al., in
prep.). Episode 4 corresponds to the observation of the optical
SN emission, observable after Tobs = (1 + z)TSN. In the present
case, there is no evidence of an associated SN in the optical band.
An explanation for this is given by Zauderer et al. (2012), who
classified GRB 110709B as dark and stated that its optical emis-
sion may have been absorbed by the host galaxy and/or the in-
terstellar medium (ISM). The ensemble of these four episodes
characterize the IGC scenario.

As an outcome, at the endpoint of the IGC scenario, a binary
system represented by an NS (formed by the SN explosion) and
a BH (formed after the GRB explosion) should be expected.

As in the case of GRB 101023, we do not know the
cosmological redshift of GRB 110709B due to the lack of op-
tical data. Therefore, we infer it from phenomenological meth-
ods: 1) the Amati relation (Amati 2006), 2) the Yonetoku rela-
tion (Yonetoku 2004, 2010), 3) the work of Grupe et al. (2007),
and 4) the work by Penacchioni et al. (2012), Ruffini (2012),
and Pisani et al. (in prep.), which describe a scaling of the late
X-ray emission of GRB 090618. In the case of GRB 111228,
which we are currently analyzing, we find a striking coincidence
between the values of the cosmological redshift determined by
these methods for GRB 110709B.

In Sect. 2 we report the observations of the two components
of GRB 110709B by the different instruments, in space and on
the ground. In Sect. 3 we reduce the Swift data and perform a
detailed spectral analysis of both episodes 1 and 2. In Sect. 4 we
infer the redshift of the source using the four phenomenological
methods mentioned above. In Sect. 5 we determine the radius of
the emitting region from the knowledge of the redshift and the
BB flux of the first episode. In Sect. 6 we give a brief description
of the fireshell model and perform a deeper analysis of episode 2
within this model, reproducing the light curve and the spectrum
by a numerical simulation. In Sect. 7 we calculate the parame-
ters of the binary progenitor leading to the IGC of the NS to a
BH by the SN explosion. Details on the accretion rate onto the
NS, total accreted mass, SN ejecta density, NS mass, and binary
orbital period are obtained for selected values of the SN progen-
itor mass. In Sect. 8 we comment on the radio emission detected
by EVLA (Zauderer & Berger 2012). In Sect. 9 we present the
conclusions.

2. Observations of GRB 110709B

GRB 110709B has been detected by the Suzaku (Ohmori et al.
2011) and Swift (Cummings et al. 2011) satellites and by the
ground-based telescopes GROND (Updike et al. 2011) and
Gemini (Berger 2011).

The Burst Alert Telescope (BAT) onboard Swift was trig-
gered a first time at 21:32:39 UT (trigger N◦ = 456 967). The lo-
cation of this event is RA = 164.6552, Dec = –23.4550. The light
curve is composed of multiple peaks, with the whole emission
extending up to 60 s after the trigger (see Fig. 1). What is most
interesting is that there was another trigger point at 21:43:25 UT
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Fig. 1. BAT light curve of GRB 110709B, including the two trigger
times. Here we can appreciate the time separation (about 10 min) be-
tween the first and the second trigger. The light curve is in the (15–
150 keV) energy band. The time is relative to the first trigger time,
of 331 939 966 s (in MET seconds). The second trigger time was at
331 940 612 s in MET seconds.

(trigger N◦ = 456 969), ∼11 min after the first trigger time. The
onboard calculated location is RA = 164.647, Dec = –23.464.
This time Swift did not need to slew, because it was already
pointing to that position. This second emission shows a bump
that begins 100 s before the second trigger time and lasts around
50 s, followed by several overlapping peaks with a total duration
of about 40 s, and another isolated peak of 10 s of duration, 200 s
after the second trigger time. Figure 1 shows the complete BAT
light curve and Fig. 2 shows the light curve taken by the X-Ray
Telescope (XRT) in the 0.3–10 keV band.

There have been no detections in the optical band by Swift-
UVOT, which started to observe 70 s after the first BAT trig-
ger time (Holland 2011). The observations with GROND at the
La Silla Observatory (Updike et al. 2011) simultaneously in the
g′ r′ i′ z′ JHK, reveal two point sources within the 5”.3 XRT er-
ror circle reported by Cummings et al. (2011). They suggest that
one of them could be an afterglow candidate for GRB 110709B,
although it is very faint.

It has been suggested by Zauderer et al. (2012) that this
source is an “optically dark” GRB. The possible reasons for this
are 1) dust obscuration; 2) an intrinsically dim event; and/or
3) high redshift (optical emission suppressed by Lyα absorp-
tion at λobs ≤ 1216 Å (1 + z)). However, they rule out the pos-
sibility of a high-redshift event due to the association with an
optically detected host galaxy. Furthermore, they have inferred
the optical brightness of the afterglow according to the standard
afterglow synchrotron model (Granot & Sari 2002; Sari et al.
1999), and from the non-detection in the optical-near-infrared
(NIR) wavelengths they find a very high rest-frame extinction
for GRB 110709B. This can explain the lack of detections in the
optical band.

There have been detections in the radio band on several oc-
casions by EVLA (Zauderer & Berger 2012), revealing a single
unresolved radio source within the XRT error circle, which re-
brightened by a factor of 1.6 between 2.1 and 7 days after the
burst. The location of the source is RA = 10:58:37.114, Dec =
–23:27:16.760.

3. Data analysis

In the following we refer to the emission that lasted from 40 s
before the first BAT trigger time to 60 s after it as episode 1
(see Fig. 3). We call the emission lasting from 35 s before the
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glected in deriving the integrability conditions, where we only considered distributed forces.
Moreover the solution is not unique but depends on the arbitrary constant of integration C in
Eq. 2.89, which regulates the global net charge of the NS.

2.6 Choices for the currents function

The morphology of the magnetic field is controlled by the form of the free functionsM
and I. As discussed in the previous section the magnetization functionM is associated with
the Lorentz force appearing in the Euler equation, Eq. 2.84. The current function I, instead,
is related only to the toroidal component of the magnetic field.

If the magnetic field has a poloidal component then  , 0 andM can be expressed as a
function of the magnetic potential  alone because of the orthogonality relation fL ·B = 0. A
common choice is to expressM as the sum of a linear function of  plus a non-linear term
(Bocquet et al. 1995, Ciolfi et al. 2009, Lander and Jones 2009), namely

M( ) = kpol 
✓
1 +

⇠

⌫ + 1
 ⌫
◆

(2.100)

where kpol is the so-called poloidal magnetization constant, ⇠ is the non-linear magnetization
constant and ⌫ is the poloidal magnetization index of the non linear term. The functional
form for I is instead chosen as

I( ) =
a
⇣ + 1

⇥[ �  max]( �  max)⇣+1, (2.101)

where ⇥[.] is the Heaviside function,  max is the maximum value the � component of the
vector potential reaches on the stellar surface or at a certain distance from the stellar surface,
a is the twisted torus magnetization constant and ⇣ is the twisted torus magnetization index.
This functional form allows one to limit the domain of the toroidal magnetic field. The value
of  max fixes the last magnetic surface bonding the region where the toroidal magnetic field
is confined. For example choosing  max as the maximum value of  at the surface, allows
one to confine the toroidal magnetic field all within the star, obtaining TT configurations.
On the other hand one can select di↵erent prescriptions for  max that allow twisted magne-
topsheres, where the toroidal field exists also outside the star. These choices are again quite
usual in literature (Ciolfi et al. 2009, Lander and Jones 2009, Glampedakis et al. 2014b, Fu-
jisawa et al. 2013, Fujisawa and Kisaka 2014, Uryū et al. 2014). Alternative formulation of
Eqs. 2.100-2.101 will be discussed in Chapter 4 and 5.

In the case of a purely toroidal field, most of the formalism leading to the Grad-Shafranov
equation does not apply, since  = 0 and we cannot define the usual free functions on
magnetic surfaces. However, since Eq. 2.84 is still valid, we can look for a scalar function
M (though no longer a function of  ) such that Li = ⇢h@iM. Then, using Eq. 2.93 with

6 Twisted Magnetosphere models

The phenomenology and the spectral properties of SGRs and AXPs strongly support
the fact that magnetar magnetospheres are tightly twisted in the vicinity of the star. Previous
studies on equilibrium configurations have so far focused on either the internal or the external
magnetic field, without considering a real coupling between the two fields, apart from a few
very recent studies by Glampedakis et al. (2014), Fujisawa and Kisaka (2014), Ruiz et al.
(2014). Here, extending the TT models analyzed in the previous Chapter, we investigate
numerical equilibrium models of magnetized neutron stars endowed with a confined twisted
magnetosphere. Our approach is hence based on the solution of the relativistic GS equation
both in the interior and in the exterior of the compact object. A comprehensive study of the
parameters space is provided, to investigate the e↵ects of di↵erent current distributions on
the overall magnetic field structure. This Chapter is based on Pili et al. (2015).

6.1 Generalizing TT models

Known magnetars show dipole spin down magnetic field below a few 1015G. For this
reason, and in view of the results shown in Chap. 5 we will mainly consider models obtained
in the weak magnetization regime (i.e. H << M). The strong field regime will be briefly
discussed in Sec. 6.2 in order to investigate how the magnetospheric distribution of currents
acts on the stellar deformation. Moreover, given the slow rotation rate of magnetars, in the
range ⇠ 2 � 12s, we limit our study to static cases. Here ideal GRMHD is supposed to
hold not only in the interior of the star but also outside in the external magnetosphere, where
plasma inertia is certainly negligible (this actually corresponds to the so called force-free
regime, see again Sec. 2.5 for a detailed discussion).

