

Shell evolution far from stability

Nuclear shapes and coexistence

Clusterization

High-resolution gamma-ray spectroscopy is an optimum tool to study nuclear structure properties and investigate how they emerge from fundamental interactions.

Three-body forces

Isospin symmetry breaking

p-n pairing

Super heavy elements

Nuclear Astrophysics

CONVERSION ELECTRON MEASUREMENTS AT LNL FIRENZE - LNL - MILANO - PERUGIA

Spectroscopy of internal conversion electrons provides an important tool to investigate nuclear structure:

measurement of internal conversion coefficient

spin and parity of the levels

study of electric monopole transitions
 cannot proceed via gamma emission

ELECTRIC MONOPOLE TRANSITIONS

FINGERPRINT OF SHAPE COEXISTENCE

E0 transition strength

$$\rho^{2}(E0) = \left| \frac{\langle f | T(E0) | i \rangle}{eR^{2}} \right|^{2}$$

T(E0) monopole matrix element R nuclear radius

The ρ^2 is correlated to the change of the mean square nuclear radius between the two states and the mixing of the wave functions:

$$\rho^{2}(E0) = \frac{Z^{2}}{R^{4}} a^{2} b^{2} \left(\Delta \left\langle r^{2} \right\rangle\right)^{2}$$

ELECTRIC MONOPOLE TRANSITIONS IMPORTANT FOR COULOMB EXCITATION ANALYSIS

Typical level scheme

If the 0_2 is populated, the decay can occur through a gamma (E2) or an electron (E0).

If the E0 is not include in the de-excitation cross section the Coulomb excitation analysis code will consider 100% E2 decay with important effect on the matrix elements (incorrect relative sign).

ELECTRIC MONOPOLE TRANSITIONS IMPORTANT FOR COULOMB EXCITATION ANALYSIS

Typical level scheme

If the 0_2 is populated, the decay can occur through a gamma (E2) or an electron (E0).

If the E0 is not include in the de-excitation cross section the Coulomb excitation analysis code will consider 100% E2 decay with important effect on the matrix elements (incorrect relative sign).

CONVERSION ELECTRON MEASUREMENTS

 Conversion-electron spectrometers are a combination of a device for electron detection and a device for electron transportation, which guides the particles either around a physical barrier, far away from the target.

Mini Orange Spectrometer

The magnet pieces will be arranged around a central absorber, in an orange-type configuration.

CONVERSION ELECTRON MEASUREMENTS AT LNL SET-UP FOR CONVERSION ELECTRON MEASUREMENT AT THE SPES 1* BEAM LINE

ICE spectra will be acquired in anticoincidence with the signals in the plastic scintillator in order to reduce the β - particle background emitted in the decay of the parent nucleus

Lol for SPES: measurement of E0 transitions in 96Sr

CONVERSION ELECTRON MEASUREMENTS AT LNL SET-UP FOR CONVERSION ELECTRON MEASUREMENT AT THE SPES 1+ BEAM LINE

A chamber housing the mini-orange and the moving tape will be constructed as well a chamber for the LN₂ cooled Si(Li) detector.

To have a wide range of transmitted energies with a single set of permanent magnets we plan to use:

- a remote controlled moving system to change the distance of the mini-orange from the Si(Li) detector.
- a large area Si(Li) detector, thickness from 5 to 7 mm.

CONVERSION ELECTRON MEASUREMENTS AT LNL SET-UP FOR CONVERSION ELECTRON MEASUREMENT AT THE SPES 1* BEAM LINE

A chamber housing the mini-orange and the moving tape will be constructed as well a chamber for the LN₂ cooled Si(Li) detector.

CONVERSION ELECTRON MEASUREMENTS AT LNL

SET-UP FOR IN-BEAM CONVERSION ELECTRON AD GAMMA COINCIDENCE MEASUREMENTS

A new apparatus coupling GALILEO to a specially designed in-beam conversion

electron spectrometer. A similar apparatus in TRIUMF.

Important issues:

large size of the magnetic lens and large size detector

a wide energy acceptance window

non standard annular Si(Li) mounted at backward angles

reduce the δ electron background

non standard segmented Si(Li) detector kinematics
 correction of the electron energy spectrum

CONVERSION ELECTRON MEASUREMENTS AT LNL

SET-UP FOR IN-BEAM CONVERSION ELECTRON AD GAMMA COINCIDENCE MEASUREMENTS

simulation of a possible configuration inside GALILEO

CONVERSION ELECTRON MEASUREMENTS AT LNL

SET-UP FOR IN-BEAM CONVERSION ELECTRON AD GAMMA COINCIDENCE MEASUREMENTS

SPES layout: ISOL facility installation phases

- Phase 1. 2016 Building + First operation with the cyclotron NOW!
- Phase 2. 2017-18 From C.B. to RFQ + SPES target, LRMS, 1+ Beam Lines
- Phase 3. 2019 20 HRMS-BeamCooler + RFQ to ALPI

2019: phase2b no-reaccelerated radioactive beams

SPES layout: ISOL facility installation phases

- Phase 1. 2016 Building + First operation with the cyclotron NOW!
- Phase 2. 2017-18 From C.B. to RFQ + SPES target, LRMS, 1+ Beam Lines
- Phase 3. 2019 20 HRMS-BeamCooler + RFQ to ALPI

2019: phase2b no-reaccelerated radioactive beams