We search for a solution of the GS equation (Eq. 2.125) allowing currents to flow outside
the star. This can be obtained generalizing the analytical form used for TT models to

I( ) =
a
⇣ + 1

⇥[ �  ext]
( �  ext)⇣+1

( max)⇣+1/2 , (6.1)

where, here,  ext is the maximum value the magnetic potential reaches at a distance r = �re
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Flares in GRBs & the Two families scenario

difficult to satisfy both with a unique EoS 
(including Δs, maximum mass ~ 1.5 M

• M~2.0 M   [Demorest 2010, Antoniadis 2016]     → stiff EoS	 
• R~10 km    [Guillot 2013, Özel 2016]                  → soft EoS 
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Figure 1: Competing structures and novel phases of subatomic matter predicted by theory
to make their appearance in the cores (R <∼ 8 km) of neutron stars [2].

transition to quark matter occurs. Neither do lattice Quantum Chromodynamical simulations provide
a conclusive guide yet. From simple geometrical considerations it follows that, for a characteristic
nucleon radius of rN ∼ 1 fm, nuclei begin to touch each other at densities of ∼ (4πr3

N/3)−1 ≃ 0.24 fm−3,
which is less than twice the baryon number density of ordinary nuclear matter, ρ0 = 0.16 fm−3 (energy
density ϵ0 = 140 MeV/fm3). Depending on rotational frequency and stellar mass, such densities are
easily surpassed in the cores of neutron stars so that gravity may have broken up the neutrons (n)
and protons (p) in the centers of neutron stars into their constituents. Moreover, since the mass of the
strange quark (s) is rather small, probably less than 100 MeV as indicated by the latest lattice results
[30], high-energetic up (u) and down (d) quarks may readily transform to strange quarks at about the
same density at which unconfined up and down quarks appear.

The phase diagram of quark matter, expected to be in a color superconducting phase, is very complex
[26, 27]. At asymptotic densities the ground state of QCD with a vanishing strange quark mass is the
color-flavor locked (CFL) phase. This phase is electrically charge neutral without any need for electrons
for a significant range of chemical potentials and strange quark masses [31]. (Technically, there are
no electrons only at zero temperature. At finite temperature the electron population is exponentially
(exp(−∆/T )) suppressed, where ∆ denotes the superconducting gap.) If the strange quark mass is heavy
enough to be ignored, then up and down quarks may pair in the two-flavor superconducting (2SC) phase.
Other possible condensation patterns include the CFL-K0 phase [32] and the color-spin locked (CSL)
phase [33]. The magnitude of the gap energy lies between ∼ 50 and 100 MeV. Color superconductivity,
which modifies the equation of state at the order (∆/µ)2 level [34, 35], thus changes the volume energy
by just a few percent. Such a small effect can be safely neglected in present determinations of models for
the equation of state of neutron star matter and strange star matter. This is different for phenomena
involving the cooling by neutrino emission, the pattern of the arrival times of supernova neutrinos,
the evolution of neutron star magnetic fields, rotational (r-mode) instabilities, and glitches in rotation
frequencies of pulsars (see Refs. [26, 27, 36, 37, 38, 39, 40] and references therein). Aside from neutron
star properties, an additional test of color superconductivity may be provided by upcoming cosmic ray

4

absolutely stable  
strange quark

u d s
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The Two Family Scenario: the Main Idea

Coexistence of  Hadron Stars (HS) with soft EoS (hyperons and Δs )   
                           Quark Star (QS) with stiff EoS (strange matter)

• conversion at a critical density ρc ~ 10ρ0   on a timescale of 10-100 s 
• neutrino luminosity ~1052-1050 erg/s  [Drago et al. 2015-2016]

Protomagnetar model for GRB

Difficult to explain late flare (~30 sources) 
• late mass accretion 
• magnetospheric instabilities 
• phase transition from NS to Quark Star

?
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episodes in GRB 110709B. Episode 1 starts 40 s before the first
trigger time and lasts up to 60 s after it. It is well-fit by a black-
body (BB) plus power-law (PL) spectral model. It corresponds
to the trigger of the SN explosion of the compact core and its
accretion onto the NS companion. The BB temperature decays
with time following a broken PL (Ryde 2004). Episode 2 starts
35 s before the second trigger time and lasts up to 100 s after
it. It corresponds to the emission of the canonical GRB emit-
ted in the formation of a BH. Episode 3 starts at 800 s all the
way to 106 s. It consists of a standard X-ray emission identi-
fied in all systems following the IGC paradigm (Pisani et al., in
prep.). Episode 4 corresponds to the observation of the optical
SN emission, observable after Tobs = (1 + z)TSN. In the present
case, there is no evidence of an associated SN in the optical band.
An explanation for this is given by Zauderer et al. (2012), who
classified GRB 110709B as dark and stated that its optical emis-
sion may have been absorbed by the host galaxy and/or the in-
terstellar medium (ISM). The ensemble of these four episodes
characterize the IGC scenario.

As an outcome, at the endpoint of the IGC scenario, a binary
system represented by an NS (formed by the SN explosion) and
a BH (formed after the GRB explosion) should be expected.

As in the case of GRB 101023, we do not know the
cosmological redshift of GRB 110709B due to the lack of op-
tical data. Therefore, we infer it from phenomenological meth-
ods: 1) the Amati relation (Amati 2006), 2) the Yonetoku rela-
tion (Yonetoku 2004, 2010), 3) the work of Grupe et al. (2007),
and 4) the work by Penacchioni et al. (2012), Ruffini (2012),
and Pisani et al. (in prep.), which describe a scaling of the late
X-ray emission of GRB 090618. In the case of GRB 111228,
which we are currently analyzing, we find a striking coincidence
between the values of the cosmological redshift determined by
these methods for GRB 110709B.

In Sect. 2 we report the observations of the two components
of GRB 110709B by the different instruments, in space and on
the ground. In Sect. 3 we reduce the Swift data and perform a
detailed spectral analysis of both episodes 1 and 2. In Sect. 4 we
infer the redshift of the source using the four phenomenological
methods mentioned above. In Sect. 5 we determine the radius of
the emitting region from the knowledge of the redshift and the
BB flux of the first episode. In Sect. 6 we give a brief description
of the fireshell model and perform a deeper analysis of episode 2
within this model, reproducing the light curve and the spectrum
by a numerical simulation. In Sect. 7 we calculate the parame-
ters of the binary progenitor leading to the IGC of the NS to a
BH by the SN explosion. Details on the accretion rate onto the
NS, total accreted mass, SN ejecta density, NS mass, and binary
orbital period are obtained for selected values of the SN progen-
itor mass. In Sect. 8 we comment on the radio emission detected
by EVLA (Zauderer & Berger 2012). In Sect. 9 we present the
conclusions.

2. Observations of GRB 110709B

GRB 110709B has been detected by the Suzaku (Ohmori et al.
2011) and Swift (Cummings et al. 2011) satellites and by the
ground-based telescopes GROND (Updike et al. 2011) and
Gemini (Berger 2011).

The Burst Alert Telescope (BAT) onboard Swift was trig-
gered a first time at 21:32:39 UT (trigger N◦ = 456 967). The lo-
cation of this event is RA = 164.6552, Dec = –23.4550. The light
curve is composed of multiple peaks, with the whole emission
extending up to 60 s after the trigger (see Fig. 1). What is most
interesting is that there was another trigger point at 21:43:25 UT
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Fig. 1. BAT light curve of GRB 110709B, including the two trigger
times. Here we can appreciate the time separation (about 10 min) be-
tween the first and the second trigger. The light curve is in the (15–
150 keV) energy band. The time is relative to the first trigger time,
of 331 939 966 s (in MET seconds). The second trigger time was at
331 940 612 s in MET seconds.

(trigger N◦ = 456 969), ∼11 min after the first trigger time. The
onboard calculated location is RA = 164.647, Dec = –23.464.
This time Swift did not need to slew, because it was already
pointing to that position. This second emission shows a bump
that begins 100 s before the second trigger time and lasts around
50 s, followed by several overlapping peaks with a total duration
of about 40 s, and another isolated peak of 10 s of duration, 200 s
after the second trigger time. Figure 1 shows the complete BAT
light curve and Fig. 2 shows the light curve taken by the X-Ray
Telescope (XRT) in the 0.3–10 keV band.

There have been no detections in the optical band by Swift-
UVOT, which started to observe 70 s after the first BAT trig-
ger time (Holland 2011). The observations with GROND at the
La Silla Observatory (Updike et al. 2011) simultaneously in the
g′ r′ i′ z′ JHK, reveal two point sources within the 5”.3 XRT er-
ror circle reported by Cummings et al. (2011). They suggest that
one of them could be an afterglow candidate for GRB 110709B,
although it is very faint.

It has been suggested by Zauderer et al. (2012) that this
source is an “optically dark” GRB. The possible reasons for this
are 1) dust obscuration; 2) an intrinsically dim event; and/or
3) high redshift (optical emission suppressed by Lyα absorp-
tion at λobs ≤ 1216 Å (1 + z)). However, they rule out the pos-
sibility of a high-redshift event due to the association with an
optically detected host galaxy. Furthermore, they have inferred
the optical brightness of the afterglow according to the standard
afterglow synchrotron model (Granot & Sari 2002; Sari et al.
1999), and from the non-detection in the optical-near-infrared
(NIR) wavelengths they find a very high rest-frame extinction
for GRB 110709B. This can explain the lack of detections in the
optical band.

There have been detections in the radio band on several oc-
casions by EVLA (Zauderer & Berger 2012), revealing a single
unresolved radio source within the XRT error circle, which re-
brightened by a factor of 1.6 between 2.1 and 7 days after the
burst. The location of the source is RA = 10:58:37.114, Dec =
–23:27:16.760.

3. Data analysis

In the following we refer to the emission that lasted from 40 s
before the first BAT trigger time to 60 s after it as episode 1
(see Fig. 3). We call the emission lasting from 35 s before the
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The resulting QS can also be a ‘rapid rotator” and 
power late type activity

For masse in the range of centrifugal support QD can 
be delayed tens to thousands of seconds

Quark deconfinement in the protomagnetar model of LGRB 3

On the other hand those HSs having M0 < M0(A) will never ex-
perience this transition1. Since for isolated CSs the baryonic mass
is a conserved quantity, only those HSs having baryonic mass be-
tween M0(A) and M0(B) can migrate into the QS branch when their
baryon central density rises to ⇢crit as a consequence of spin-down.
The yellow shaded region of figure 1 shows these configurations.
All the configurations having the same baryonic mass as A (for ex-
ample the 1 ms rotator configuration C) take an infinite time to de-
confine (deconfinement takes place at zero frequency). This same
region is also shown in the left panel of figure 2 in terms of central
baryon density ⇢c and gravitational mass M. Here blue lines are se-
quences of equilibria for given baryon mass and therefore they rep-
resent the evolutionary paths of HSs undergoing spin-down. Notice
that along these sequences the variation of the gravitational mass,
and hence of the total energy, is at most of the order of ⇠ 1%.

As soon as the central density reaches the critical value the
HS decays into a QS. For simplicity we assume that this transi-
tion is instantaneous and both the baryon number (baryonic mass)
and the angular momentum J are conserved. The red dashed line
in figure 1 and in the right panel of figure 2 maps upon the QS se-
quences the configurations which originate from quark deconfine-
ment of HSs. With reference to our limiting configurations, the HS
labeled with A migrates to the configuration Â with gravitational
mass M(Â) = 1.32M� , while the HS B migrates to the configura-
tion B̂ with M(B̂) = 1.44M�. In both cases the total energy released
in the transition is of the order of ⇠ 0.1M�.

Finally, after the formation, QSs can spin-down following the
evolutionary path of constant M0 showed in the right panel of fig-
ure 2. Detailed results are presented in table 1 where we list the
variation of the spin frequency � fd, of the gravitational mass �Md

and of the rotational kinetic energy �Kd (where K := 1
2 J⌦ ) during

the phase transition for a set of selected models. Since QSs have
larger radii and hence also a larger moment of inertia, conservation
of the angular momentum implies a drop in spin frequency. Inter-
estingly we found that the variation of the stellar radius is slightly
larger (⇠ 10% between cases A and B) at higher M0. Hence tran-
sitions at higher M0 are characterized by a bigger percent variation
of the spin frequency and of the rotational energy. �Kd only ac-
counts for the variation of the kinetic energy while the total change
of energy is given by the variation of the gravitational mass �Md

and it will produce a reheating of the star. In the range of interest,
�Md ' 1053 erg and �Kd ' 1051�52 erg. This significant amount of
energy released by quark deconfinement can be associated with a
late time activity as we will discuss in the following.

In the magnetar GRB model the spindown evolution is gov-
erned by magnetic torques. Therefore in order to evaluate the typi-
cal evolutionary timescales of our models we adopt, for simplicity,
the spin-down formula for an aligned dipole rotator:

dJ
dt
= �B2R6⌦3

4
, (1)

where B is the magnetic field strength at the pole and we assume
that the magnetic flux � = BR2 is constant during the evolution.
This choice gives only an upper limit to the timescale for decon-
finement: oblique rotators or mass loaded winds can have higher
torques (Metzger et al. 2011) that can lead to faster spin-down (up
to a factor 10) in the first tens of seconds. Furthermore we neglect

1 For simplicity, We are not considering here the process of nucleation of
quark matter (Bombaci et al. 2016). In a more realistic case the red lines
connecting the configurations A and B would transform in a strip whose
width is connected to the nucleation time

Table 1. Global quantities at the phase transition for the configurations la-
beled in figure 2: gravitational mass M and spin frequency f of the hadronic
configuration at deconfinement; di↵erence between the spin frequency � fd,
the gravitational mass �Md, and the rotational energy �Kd before and after
deconfinement.

Label M0 f � fd M �Md �Kd
[M�] [Hz] [Hz] [M�] [M�] [1052 erg]

A 1.666 0.00 0.00 1.452 0.132 0.00
B1 1.677 300 130 1.462 0.132 0.20
B2 1.687 400 177 1.470 0.133 0.35
B3 1.698 500 224 1.480 0.133 0.57
B4 1.733 700 317 1.520 0.136 1.18
B5 1.785 900 413 1.555 0.139 2.14
B 1.820 1000 462 1.585 0.142 2.80

Table 2. Spin-down timescales to quark deconfinement �tsd together with
the associated variation of the rotational kinetic energy �Ksd starting from
an initial spin period Pi for the equilibrium sequences shown in figure 3. We
also report the spin-down timescales �tq (defined as the time needed to half
the rotational frequency of the QS) and the corresponding rotational energy
loss �Kq after quark deconfinement. The initial magnetic field is of 1015 G.

M0 Pi ! Pd �tsd �Ksd �tq �Kq
[M�] [ms] [1052 erg] [1052erg]

1.666 1.0! 1 1 5.91 - -
1.677 1.0! 3.3 2.7 hr 5.48 37 hr 0.19

2.0! 3.3 1.8 hr 0.82
3.0! 3.3 37 min 0.13

1.687 1.0! 2.5 1.5 hr 5.13 21 hr 0.33
2.0! 2.5 36 min 0.46

1.698 1.0! 2.0 55 min 4.68 14 hr 0.53
1.733 1.0! 1.4 23 min 3.37 8.2 hr 1.20
1.785 1.0! 1.1 6 min 1.37 5.4 hr 1.95
1.820 1.0! 1.0 0 0 4.6 hr 2.41

the possibility of late time mass accretion (Bernardini et al. 2014)
because it introduces extra degree of freedom that cannot be easily
constrained. Moreover we also neglect gravitational waves emis-
sion which is relevant only if the star owns a very strong inter-
nal toroidal field larger than ⇠ 1016 G (Dall’Osso, Shore & Stella
2009). In the mass range of interest we have evaluated the spin-
down timescale up to deconfinement, which is shown in figure 3
and table 2, for each equilibrium sequence of constant M0 , assum-
ing an initial surface magnetic field B0 = 1015 G. Note that the
timescales scales with B�2

0 . Conservation of the magnetic flux �
is also assumed to hold during the phase transition. The resulting
magnetic field strength is of the order of 0.5B0 due to the change of
the stellar radius.

The time evolution of the spin frequency f and of the rota-
tional energy K is shown in figure 3 for the HS configurations la-
belled B1�B5. It is evident that HSs with higher mass have a shorter
lifetime before deconfinement, since they reach the critical density
at higher spin frequencies. In table 2 we list the time it takes to
deconfinement and the associated rotational spin down energy loss
�Ksd for di↵erent values for the initial spin-period.

3 DISCUSSION AND CONCLUSIONS

Let us consider now the phenomenological implications of our sce-
nario for the evolution of proto-magnetars. The variation of the ro-
tational energy �Ksd displayed in table 2 gives an estimate of the
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Figure 3. Time evolution of the spin-frequency (left panel) and of the rotational energy (right panel) for dipole magnetic field losses along sequences of
constant baryonic mass M0.

energy reservoir available to the HS before deconfinement which
occurs after a spin-down time scale �tsd which ranges from sev-
eral minutes to hours. Comparing �Ksd with the typical energetics
of the millisecond magnetar model for GRBs (figure 19 of Met-
zger et al. 2011) one notices that the values shown in table 2 are
compatible with the requirement for classical GRBs, being �Ksd

much larger than 1050�51 erg, i.e. the typical energy emitted in X-
rays and in �-ray during GRB events. We also remark that since
�tsd is much larger than the typical duration of the prompt phase of
LGRBs, deconfinement does not spoil the nice description of the
prompt emission of LGRBs within the proto-magnetar model.

However, as discussed before, also the HS to QS transition is
characterized by a huge release of energy (table 1) that in princi-
ple could manifest itself as a second transient. Hence the time to
deconfinement �td is indicative of the delay between the prompt
GRB emission due to the HS and the possible flare or second
prompt emission associated to quark deconfinement. Let us sum-

marize how the deconfinement process proceeds and how is the
energy released. As studied in Drago & Pagliara (2015a), decon-
finement can be described as a combustion process which can be
separated in two phases. The first phase is very rapid due to turbu-
lence and it converts the bulk of the star in a time scale of few ms
(Drago, Lavagno & Parenti 2007; Herzog & Ropke 2011). The sec-
ond phase is dominated by di↵usion of strangeness and it is there-
fore much slower, typically lasting a few tens of seconds (Drago
& Pagliara 2015a). The huge energy associated to deconfinement
is released via thermal neutrinos whose luminosity can similarly be
divided into an initial peak associated with the deconfinement of the
bulk of the star and a lower quasi-plateaux emission associated with
the burning of the external layer of the star. The interaction of neu-
trinos with the material of the crust of the star causes the ablation
of baryons which plays a crucial role in the proto-magnetar model
of GRBs. A distinctive feature of the formation of a quark star is
the rapid suppression of the baryonic flux once the conversion front
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On the other hand those HSs having M0 < M0(A) will never ex-
perience this transition1. Since for isolated CSs the baryonic mass
is a conserved quantity, only those HSs having baryonic mass be-
tween M0(A) and M0(B) can migrate into the QS branch when their
baryon central density rises to ⇢crit as a consequence of spin-down.
The yellow shaded region of figure 1 shows these configurations.
All the configurations having the same baryonic mass as A (for ex-
ample the 1 ms rotator configuration C) take an infinite time to de-
confine (deconfinement takes place at zero frequency). This same
region is also shown in the left panel of figure 2 in terms of central
baryon density ⇢c and gravitational mass M. Here blue lines are se-
quences of equilibria for given baryon mass and therefore they rep-
resent the evolutionary paths of HSs undergoing spin-down. Notice
that along these sequences the variation of the gravitational mass,
and hence of the total energy, is at most of the order of ⇠ 1%.

As soon as the central density reaches the critical value the
HS decays into a QS. For simplicity we assume that this transi-
tion is instantaneous and both the baryon number (baryonic mass)
and the angular momentum J are conserved. The red dashed line
in figure 1 and in the right panel of figure 2 maps upon the QS se-
quences the configurations which originate from quark deconfine-
ment of HSs. With reference to our limiting configurations, the HS
labeled with A migrates to the configuration Â with gravitational
mass M(Â) = 1.32M� , while the HS B migrates to the configura-
tion B̂ with M(B̂) = 1.44M�. In both cases the total energy released
in the transition is of the order of ⇠ 0.1M�.

Finally, after the formation, QSs can spin-down following the
evolutionary path of constant M0 showed in the right panel of fig-
ure 2. Detailed results are presented in table 1 where we list the
variation of the spin frequency � fd, of the gravitational mass �Md

and of the rotational kinetic energy �Kd (where K := 1
2 J⌦ ) during

the phase transition for a set of selected models. Since QSs have
larger radii and hence also a larger moment of inertia, conservation
of the angular momentum implies a drop in spin frequency. Inter-
estingly we found that the variation of the stellar radius is slightly
larger (⇠ 10% between cases A and B) at higher M0. Hence tran-
sitions at higher M0 are characterized by a bigger percent variation
of the spin frequency and of the rotational energy. �Kd only ac-
counts for the variation of the kinetic energy while the total change
of energy is given by the variation of the gravitational mass �Md

and it will produce a reheating of the star. In the range of interest,
�Md ' 1053 erg and �Kd ' 1051�52 erg. This significant amount of
energy released by quark deconfinement can be associated with a
late time activity as we will discuss in the following.

In the magnetar GRB model the spindown evolution is gov-
erned by magnetic torques. Therefore in order to evaluate the typi-
cal evolutionary timescales of our models we adopt, for simplicity,
the spin-down formula for an aligned dipole rotator:

dJ
dt
= �B2R6⌦3

4
, (1)

where B is the magnetic field strength at the pole and we assume
that the magnetic flux � = BR2 is constant during the evolution.
This choice gives only an upper limit to the timescale for decon-
finement: oblique rotators or mass loaded winds can have higher
torques (Metzger et al. 2011) that can lead to faster spin-down (up
to a factor 10) in the first tens of seconds. Furthermore we neglect

1 For simplicity, We are not considering here the process of nucleation of
quark matter (Bombaci et al. 2016). In a more realistic case the red lines
connecting the configurations A and B would transform in a strip whose
width is connected to the nucleation time

Table 1. Global quantities at the phase transition for the configurations la-
beled in figure 2: gravitational mass M and spin frequency f of the hadronic
configuration at deconfinement; di↵erence between the spin frequency � fd,
the gravitational mass �Md, and the rotational energy �Kd before and after
deconfinement.

Label M0 f � fd M �Md �Kd
[M�] [Hz] [Hz] [M�] [M�] [1052 erg]

A 1.666 0.00 0.00 1.452 0.132 0.00
B1 1.677 300 130 1.462 0.132 0.20
B2 1.687 400 177 1.470 0.133 0.35
B3 1.698 500 224 1.480 0.133 0.57
B4 1.733 700 317 1.520 0.136 1.18
B5 1.785 900 413 1.555 0.139 2.14
B 1.820 1000 462 1.585 0.142 2.80

Table 2. Spin-down timescales to quark deconfinement �tsd together with
the associated variation of the rotational kinetic energy �Ksd starting from
an initial spin period Pi for the equilibrium sequences shown in figure 3. We
also report the spin-down timescales �tq (defined as the time needed to half
the rotational frequency of the QS) and the corresponding rotational energy
loss �Kq after quark deconfinement. The initial magnetic field is of 1015 G.

M0 Pi ! Pd �tsd �Ksd �tq �Kq
[M�] [ms] [1052 erg] [1052erg]

1.666 1.0! 1 1 5.91 - -
1.677 1.0! 3.3 2.7 hr 5.48 37 hr 0.19

2.0! 3.3 1.8 hr 0.82
3.0! 3.3 37 min 0.13

1.687 1.0! 2.5 1.5 hr 5.13 21 hr 0.33
2.0! 2.5 36 min 0.46

1.698 1.0! 2.0 55 min 4.68 14 hr 0.53
1.733 1.0! 1.4 23 min 3.37 8.2 hr 1.20
1.785 1.0! 1.1 6 min 1.37 5.4 hr 1.95
1.820 1.0! 1.0 0 0 4.6 hr 2.41

the possibility of late time mass accretion (Bernardini et al. 2014)
because it introduces extra degree of freedom that cannot be easily
constrained. Moreover we also neglect gravitational waves emis-
sion which is relevant only if the star owns a very strong inter-
nal toroidal field larger than ⇠ 1016 G (Dall’Osso, Shore & Stella
2009). In the mass range of interest we have evaluated the spin-
down timescale up to deconfinement, which is shown in figure 3
and table 2, for each equilibrium sequence of constant M0 , assum-
ing an initial surface magnetic field B0 = 1015 G. Note that the
timescales scales with B�2

0 . Conservation of the magnetic flux �
is also assumed to hold during the phase transition. The resulting
magnetic field strength is of the order of 0.5B0 due to the change of
the stellar radius.

The time evolution of the spin frequency f and of the rota-
tional energy K is shown in figure 3 for the HS configurations la-
belled B1�B5. It is evident that HSs with higher mass have a shorter
lifetime before deconfinement, since they reach the critical density
at higher spin frequencies. In table 2 we list the time it takes to
deconfinement and the associated rotational spin down energy loss
�Ksd for di↵erent values for the initial spin-period.

3 DISCUSSION AND CONCLUSIONS

Let us consider now the phenomenological implications of our sce-
nario for the evolution of proto-magnetars. The variation of the ro-
tational energy �Ksd displayed in table 2 gives an estimate of the
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QD releases about 0.1Msun energy - the final QS as a 
radius ~ 305 larger than the original NS

Quasi-stationary spin-down evolution:

• spin down → conservation of baryonic mass M0

• quark deconfinement → conservation of M0  and angular momentum
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Figure 1. Gravitational mass against baryon central density for sequences of HSs (left panel) and QSs (right panel) with constant spin frequency. In both cases
the green solid lines represent the non-rotating sequences while the black solid lines are sequences rotating at the maximum spin frequency considered in
this work: 1000Hz for HSs and 600Hz for QSs. Dashed black lines are sequences with intermediate values of f while blue lines are equilibrium sequences at
constant baryon mass M0. The red solid lines locates HSs with ρc = ρcrit while the red dashed line locates QSs originating from the conversion of HSs lying
on the red solid line. Detailed results on the configurations labeled A and Bs are listed in table 1.
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Figure 2. Gravitational mass as a function of the circumferential radius
for both HSs and QSs. Thin dashed lines are sequences of stars at a fixed
frequency from the non-rotating configurations (thick solid blue and green
lines) to the configurations rotating at the maximum frequency (thin solid
blue and green lines) and spaced by 200 Hz. The yellow region shows
hadronic configurations centrifugally supported against deconfinement. Red
lines and labels are the same as in figure 1.

decays into a QS in ! 10 s. Given the typical spin-down timescales
we assume that this transition is instantaneous and both the baryon
number (baryonic mass) and the angular momentum J are con-
served. The red dashed line in the right panel of figure 1 and in fig-
ure 2 maps upon the QS sequences the configurations which origi-
nate from quark deconfinement of HSs. With reference to our lim-
iting configurations, the HS labeled with A migrates to the config-
uration Â with gravitational mass M(Â) = 1.32M⊙ , while the HS
B migrates to the configuration B̂ with M(B̂) = 1.44M⊙. In both
cases the total energy released in the transition is of the order of
∼ 0.1M⊙. Finally, after the formation, QSs can spin-down follow-
ing the evolutionary path of constant M0 shown in the right panel of

Table 1. Global quantities at the phase transition for the configurations la-
beled in figure 1: gravitational mass M and spin frequency f of the hadronic
configuration at deconfinement; difference between the spin frequency ∆ fd,
the gravitational mass ∆Md, and the rotational energy ∆Kd before and after
deconfinement.

Label M0 f ∆ fd M ∆Md ∆Kd
[M⊙] [Hz] [Hz] [M⊙] [M⊙] [1052 erg]

A 1.666 0.00 0.00 1.452 0.132 0.00
B1 1.677 300 130 1.462 0.132 0.20
B2 1.687 400 177 1.470 0.133 0.35
B3 1.698 500 224 1.480 0.133 0.57
B4 1.733 700 317 1.520 0.136 1.18
B5 1.785 900 413 1.555 0.139 2.14
B 1.820 1000 462 1.585 0.142 2.80

figure 1. Detailed results are presented in table 1 where we list the
variation of the spin frequency ∆ fd, of the gravitational mass ∆Md
and of the rotational kinetic energy ∆Kd (where K := 1

2 JΩ ) during
the phase transition for a set of selected models. Since QSs have
larger radii and hence also a larger moment of inertia, conservation
of the angular momentum implies a drop in spin frequency. Inter-
estingly we found that the variation of the stellar radius is slightly
larger (∼ 10% between cases A and B) at higher M0. Hence tran-
sitions at higher M0 are characterized by a bigger percent variation
of the spin frequency and of the rotational energy. ∆Kd only ac-
counts for the variation of the kinetic energy while the total change
of energy is given by the variation of the gravitational mass ∆Md
and it will produce a reheating of the star. In the range of interest,
∆Md ≃ 1053 erg and ∆Kd ≃ 1051−52 erg. This significant amount of
energy released by quark deconfinement can be associated with a
late time activity as we will discuss in the following.

In the magnetar GRB model the spin-down evolution is gov-
erned by magnetic torques. Therefore in order to evaluate the evolu-
tionary timescales of our models we solve, for simplicity, the spin-
down formula for an aligned dipole rotator (Spitkovsky 2006):

dJ
dt
= −

B2R6Ω3

4
, (1)
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Figure 1. Gravitational mass against baryon central density for sequences of HSs (left panel) and QSs (right panel) with constant spin frequency. In both cases
the green solid lines represent the non-rotating sequences while the black solid lines are sequences rotating at the maximum spin frequency considered in
this work: 1000Hz for HSs and 600Hz for QSs. Dashed black lines are sequences with intermediate values of f while blue lines are equilibrium sequences at
constant baryon mass M0. The red solid lines locates HSs with ρc = ρcrit while the red dashed line locates QSs originating from the conversion of HSs lying
on the red solid line. Detailed results on the configurations labeled A and Bs are listed in table 1.
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Figure 2. Gravitational mass as a function of the circumferential radius
for both HSs and QSs. Thin dashed lines are sequences of stars at a fixed
frequency from the non-rotating configurations (thick solid blue and green
lines) to the configurations rotating at the maximum frequency (thin solid
blue and green lines) and spaced by 200 Hz. The yellow region shows
hadronic configurations centrifugally supported against deconfinement. Red
lines and labels are the same as in figure 1.

decays into a QS in ! 10 s. Given the typical spin-down timescales
we assume that this transition is instantaneous and both the baryon
number (baryonic mass) and the angular momentum J are con-
served. The red dashed line in the right panel of figure 1 and in fig-
ure 2 maps upon the QS sequences the configurations which origi-
nate from quark deconfinement of HSs. With reference to our lim-
iting configurations, the HS labeled with A migrates to the config-
uration Â with gravitational mass M(Â) = 1.32M⊙ , while the HS
B migrates to the configuration B̂ with M(B̂) = 1.44M⊙. In both
cases the total energy released in the transition is of the order of
∼ 0.1M⊙. Finally, after the formation, QSs can spin-down follow-
ing the evolutionary path of constant M0 shown in the right panel of

Table 1. Global quantities at the phase transition for the configurations la-
beled in figure 1: gravitational mass M and spin frequency f of the hadronic
configuration at deconfinement; difference between the spin frequency ∆ fd,
the gravitational mass ∆Md, and the rotational energy ∆Kd before and after
deconfinement.

Label M0 f ∆ fd M ∆Md ∆Kd
[M⊙] [Hz] [Hz] [M⊙] [M⊙] [1052 erg]

A 1.666 0.00 0.00 1.452 0.132 0.00
B1 1.677 300 130 1.462 0.132 0.20
B2 1.687 400 177 1.470 0.133 0.35
B3 1.698 500 224 1.480 0.133 0.57
B4 1.733 700 317 1.520 0.136 1.18
B5 1.785 900 413 1.555 0.139 2.14
B 1.820 1000 462 1.585 0.142 2.80

figure 1. Detailed results are presented in table 1 where we list the
variation of the spin frequency ∆ fd, of the gravitational mass ∆Md
and of the rotational kinetic energy ∆Kd (where K := 1

2 JΩ ) during
the phase transition for a set of selected models. Since QSs have
larger radii and hence also a larger moment of inertia, conservation
of the angular momentum implies a drop in spin frequency. Inter-
estingly we found that the variation of the stellar radius is slightly
larger (∼ 10% between cases A and B) at higher M0. Hence tran-
sitions at higher M0 are characterized by a bigger percent variation
of the spin frequency and of the rotational energy. ∆Kd only ac-
counts for the variation of the kinetic energy while the total change
of energy is given by the variation of the gravitational mass ∆Md
and it will produce a reheating of the star. In the range of interest,
∆Md ≃ 1053 erg and ∆Kd ≃ 1051−52 erg. This significant amount of
energy released by quark deconfinement can be associated with a
late time activity as we will discuss in the following.

In the magnetar GRB model the spin-down evolution is gov-
erned by magnetic torques. Therefore in order to evaluate the evolu-
tionary timescales of our models we solve, for simplicity, the spin-
down formula for an aligned dipole rotator (Spitkovsky 2006):

dJ
dt
= −

B2R6Ω3

4
, (1)
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episodes in GRB 110709B. Episode 1 starts 40 s before the first
trigger time and lasts up to 60 s after it. It is well-fit by a black-
body (BB) plus power-law (PL) spectral model. It corresponds
to the trigger of the SN explosion of the compact core and its
accretion onto the NS companion. The BB temperature decays
with time following a broken PL (Ryde 2004). Episode 2 starts
35 s before the second trigger time and lasts up to 100 s after
it. It corresponds to the emission of the canonical GRB emit-
ted in the formation of a BH. Episode 3 starts at 800 s all the
way to 106 s. It consists of a standard X-ray emission identi-
fied in all systems following the IGC paradigm (Pisani et al., in
prep.). Episode 4 corresponds to the observation of the optical
SN emission, observable after Tobs = (1 + z)TSN. In the present
case, there is no evidence of an associated SN in the optical band.
An explanation for this is given by Zauderer et al. (2012), who
classified GRB 110709B as dark and stated that its optical emis-
sion may have been absorbed by the host galaxy and/or the in-
terstellar medium (ISM). The ensemble of these four episodes
characterize the IGC scenario.

As an outcome, at the endpoint of the IGC scenario, a binary
system represented by an NS (formed by the SN explosion) and
a BH (formed after the GRB explosion) should be expected.

As in the case of GRB 101023, we do not know the
cosmological redshift of GRB 110709B due to the lack of op-
tical data. Therefore, we infer it from phenomenological meth-
ods: 1) the Amati relation (Amati 2006), 2) the Yonetoku rela-
tion (Yonetoku 2004, 2010), 3) the work of Grupe et al. (2007),
and 4) the work by Penacchioni et al. (2012), Ruffini (2012),
and Pisani et al. (in prep.), which describe a scaling of the late
X-ray emission of GRB 090618. In the case of GRB 111228,
which we are currently analyzing, we find a striking coincidence
between the values of the cosmological redshift determined by
these methods for GRB 110709B.

In Sect. 2 we report the observations of the two components
of GRB 110709B by the different instruments, in space and on
the ground. In Sect. 3 we reduce the Swift data and perform a
detailed spectral analysis of both episodes 1 and 2. In Sect. 4 we
infer the redshift of the source using the four phenomenological
methods mentioned above. In Sect. 5 we determine the radius of
the emitting region from the knowledge of the redshift and the
BB flux of the first episode. In Sect. 6 we give a brief description
of the fireshell model and perform a deeper analysis of episode 2
within this model, reproducing the light curve and the spectrum
by a numerical simulation. In Sect. 7 we calculate the parame-
ters of the binary progenitor leading to the IGC of the NS to a
BH by the SN explosion. Details on the accretion rate onto the
NS, total accreted mass, SN ejecta density, NS mass, and binary
orbital period are obtained for selected values of the SN progen-
itor mass. In Sect. 8 we comment on the radio emission detected
by EVLA (Zauderer & Berger 2012). In Sect. 9 we present the
conclusions.

2. Observations of GRB 110709B

GRB 110709B has been detected by the Suzaku (Ohmori et al.
2011) and Swift (Cummings et al. 2011) satellites and by the
ground-based telescopes GROND (Updike et al. 2011) and
Gemini (Berger 2011).

The Burst Alert Telescope (BAT) onboard Swift was trig-
gered a first time at 21:32:39 UT (trigger N◦ = 456 967). The lo-
cation of this event is RA = 164.6552, Dec = –23.4550. The light
curve is composed of multiple peaks, with the whole emission
extending up to 60 s after the trigger (see Fig. 1). What is most
interesting is that there was another trigger point at 21:43:25 UT
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Fig. 1. BAT light curve of GRB 110709B, including the two trigger
times. Here we can appreciate the time separation (about 10 min) be-
tween the first and the second trigger. The light curve is in the (15–
150 keV) energy band. The time is relative to the first trigger time,
of 331 939 966 s (in MET seconds). The second trigger time was at
331 940 612 s in MET seconds.

(trigger N◦ = 456 969), ∼11 min after the first trigger time. The
onboard calculated location is RA = 164.647, Dec = –23.464.
This time Swift did not need to slew, because it was already
pointing to that position. This second emission shows a bump
that begins 100 s before the second trigger time and lasts around
50 s, followed by several overlapping peaks with a total duration
of about 40 s, and another isolated peak of 10 s of duration, 200 s
after the second trigger time. Figure 1 shows the complete BAT
light curve and Fig. 2 shows the light curve taken by the X-Ray
Telescope (XRT) in the 0.3–10 keV band.

There have been no detections in the optical band by Swift-
UVOT, which started to observe 70 s after the first BAT trig-
ger time (Holland 2011). The observations with GROND at the
La Silla Observatory (Updike et al. 2011) simultaneously in the
g′ r′ i′ z′ JHK, reveal two point sources within the 5”.3 XRT er-
ror circle reported by Cummings et al. (2011). They suggest that
one of them could be an afterglow candidate for GRB 110709B,
although it is very faint.

It has been suggested by Zauderer et al. (2012) that this
source is an “optically dark” GRB. The possible reasons for this
are 1) dust obscuration; 2) an intrinsically dim event; and/or
3) high redshift (optical emission suppressed by Lyα absorp-
tion at λobs ≤ 1216 Å (1 + z)). However, they rule out the pos-
sibility of a high-redshift event due to the association with an
optically detected host galaxy. Furthermore, they have inferred
the optical brightness of the afterglow according to the standard
afterglow synchrotron model (Granot & Sari 2002; Sari et al.
1999), and from the non-detection in the optical-near-infrared
(NIR) wavelengths they find a very high rest-frame extinction
for GRB 110709B. This can explain the lack of detections in the
optical band.

There have been detections in the radio band on several oc-
casions by EVLA (Zauderer & Berger 2012), revealing a single
unresolved radio source within the XRT error circle, which re-
brightened by a factor of 1.6 between 2.1 and 7 days after the
burst. The location of the source is RA = 10:58:37.114, Dec =
–23:27:16.760.

3. Data analysis

In the following we refer to the emission that lasted from 40 s
before the first BAT trigger time to 60 s after it as episode 1
(see Fig. 3). We call the emission lasting from 35 s before the
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Figure 3. Time evolution of the spin-frequency (left panel) and of the rotational energy (right panel) for dipole magnetic field losses along sequences of
constant baryonic mass M0. Details about these sequences are listed in tables 1 and 2.

Table 2. Spin-down timescales to start quark deconfinement ∆tsd together
with the associated variation of the rotational kinetic energy ∆Ksd starting
from an initial spin period Pi for the equilibrium sequences shown in fig-
ure 3. We also report the spin-down timescales ∆tq (defined as the time
needed to half the rotational frequency of the QS) and the corresponding
rotational energy loss ∆Kq after quark deconfinement. The initial magnetic
field is of 1015 G.

M0 Pi → Pd ∆tsd ∆Ksd ∆tq ∆Kq
[M⊙] [ms] [1052 erg] [1052erg]

1.666 1.0→∞ ∞ 5.91 - -
1.677 1.0→ 3.3 2.7 hr 5.48 37 hr 0.19

2.0→ 3.3 1.8 hr 0.82
3.0→ 3.3 37 min 0.13

1.687 1.0→ 2.5 1.5 hr 5.13 21 hr 0.33
2.0→ 2.5 36 min 0.46

1.698 1.0→ 2.0 55 min 4.68 14 hr 0.53
1.733 1.0→ 1.4 23 min 3.37 8.2 hr 1.20
1.785 1.0→ 1.1 6 min 1.37 5.4 hr 1.95
1.820 1.0→ 1.0 0 0 4.6 hr 2.41

where B is the magnetic field strength at the pole and we assume
that the magnetic flux Φ = BR2 is constant during the evolution.
This choice gives only an upper limit to the timescale for decon-
finement: oblique rotators or mass loaded winds can have higher
torques (Metzger et al. 2011) that can lead to faster spin-down (up
to a factor 10) in the first tens of seconds. Furthermore we neglect
the possibility of late time mass accretion (Bernardini et al. 2014),
because it introduces extra degree of freedom that cannot be easily
constrained. Moreover we also neglect gravitational waves emis-
sion which is relevant only if the star owns a very strong inter-
nal toroidal field larger than ∼ 1016 G (Dall’Osso, Shore & Stella
2009). In the mass range of interest we have evaluated the spin-
down timescale up to deconfinement, which is shown in figure 3
and table 2, for each equilibrium sequence of constant M0 , assum-
ing an initial surface magnetic field B0 = 1015 G. Note that the
spin-down age scales with B−20 . Conservation of the magnetic flux
Φ is also assumed to hold during the phase transition. The resulting
magnetic field strength is of the order of 0.5B0 due to the change of
the stellar radius.

The time evolution of the spin frequency f and of the rota-

tional energy K is shown in figure 3 for the HS configurations la-
belled B1−B5. It is evident that HSs with higher mass have a shorter
lifetime before deconfinement, since they reach the critical density
at higher spin frequencies. In table 2 we list the time it takes to start
deconfinement and the associated rotational spin-down energy loss
∆Ksd for different values for the initial spin period.

3 DISCUSSION AND CONCLUSIONS

Let us consider now the phenomenological implications of our sce-
nario for the evolution of proto-magnetars. The variation of the ro-
tational energy ∆Ksd displayed in table 2 gives an estimate of the
energy reservoir available to the HS before deconfinement which
occurs after a spin-down time scale ∆tsd that ranges from several
minutes to hours. Comparing ∆Ksd with the typical energetics of the
millisecond magnetar model for GRBs (figure 19 of Metzger et al.
2011) one notices that the values shown in table 2 are compatible
with the requirement for classical GRBs, being ∆Ksd much larger
than 1050−51 erg, i.e. the typical energy emitted in X-rays and in
γ-rays during GRB events. We also remark that since ∆tsd is much
larger than the typical duration of the prompt phase of LGRBs,
deconfinement does not spoil the nice description of the prompt
emission of LGRBs within the proto-magnetar model.

However, as discussed before, also the HS to QS transition is
characterized by a huge release of energy (table 1) that in princi-
ple could manifest itself as a second transient. Hence the time for
deconfinement ∆tsd is indicative of the delay between the prompt
GRB emission due to the HS and the possible flare or second
prompt emission associated to quark deconfinement. Let us sum-
marize how the deconfinement process proceeds and how is the
energy released. As studied in Drago & Pagliara (2015), decon-
finement can be described as a combustion process which can be
separated in two phases. The first phase is very rapid due to tur-
bulence and it converts the bulk of the star in a time scale of
few ms (Drago, Lavagno & Parenti 2007; Herzog & Ropke 2011).
The second phase is dominated by diffusion of strangeness and it
is therefore much slower, typically lasting a few tens of seconds
(Drago & Pagliara 2015). The huge energy associated to decon-
finement is released via thermal neutrinos whose luminosity can
similarly be divided into an initial peak associated with the decon-

Rotational energy K(t) 
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❖ Mathematical Framework 

Einstein equations

1.5. Equazioni CFC

mentre considerando la parte a traccia nulla della stessa equazione si ottiene:

2↵K
ij

= D
i

�
j

+D
j

�
i

� 2

3
(D

k

�
k

)�
ij

, (1.40)

che ci consente di esprimere la curvatura scalare in termini del solo shift vector.

Va notato che la condizione (1.37) è una scelta di gauge approssimata, e va

considerata esatta solo se la sezione ⌃
t

è piatta in maniera conforme4, che si

verifica, ad esempio, quando ⌃
t

possiede simmetria sferica. Inoltre, ponendo a

zero tutti i termini non diagonali della metrica, la condizione CFC elimina i gradi

di libertà associati all’emissione di onde gravitazionali.

Procediamo ora con la decomposizione conforme del tensore di curvatura

estrinseca. A questo scopo è utile scomporre il tensore K
ij

nella sua traccia

K e nella sua componente a traccia nulla Aij:

K
ij

= A
ij

+
1

3
K�

ij

, (1.42)

e fare una ulteriore richiesta insieme alla (1.37). Richiediamo, infatti, che la

foliazione scelta sia massimale ovvero che:

K = 0. (1.43)

Eseguendo una trasformazione conforme, del tipo in (1.35), su A
ij

si ottiene:

Kij =
1

 4
Ãij, (1.44)

e dalla (1.40) risulta:

2↵Ãij = (L�)ij, (1.45)

dove con (L) si è indicato l’operatore associato alla metrica piatta definito da:

(L�)ij := ri�j +rj�i � 2

3
r

k

�kf ij. (1.46)

Usando i risultati illustrati è possibile eseguire la scomposizione conforme

delle equazioni ADM nell’approssimazione CFC. Dall’equazione per il vincolo

hamiltoniano (1.31) si ottiene:

� = �

2⇡E +

1

8
f
ik

f
jl

ÃijÃkl

�
 5 , (1.47)

4La geometria di ⌃t è conformemente piatta se e solo se si annulla il tensore di Cotton-York

definito da:

Cij = �1/3✏iklDk(R
j
l � 1

4
� j
l R), (1.41)

dove con ✏ikl si è indicato il simbolo di Levi-Civita.
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Capitolo 1. Formalismo (3+1)

dalla traccia dell’ equazione per l’evoluzione di K
ij

(1.33) si ottiene:

�(↵ ) =


2⇡(E + 2S) +

7

8
f
ik

f
jl

ÃijÃkl

�
↵ 5 , (1.48)

dove � è il Laplaciano nello spazio euclideo, mentre dall’equazione per il vincolo

impulso (1.32), sfruttando il fatto che in approssimazione di piattezza conforme

vale:

D
j

Kij =
1

 10
r

j

( 10Kij) , (1.49)

si ottiene:

�
L

�i := 16⇡↵ 4Si + 2 6Ãijr
j

✓
↵

 6

◆
, (1.50)

dove si è indicato con �
L

il Laplaciano vettoriale definito da:

�
L

�i := r
j

(L�)ij = ��i +
1

3
ri(r

j

�j) . (1.51)

Le equazioni (1.47), (1.48) e (1.50) rappresentano il set delle equazioni CFC,

che consiste in un sistema di 3 equazioni ellittiche (due scalari e una vettoriale)

fortemente accoppiate nelle tre incognite ( ,↵, �i).

Ricordiamo che l’approssimazione CFC è stata largamente utilizzata per appli-

cazioni astrofisiche: si va dal “merging” di un sistema binario di stelle di neutroni

[56], al collasso gravitazionale dei nuclei stellari [29] fino al calcolo di modelli di

equilibrio per stelle rotanti. In questi casi si è visto che in situazioni altamente

relativistiche il sistema CFC so↵re di problemi di unicità che impediscono agli

algoritmi numerici di convergere o di convergere sulla soluzione corretta. Il mo-

tivo della non-unicità della soluzione va ricercata nella non linearità dei vincoli.

Per illustrare questa caratteristica consideriamo un’ equazione ellittica scalare del

tipo:

�u = fu, (1.52)

definita in un dominio ⌦. Assumiamo che f sia una funzione nota e che u = 0 sul

bordo @⌦. Se f � 0 ovunque, dal principio di massimo segue che u = 0 ovunque.

Infatti se u è diverso da zero, ammettiamo positivo/negativo, in qualche punto

allora deve ammettere un massimo/minimo all’interno di ⌦. Di conseguenza

nel punto di massimo/minimo il termine a sinistra dell’uguaglianza (1.52) dovrà

essere negativo/positivo mentre il termine a destra rimane positivo/negativo per

costruzione giungendo ad una contraddizione. Si consideri ora l’equazione:

�u = fup, (1.53)
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j

✓
↵

 6

◆
, (1.50)
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algoritmi numerici di convergere o di convergere sulla soluzione corretta. Il mo-
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CFC equations

XCFC equations

Capitolo 1. Formalismo (3+1)

e a partire dal vincolo impulso, sfruttando la (1.49), si ottiene una nuova equa-

zione per W i:

r
j

Âij = �
L

W i = 8⇡ 10Si, (1.58)

che potrà essere aggiunta al sistema delle equazioni CFC.

Confrontando (1.44) con (1.55) si ottiene:

Âij =  6Ãij, (1.59)

che può essere utilizzata per riscrivere le equazioni (1.47), (1.48), (1.50) e ottenere

finalmente le equazioni XCFC:

�
L

W i = 8⇡f ijŜ
j

, (1.60)

� = �2⇡Ê �1 +
1

8
f
ik

f
jl

ÂijÂkl �7, (1.61)

�(↵ ) = [2⇡(Ê + 2Ŝ) �2 +
7

8
f
ik

f
jl

ÂijÂkl �8]↵ , (1.62)

�
L

�i = 16⇡↵ �6f ijŜ
j

+ 2Âijr
j

(↵ �6), (1.63)

dove i termini sorgente sono stati riscalati per convenienza attraverso:

Ŝ
j

:=  6S
j

, Ê :=  6E, Ŝ :=  6S . (1.64)

E↵ettuando un confronto con le equazioni CFC vediamo che nel caso XCFC si

hanno otto variabili incognite (W i, ,↵, �i) e che i segni per gli esponenti di

 e ↵ sono compatibili con il principio di massimo per le equazioni ellittiche

scalari, il che ci garantisce l’unicità locale delle soluzioni. Inoltre va osservato

che le equazioni si disaccoppiano in maniera gerarchica, per cui le equazioni del

sistema (1.60)-(1.63), note le variabili idrodinamiche(E, Si, S), possono essere

risolte nell’ordine dato. A questo si aggiunga che le quantità (Ê, Ŝi, Ŝ), sono

solitamente disponibili, negli algoritmi numerici che risolvono anche l’evoluzione

delle sorgenti, prima della soluzione delle equazioni XCFC.

La soluzione delle equazioni di Einstein, riscritte nell’approssimazione del

sistema XCFC, congiuntamente alle equazioni che regolano l’idrodinamica e/o

magnetoidrodinamica del sistema verranno descritte nel prossimo capitolo.
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where Lγ indicates the conformal Killing operator associated to
γi j. On the other hand, in conformal flatness we also have

D jKi j = ψ−10∇ j

(
ψ10Ki j

)
, (19)

to be used with the above rescaling in the momentum constraint
to find an equation for βi.

Thanks to all the relations derived so far, the final set of CFC
elliptic equations may be written in terms of the sources and of
Ãi j (containing α and first derivatives of βi) as

∆ψ = −
[
2πE + 1

8 fik f jl Ãi jÃkl
]
ψ5, (20)

∆(αψ) =
[
2π(E + 2S ) + 7

8 fik f jlÃi jÃkl
]
αψ5, (21)

∆L β
i = 16παψ4S i + 2ψ6Ãi j∇ j

(
αψ−6

)
, (22)

where

∆L β
i := ∇ j (L β)i j = ∆βi + 1

3∇i
(
∇ jβ j

)
, (23)

is the so-called conformal vector Laplacian operator, associated
to the flat 3-metric fi j and applied to βi.

2.2. From CFC to XCFC

A slightly different approach to the Einstein equations for
asymptotically flat spacetimes has been presented recently
(Cordero-Carrión et al. 2009). This involves a rewriting of the
elliptical part of the FCF system for full GR through a different
decomposition of the extrinsic curvature. Here we just describe
its conformal flatness approximation, leading to the so-called ex-
tended conformal flatness condition (XCFC) system of elliptic
equations, improving on the CFC ones described in the previous
section. The set of XCFC equations is our choice for the metric
evolution in X-ECHO.

The new approach still relies on the usual conformal de-
composition in Eq. (9) and on the maximum slicing condition
of Eq. (10), but the choice for the decomposition of the (trace-
less) extrinsic curvature is different. We use here the momentum-
constraint rescaling and the so-called York conformal transverse
traceless (CTT) decomposition, first introduced for initial data,
that is

Ki j = ψ−10Âi j, Âi j := (LW)i j + Âi j
TT, (24)

where the conformal Killing operator associated to the un-
known vector Wi gives the longitudinal part of Âi j

TT, whereas
Âi j

TT is a transverse (∇ jÂ
i j
TT = 0), traceless ( fi j Â

i j
TT = 0) tensor.

Consistency between the CTS and CTT decompositions (notice
that Âi j = ψ6Ãi j) should require a non-vanishing Âi j

TT. However,
it has been demonstrated that this quantity is even smaller than
the non-conformal part of the spatial metric within the CFC ap-
proach, so can be safely neglected on the level of the CFC ap-
proximation. Thus, as an additional hypothesis,we set

Âi j
TT = 0⇒ Âi j = (LW)i j, (25)

so that Âi j is defined in terms of the auxiliary vector Wi

alone. The latter is derived from the momentum constraint us-
ing Eq. (19), which is simply

∇ jÂi j = ∆LWi = 8π ψ10S i, (26)

to be added to the other CFC equations.

The final augmented set of CFC elliptic equations, also
known as XCFC equations, is then the following

∆LWi = 8π f i jŜ j, (27)

∆ψ = −2πÊ ψ−1 − 1
8 fik f jl ÂklÂi j ψ−7, (28)

∆(αψ) =
[
2π

(
Ê + 2Ŝ

)
ψ−2 + 7

8 fik f jl ÂklÂi j ψ−8
]
αψ, (29)

∆L β
i = 16π αψ−6 f i jŜ j + 2Âi j∇ j

(
αψ−6

)
, (30)

where for convenience we have introduced rescaled fluid source
terms of the form

Ŝ j := ψ6S j, Ê := ψ6E, Ŝ := ψ6S , (31)

and we recall that

Âi j = ∇iW j + ∇ jWi − 2
3

(
∇kWk

)
f i j. (32)

Some comments and comparisons between the CFC and
XCFC sets of equations are now due.

– There are now 8 rather than 5 (Wi, ψ, α, βi) unknown func-
tions, and this is reflected by the augmented number of ellip-
tic equations. There is a new vector Poisson equation for the
auxiliary variable Wi.

– While all the equations were strongly coupled in CFC, here
the equations can be solved hierarchically one by one, in the
given order, since each right-hand side just contains known
functions or the variable itself (in the two scalar Poisson-like
equations for ψ and αψ).

– As we will see in the next subsection, schemes for general
relativistic hydrodynamics or MHD (like ECHO), given a
metric in 3 + 1 form, actually evolve the conservative vari-
ables γ1/2S j and γ1/2E in time, rather than S i and E. Since
ψ6 = γ1/2/ f 1/2 and f 1/2 is known and time-independent,
the sources Ŝ j and Ê are basically known after each com-
putational timestep without the need of an updated value
of ψ. This will only be needed to work out Ŝ = ψ6γi jS i j,
after the new value of ψ has been provided by Eq. (28)
and the inversion of conservative to primitive variables has
been achieved. Primitive variables are then updated self-
consistently together with the new values for the metric,
whereas this was not possible in CFC. In that case, one could
either use Eq. (11) to derive a guess of the updated ψ (a
method easily prone to both convergence problems and dis-
cretization errors), or one is forced to iterate simultaneously
over the metric solver (the whole CFC set) and the inversion
routine for the primitive variables (typically itself a numeri-
cal iterative Raphson-Newton method).

– The last, and certainly not least, issue is related to the math-
ematical nature of the scalar Poisson-like equations. In both
cases we have a structure of the form

∆u = hup, (33)

where u is the generic variable (ψ or αψ), h is the generic
source term, and p provides the exponent of the non-linearity
(p = 0 for a canonical Poisson equation). It can be demon-
strated that the condition ph ≥ 0 implies that the solution u is
locally unique. While this is always true in XCFC, since we
have two contributions with p = −1 and p = −7, both with
h ≤ 0, in Eq. (28), and one contribution with p = +1 and
h ≥ 0 in Eq. (29), local uniqueness cannot be guaranteed for
the CFC system, since Eq. (21) contains a term that certainly
violates the requirement (the second one, due to the presence
of a factor α−1 in Ãi j).
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where

• Used in models of Core Collapse, Neutron Stars 

• Deviation from full GR negligible (Shibata et al. 2004)

• But uniqueness problems! (Cordero-Carrion et al 2009)

�ij =  4fij

K = 0 Kij =
1

 4
Ãij

Conformally Flat Condition

Maximal Slicing ⇒

1.6. Equazioni XCFC

e si assuma che esistano due soluzioni positive u1 e u2 identiche sul bordo ma tali

che u1 � u2. La di↵erenza h = u1 � u2 deve soddisfare un’ equazione del tipo:

�h = pfũp�1h, (1.54)

dove ũ soddisfa u2  ũ  u1. L’argomento precedente ci assicura h = 0, quindi

l’unicità della soluzione di (1.53), se e solo se il segno dell’esponente p coincide con

quello del termine sorgente f . Guardando all’equazione (1.37) è perciò chiaro che

il principio di massimo non ci assicura l’unicità locale della soluzione. La stessa
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Âij = (LW )ij , (1.57)

13

1.6. Equazioni XCFC

e si assuma che esistano due soluzioni positive u1 e u2 identiche sul bordo ma tali

che u1 � u2. La di↵erenza h = u1 � u2 deve soddisfare un’ equazione del tipo:
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TT
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where Lγ indicates the conformal Killing operator associated to
γi j. On the other hand, in conformal flatness we also have

D jKi j = ψ−10∇ j

(
ψ10Ki j

)
, (19)

to be used with the above rescaling in the momentum constraint
to find an equation for βi.

Thanks to all the relations derived so far, the final set of CFC
elliptic equations may be written in terms of the sources and of
Ãi j (containing α and first derivatives of βi) as

∆ψ = −
[
2πE + 1

8 fik f jl Ãi jÃkl
]
ψ5, (20)

∆(αψ) =
[
2π(E + 2S ) + 7

8 fik f jlÃi jÃkl
]
αψ5, (21)

∆L β
i = 16παψ4S i + 2ψ6Ãi j∇ j

(
αψ−6

)
, (22)

where

∆L β
i := ∇ j (L β)i j = ∆βi + 1

3∇i
(
∇ jβ j

)
, (23)

is the so-called conformal vector Laplacian operator, associated
to the flat 3-metric fi j and applied to βi.

2.2. From CFC to XCFC

A slightly different approach to the Einstein equations for
asymptotically flat spacetimes has been presented recently
(Cordero-Carrión et al. 2009). This involves a rewriting of the
elliptical part of the FCF system for full GR through a different
decomposition of the extrinsic curvature. Here we just describe
its conformal flatness approximation, leading to the so-called ex-
tended conformal flatness condition (XCFC) system of elliptic
equations, improving on the CFC ones described in the previous
section. The set of XCFC equations is our choice for the metric
evolution in X-ECHO.

The new approach still relies on the usual conformal de-
composition in Eq. (9) and on the maximum slicing condition
of Eq. (10), but the choice for the decomposition of the (trace-
less) extrinsic curvature is different. We use here the momentum-
constraint rescaling and the so-called York conformal transverse
traceless (CTT) decomposition, first introduced for initial data,
that is

Ki j = ψ−10Âi j, Âi j := (LW)i j + Âi j
TT, (24)

where the conformal Killing operator associated to the un-
known vector Wi gives the longitudinal part of Âi j

TT, whereas
Âi j

TT is a transverse (∇ jÂ
i j
TT = 0), traceless ( fi j Â

i j
TT = 0) tensor.

Consistency between the CTS and CTT decompositions (notice
that Âi j = ψ6Ãi j) should require a non-vanishing Âi j

TT. However,
it has been demonstrated that this quantity is even smaller than
the non-conformal part of the spatial metric within the CFC ap-
proach, so can be safely neglected on the level of the CFC ap-
proximation. Thus, as an additional hypothesis,we set

Âi j
TT = 0⇒ Âi j = (LW)i j, (25)

so that Âi j is defined in terms of the auxiliary vector Wi

alone. The latter is derived from the momentum constraint us-
ing Eq. (19), which is simply

∇ jÂi j = ∆LWi = 8π ψ10S i, (26)

to be added to the other CFC equations.

The final augmented set of CFC elliptic equations, also
known as XCFC equations, is then the following

∆LWi = 8π f i jŜ j, (27)

∆ψ = −2πÊ ψ−1 − 1
8 fik f jl ÂklÂi j ψ−7, (28)

∆(αψ) =
[
2π

(
Ê + 2Ŝ

)
ψ−2 + 7

8 fik f jl ÂklÂi j ψ−8
]
αψ, (29)

∆L β
i = 16π αψ−6 f i jŜ j + 2Âi j∇ j

(
αψ−6

)
, (30)

where for convenience we have introduced rescaled fluid source
terms of the form

Ŝ j := ψ6S j, Ê := ψ6E, Ŝ := ψ6S , (31)

and we recall that

Âi j = ∇iW j + ∇ jWi − 2
3

(
∇kWk

)
f i j. (32)

Some comments and comparisons between the CFC and
XCFC sets of equations are now due.

– There are now 8 rather than 5 (Wi, ψ, α, βi) unknown func-
tions, and this is reflected by the augmented number of ellip-
tic equations. There is a new vector Poisson equation for the
auxiliary variable Wi.

– While all the equations were strongly coupled in CFC, here
the equations can be solved hierarchically one by one, in the
given order, since each right-hand side just contains known
functions or the variable itself (in the two scalar Poisson-like
equations for ψ and αψ).

– As we will see in the next subsection, schemes for general
relativistic hydrodynamics or MHD (like ECHO), given a
metric in 3 + 1 form, actually evolve the conservative vari-
ables γ1/2S j and γ1/2E in time, rather than S i and E. Since
ψ6 = γ1/2/ f 1/2 and f 1/2 is known and time-independent,
the sources Ŝ j and Ê are basically known after each com-
putational timestep without the need of an updated value
of ψ. This will only be needed to work out Ŝ = ψ6γi jS i j,
after the new value of ψ has been provided by Eq. (28)
and the inversion of conservative to primitive variables has
been achieved. Primitive variables are then updated self-
consistently together with the new values for the metric,
whereas this was not possible in CFC. In that case, one could
either use Eq. (11) to derive a guess of the updated ψ (a
method easily prone to both convergence problems and dis-
cretization errors), or one is forced to iterate simultaneously
over the metric solver (the whole CFC set) and the inversion
routine for the primitive variables (typically itself a numeri-
cal iterative Raphson-Newton method).

– The last, and certainly not least, issue is related to the math-
ematical nature of the scalar Poisson-like equations. In both
cases we have a structure of the form

∆u = hup, (33)

where u is the generic variable (ψ or αψ), h is the generic
source term, and p provides the exponent of the non-linearity
(p = 0 for a canonical Poisson equation). It can be demon-
strated that the condition ph ≥ 0 implies that the solution u is
locally unique. While this is always true in XCFC, since we
have two contributions with p = −1 and p = −7, both with
h ≤ 0, in Eq. (28), and one contribution with p = +1 and
h ≥ 0 in Eq. (29), local uniqueness cannot be guaranteed for
the CFC system, since Eq. (21) contains a term that certainly
violates the requirement (the second one, due to the presence
of a factor α−1 in Ãi j).
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